mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-14 19:46:26 +03:00
152 lines
6.1 KiB
Plaintext
152 lines
6.1 KiB
Plaintext
|
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > CUSTOM COMPONENTS
|
|||
|
|
|||
|
p
|
|||
|
| A component receives a #[code Doc] object and
|
|||
|
| #[strong performs the actual processing] – for example, using the current
|
|||
|
| weights to make a prediction and set some annotation on the document. By
|
|||
|
| adding a component to the pipeline, you'll get access to the #[code Doc]
|
|||
|
| at any point #[strong during] processing – instead of only being able to
|
|||
|
| modify it afterwards.
|
|||
|
|
|||
|
+aside-code("Example").
|
|||
|
def my_component(doc):
|
|||
|
# do something to the doc here
|
|||
|
return doc
|
|||
|
|
|||
|
+table(["Argument", "Type", "Description"])
|
|||
|
+row
|
|||
|
+cell #[code doc]
|
|||
|
+cell #[code Doc]
|
|||
|
+cell The #[code Doc] object processed by the previous component.
|
|||
|
|
|||
|
+row("foot")
|
|||
|
+cell returns
|
|||
|
+cell #[code Doc]
|
|||
|
+cell The #[code Doc] object processed by this pipeline component.
|
|||
|
|
|||
|
p
|
|||
|
| Custom components can be added to the pipeline using the
|
|||
|
| #[+api("language#add_pipe") #[code add_pipe]] method. Optionally, you
|
|||
|
| can either specify a component to add it before or after, tell spaCy
|
|||
|
| to add it first or last in the pipeline, or define a custom name.
|
|||
|
| If no name is set and no #[code name] attribute is present on your
|
|||
|
| component, the function name, e.g. #[code component.__name__] is used.
|
|||
|
|
|||
|
+code("Adding pipeline components").
|
|||
|
def my_component(doc):
|
|||
|
print("After tokenization, this doc has %s tokens." % len(doc))
|
|||
|
if len(doc) < 10:
|
|||
|
print("This is a pretty short document.")
|
|||
|
return doc
|
|||
|
|
|||
|
nlp = spacy.load('en')
|
|||
|
nlp.pipeline.add_pipe(my_component, name='print_info', first=True)
|
|||
|
print(nlp.pipe_names) # ['print_info', 'tagger', 'parser', 'ner']
|
|||
|
doc = nlp(u"This is a sentence.")
|
|||
|
|
|||
|
p
|
|||
|
| Of course, you can also wrap your component as a class to allow
|
|||
|
| initialising it with custom settings and hold state within the component.
|
|||
|
| This is useful for #[strong stateful components], especially ones which
|
|||
|
| #[strong depend on shared data].
|
|||
|
|
|||
|
+code.
|
|||
|
class MyComponent(object):
|
|||
|
name = 'print_info'
|
|||
|
|
|||
|
def __init__(vocab, short_limit=10):
|
|||
|
self.vocab = nlp.vocab
|
|||
|
self.short_limit = short_limit
|
|||
|
|
|||
|
def __call__(doc):
|
|||
|
if len(doc) < self.short_limit:
|
|||
|
print("This is a pretty short document.")
|
|||
|
return doc
|
|||
|
|
|||
|
my_component = MyComponent(nlp.vocab, short_limit=25)
|
|||
|
nlp.add_pipe(my_component, first=True)
|
|||
|
|
|||
|
+h(3, "custom-components-attributes")
|
|||
|
| Setting attributes on the #[code Doc], #[code Span] and #[code Token]
|
|||
|
|
|||
|
+aside("Why ._?")
|
|||
|
| Writing to a #[code ._] attribute instead of to the #[code Doc] directly
|
|||
|
| keeps a clearer separation and makes it easier to ensure backwards
|
|||
|
| compatibility. For example, if you've implemented your own #[code .coref]
|
|||
|
| property and spaCy claims it one day, it'll break your code. Similarly,
|
|||
|
| just by looking at the code, you'll immediately know what's built-in and
|
|||
|
| what's custom – for example, #[code doc.sentiment] is spaCy, while
|
|||
|
| #[code doc._.sent_score] isn't.
|
|||
|
|
|||
|
+under-construction
|
|||
|
|
|||
|
+h(3, "custom-components-user-hooks") Other user hooks
|
|||
|
|
|||
|
p
|
|||
|
| While it's generally recommended to use the #[code Doc._], #[code Span._]
|
|||
|
| and #[code Token._] proxies to add your own custom attributes, spaCy
|
|||
|
| offers a few exceptions to allow #[strong customising the built-in methods]
|
|||
|
| like #[+api("doc#similarity") #[code Doc.similarity]] or
|
|||
|
| #[+api("doc#vector") #[code Doc.vector]]. with your own hooks, which can
|
|||
|
| rely on statistical models you train yourself. For instance, you can
|
|||
|
| provide your own on-the-fly sentence segmentation algorithm or document
|
|||
|
| similarity method.
|
|||
|
|
|||
|
p
|
|||
|
| Hooks let you customize some of the behaviours of the #[code Doc],
|
|||
|
| #[code Span] or #[code Token] objects by adding a component to the
|
|||
|
| pipeline. For instance, to customize the
|
|||
|
| #[+api("doc#similarity") #[code Doc.similarity]] method, you can add a
|
|||
|
| component that sets a custom function to
|
|||
|
| #[code doc.user_hooks['similarity']]. The built-in #[code Doc.similarity]
|
|||
|
| method will check the #[code user_hooks] dict, and delegate to your
|
|||
|
| function if you've set one. Similar results can be achieved by setting
|
|||
|
| functions to #[code Doc.user_span_hooks] and #[code Doc.user_token_hooks].
|
|||
|
|
|||
|
+aside("Implementation note")
|
|||
|
| The hooks live on the #[code Doc] object because the #[code Span] and
|
|||
|
| #[code Token] objects are created lazily, and don't own any data. They
|
|||
|
| just proxy to their parent #[code Doc]. This turns out to be convenient
|
|||
|
| here — we only have to worry about installing hooks in one place.
|
|||
|
|
|||
|
+table(["Name", "Customises"])
|
|||
|
+row
|
|||
|
+cell #[code user_hooks]
|
|||
|
+cell
|
|||
|
+api("doc#vector") #[code Doc.vector]
|
|||
|
+api("doc#has_vector") #[code Doc.has_vector]
|
|||
|
+api("doc#vector_norm") #[code Doc.vector_norm]
|
|||
|
+api("doc#sents") #[code Doc.sents]
|
|||
|
|
|||
|
+row
|
|||
|
+cell #[code user_token_hooks]
|
|||
|
+cell
|
|||
|
+api("token#similarity") #[code Token.similarity]
|
|||
|
+api("token#vector") #[code Token.vector]
|
|||
|
+api("token#has_vector") #[code Token.has_vector]
|
|||
|
+api("token#vector_norm") #[code Token.vector_norm]
|
|||
|
+api("token#conjuncts") #[code Token.conjuncts]
|
|||
|
|
|||
|
+row
|
|||
|
+cell #[code user_span_hooks]
|
|||
|
+cell
|
|||
|
+api("span#similarity") #[code Span.similarity]
|
|||
|
+api("span#vector") #[code Span.vector]
|
|||
|
+api("span#has_vector") #[code Span.has_vector]
|
|||
|
+api("span#vector_norm") #[code Span.vector_norm]
|
|||
|
+api("span#root") #[code Span.root]
|
|||
|
|
|||
|
+code("Add custom similarity hooks").
|
|||
|
class SimilarityModel(object):
|
|||
|
def __init__(self, model):
|
|||
|
self._model = model
|
|||
|
|
|||
|
def __call__(self, doc):
|
|||
|
doc.user_hooks['similarity'] = self.similarity
|
|||
|
doc.user_span_hooks['similarity'] = self.similarity
|
|||
|
doc.user_token_hooks['similarity'] = self.similarity
|
|||
|
|
|||
|
def similarity(self, obj1, obj2):
|
|||
|
y = self._model([obj1.vector, obj2.vector])
|
|||
|
return float(y[0])
|