mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Update pipelines docs and add user hooks to custom components
This commit is contained in:
parent
feaf353051
commit
743d1df1fe
|
@ -103,11 +103,10 @@
|
|||
"title": "Language Processing Pipelines",
|
||||
"next": "vectors-similarity",
|
||||
"menu": {
|
||||
"How pipelines work": "pipelines",
|
||||
"Examples": "examples",
|
||||
"How Pipelines Work": "pipelines",
|
||||
"Custom Components": "custom-components",
|
||||
"Multi-threading": "multithreading",
|
||||
"User Hooks": "user-hooks",
|
||||
"Serialization": "serialization"
|
||||
"Serialization": "serialization",
|
||||
}
|
||||
},
|
||||
|
||||
|
|
151
website/usage/_processing-pipelines/_custom-components.jade
Normal file
151
website/usage/_processing-pipelines/_custom-components.jade
Normal file
|
@ -0,0 +1,151 @@
|
|||
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > CUSTOM COMPONENTS
|
||||
|
||||
p
|
||||
| A component receives a #[code Doc] object and
|
||||
| #[strong performs the actual processing] – for example, using the current
|
||||
| weights to make a prediction and set some annotation on the document. By
|
||||
| adding a component to the pipeline, you'll get access to the #[code Doc]
|
||||
| at any point #[strong during] processing – instead of only being able to
|
||||
| modify it afterwards.
|
||||
|
||||
+aside-code("Example").
|
||||
def my_component(doc):
|
||||
# do something to the doc here
|
||||
return doc
|
||||
|
||||
+table(["Argument", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code doc]
|
||||
+cell #[code Doc]
|
||||
+cell The #[code Doc] object processed by the previous component.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell #[code Doc]
|
||||
+cell The #[code Doc] object processed by this pipeline component.
|
||||
|
||||
p
|
||||
| Custom components can be added to the pipeline using the
|
||||
| #[+api("language#add_pipe") #[code add_pipe]] method. Optionally, you
|
||||
| can either specify a component to add it before or after, tell spaCy
|
||||
| to add it first or last in the pipeline, or define a custom name.
|
||||
| If no name is set and no #[code name] attribute is present on your
|
||||
| component, the function name, e.g. #[code component.__name__] is used.
|
||||
|
||||
+code("Adding pipeline components").
|
||||
def my_component(doc):
|
||||
print("After tokenization, this doc has %s tokens." % len(doc))
|
||||
if len(doc) < 10:
|
||||
print("This is a pretty short document.")
|
||||
return doc
|
||||
|
||||
nlp = spacy.load('en')
|
||||
nlp.pipeline.add_pipe(my_component, name='print_info', first=True)
|
||||
print(nlp.pipe_names) # ['print_info', 'tagger', 'parser', 'ner']
|
||||
doc = nlp(u"This is a sentence.")
|
||||
|
||||
p
|
||||
| Of course, you can also wrap your component as a class to allow
|
||||
| initialising it with custom settings and hold state within the component.
|
||||
| This is useful for #[strong stateful components], especially ones which
|
||||
| #[strong depend on shared data].
|
||||
|
||||
+code.
|
||||
class MyComponent(object):
|
||||
name = 'print_info'
|
||||
|
||||
def __init__(vocab, short_limit=10):
|
||||
self.vocab = nlp.vocab
|
||||
self.short_limit = short_limit
|
||||
|
||||
def __call__(doc):
|
||||
if len(doc) < self.short_limit:
|
||||
print("This is a pretty short document.")
|
||||
return doc
|
||||
|
||||
my_component = MyComponent(nlp.vocab, short_limit=25)
|
||||
nlp.add_pipe(my_component, first=True)
|
||||
|
||||
+h(3, "custom-components-attributes")
|
||||
| Setting attributes on the #[code Doc], #[code Span] and #[code Token]
|
||||
|
||||
+aside("Why ._?")
|
||||
| Writing to a #[code ._] attribute instead of to the #[code Doc] directly
|
||||
| keeps a clearer separation and makes it easier to ensure backwards
|
||||
| compatibility. For example, if you've implemented your own #[code .coref]
|
||||
| property and spaCy claims it one day, it'll break your code. Similarly,
|
||||
| just by looking at the code, you'll immediately know what's built-in and
|
||||
| what's custom – for example, #[code doc.sentiment] is spaCy, while
|
||||
| #[code doc._.sent_score] isn't.
|
||||
|
||||
+under-construction
|
||||
|
||||
+h(3, "custom-components-user-hooks") Other user hooks
|
||||
|
||||
p
|
||||
| While it's generally recommended to use the #[code Doc._], #[code Span._]
|
||||
| and #[code Token._] proxies to add your own custom attributes, spaCy
|
||||
| offers a few exceptions to allow #[strong customising the built-in methods]
|
||||
| like #[+api("doc#similarity") #[code Doc.similarity]] or
|
||||
| #[+api("doc#vector") #[code Doc.vector]]. with your own hooks, which can
|
||||
| rely on statistical models you train yourself. For instance, you can
|
||||
| provide your own on-the-fly sentence segmentation algorithm or document
|
||||
| similarity method.
|
||||
|
||||
p
|
||||
| Hooks let you customize some of the behaviours of the #[code Doc],
|
||||
| #[code Span] or #[code Token] objects by adding a component to the
|
||||
| pipeline. For instance, to customize the
|
||||
| #[+api("doc#similarity") #[code Doc.similarity]] method, you can add a
|
||||
| component that sets a custom function to
|
||||
| #[code doc.user_hooks['similarity']]. The built-in #[code Doc.similarity]
|
||||
| method will check the #[code user_hooks] dict, and delegate to your
|
||||
| function if you've set one. Similar results can be achieved by setting
|
||||
| functions to #[code Doc.user_span_hooks] and #[code Doc.user_token_hooks].
|
||||
|
||||
+aside("Implementation note")
|
||||
| The hooks live on the #[code Doc] object because the #[code Span] and
|
||||
| #[code Token] objects are created lazily, and don't own any data. They
|
||||
| just proxy to their parent #[code Doc]. This turns out to be convenient
|
||||
| here — we only have to worry about installing hooks in one place.
|
||||
|
||||
+table(["Name", "Customises"])
|
||||
+row
|
||||
+cell #[code user_hooks]
|
||||
+cell
|
||||
+api("doc#vector") #[code Doc.vector]
|
||||
+api("doc#has_vector") #[code Doc.has_vector]
|
||||
+api("doc#vector_norm") #[code Doc.vector_norm]
|
||||
+api("doc#sents") #[code Doc.sents]
|
||||
|
||||
+row
|
||||
+cell #[code user_token_hooks]
|
||||
+cell
|
||||
+api("token#similarity") #[code Token.similarity]
|
||||
+api("token#vector") #[code Token.vector]
|
||||
+api("token#has_vector") #[code Token.has_vector]
|
||||
+api("token#vector_norm") #[code Token.vector_norm]
|
||||
+api("token#conjuncts") #[code Token.conjuncts]
|
||||
|
||||
+row
|
||||
+cell #[code user_span_hooks]
|
||||
+cell
|
||||
+api("span#similarity") #[code Span.similarity]
|
||||
+api("span#vector") #[code Span.vector]
|
||||
+api("span#has_vector") #[code Span.has_vector]
|
||||
+api("span#vector_norm") #[code Span.vector_norm]
|
||||
+api("span#root") #[code Span.root]
|
||||
|
||||
+code("Add custom similarity hooks").
|
||||
class SimilarityModel(object):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
def __call__(self, doc):
|
||||
doc.user_hooks['similarity'] = self.similarity
|
||||
doc.user_span_hooks['similarity'] = self.similarity
|
||||
doc.user_token_hooks['similarity'] = self.similarity
|
||||
|
||||
def similarity(self, obj1, obj2):
|
||||
y = self._model([obj1.vector, obj2.vector])
|
||||
return float(y[0])
|
|
@ -1,61 +0,0 @@
|
|||
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > ATTRIBUTE HOOKS
|
||||
|
||||
p
|
||||
| Hooks let you customize some of the behaviours of the #[code Doc],
|
||||
| #[code Span] or #[code Token] objects by adding a component to the
|
||||
| pipeline. For instance, to customize the
|
||||
| #[+api("doc#similarity") #[code Doc.similarity]] method, you can add a
|
||||
| component that sets a custom function to
|
||||
| #[code doc.user_hooks['similarity']]. The built-in #[code Doc.similarity]
|
||||
| method will check the #[code user_hooks] dict, and delegate to your
|
||||
| function if you've set one. Similar results can be achieved by setting
|
||||
| functions to #[code Doc.user_span_hooks] and #[code Doc.user_token_hooks].
|
||||
|
||||
+code("Polymorphic similarity example").
|
||||
span.similarity(doc)
|
||||
token.similarity(span)
|
||||
doc1.similarity(doc2)
|
||||
|
||||
p
|
||||
| By default, this just averages the vectors for each document, and
|
||||
| computes their cosine. Obviously, spaCy should make it easy for you to
|
||||
| install your own similarity model. This introduces a tricky design
|
||||
| challenge. The current solution is to add three more dicts to the
|
||||
| #[code Doc] object:
|
||||
|
||||
+aside("Implementation note")
|
||||
| The hooks live on the #[code Doc] object because the #[code Span] and
|
||||
| #[code Token] objects are created lazily, and don't own any data. They
|
||||
| just proxy to their parent #[code Doc]. This turns out to be convenient
|
||||
| here — we only have to worry about installing hooks in one place.
|
||||
|
||||
+table(["Name", "Description"])
|
||||
+row
|
||||
+cell #[code user_hooks]
|
||||
+cell Customise behaviour of #[code doc.vector], #[code doc.has_vector], #[code doc.vector_norm] or #[code doc.sents]
|
||||
|
||||
+row
|
||||
+cell #[code user_token_hooks]
|
||||
+cell Customise behaviour of #[code token.similarity], #[code token.vector], #[code token.has_vector], #[code token.vector_norm] or #[code token.conjuncts]
|
||||
|
||||
+row
|
||||
+cell #[code user_span_hooks]
|
||||
+cell Customise behaviour of #[code span.similarity], #[code span.vector], #[code span.has_vector], #[code span.vector_norm] or #[code span.root]
|
||||
|
||||
p
|
||||
| To sum up, here's an example of hooking in custom #[code .similarity()]
|
||||
| methods:
|
||||
|
||||
+code("Add custom similarity hooks").
|
||||
class SimilarityModel(object):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
def __call__(self, doc):
|
||||
doc.user_hooks['similarity'] = self.similarity
|
||||
doc.user_span_hooks['similarity'] = self.similarity
|
||||
doc.user_token_hooks['similarity'] = self.similarity
|
||||
|
||||
def similarity(self, obj1, obj2):
|
||||
y = self._model([obj1.vector, obj2.vector])
|
||||
return float(y[0])
|
|
@ -8,18 +8,14 @@ include _spacy-101/_pipelines
|
|||
+h(2, "pipelines") How pipelines work
|
||||
include _processing-pipelines/_pipelines
|
||||
|
||||
+section("examples")
|
||||
+h(2, "examples") Examples
|
||||
include _processing-pipelines/_examples
|
||||
+section("custom-components")
|
||||
+h(2, "custom-components") Creating custom pipeline components
|
||||
include _processing-pipelines/_custom-components
|
||||
|
||||
+section("multithreading")
|
||||
+h(2, "multithreading") Multi-threading
|
||||
include _processing-pipelines/_multithreading
|
||||
|
||||
+section("user-hooks")
|
||||
+h(2, "user-hooks") User hooks
|
||||
include _processing-pipelines/_user-hooks
|
||||
|
||||
+section("serialization")
|
||||
+h(2, "serialization") Serialization
|
||||
include _processing-pipelines/_serialization
|
||||
|
|
Loading…
Reference in New Issue
Block a user