Update pipelines docs and add user hooks to custom components

This commit is contained in:
ines 2017-10-07 15:27:28 +02:00
parent feaf353051
commit 743d1df1fe
4 changed files with 157 additions and 72 deletions

View File

@ -103,11 +103,10 @@
"title": "Language Processing Pipelines",
"next": "vectors-similarity",
"menu": {
"How pipelines work": "pipelines",
"Examples": "examples",
"How Pipelines Work": "pipelines",
"Custom Components": "custom-components",
"Multi-threading": "multithreading",
"User Hooks": "user-hooks",
"Serialization": "serialization"
"Serialization": "serialization",
}
},

View File

@ -0,0 +1,151 @@
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > CUSTOM COMPONENTS
p
| A component receives a #[code Doc] object and
| #[strong performs the actual processing] for example, using the current
| weights to make a prediction and set some annotation on the document. By
| adding a component to the pipeline, you'll get access to the #[code Doc]
| at any point #[strong during] processing instead of only being able to
| modify it afterwards.
+aside-code("Example").
def my_component(doc):
# do something to the doc here
return doc
+table(["Argument", "Type", "Description"])
+row
+cell #[code doc]
+cell #[code Doc]
+cell The #[code Doc] object processed by the previous component.
+row("foot")
+cell returns
+cell #[code Doc]
+cell The #[code Doc] object processed by this pipeline component.
p
| Custom components can be added to the pipeline using the
| #[+api("language#add_pipe") #[code add_pipe]] method. Optionally, you
| can either specify a component to add it before or after, tell spaCy
| to add it first or last in the pipeline, or define a custom name.
| If no name is set and no #[code name] attribute is present on your
| component, the function name, e.g. #[code component.__name__] is used.
+code("Adding pipeline components").
def my_component(doc):
print("After tokenization, this doc has %s tokens." % len(doc))
if len(doc) < 10:
print("This is a pretty short document.")
return doc
nlp = spacy.load('en')
nlp.pipeline.add_pipe(my_component, name='print_info', first=True)
print(nlp.pipe_names) # ['print_info', 'tagger', 'parser', 'ner']
doc = nlp(u"This is a sentence.")
p
| Of course, you can also wrap your component as a class to allow
| initialising it with custom settings and hold state within the component.
| This is useful for #[strong stateful components], especially ones which
| #[strong depend on shared data].
+code.
class MyComponent(object):
name = 'print_info'
def __init__(vocab, short_limit=10):
self.vocab = nlp.vocab
self.short_limit = short_limit
def __call__(doc):
if len(doc) < self.short_limit:
print("This is a pretty short document.")
return doc
my_component = MyComponent(nlp.vocab, short_limit=25)
nlp.add_pipe(my_component, first=True)
+h(3, "custom-components-attributes")
| Setting attributes on the #[code Doc], #[code Span] and #[code Token]
+aside("Why ._?")
| Writing to a #[code ._] attribute instead of to the #[code Doc] directly
| keeps a clearer separation and makes it easier to ensure backwards
| compatibility. For example, if you've implemented your own #[code .coref]
| property and spaCy claims it one day, it'll break your code. Similarly,
| just by looking at the code, you'll immediately know what's built-in and
| what's custom for example, #[code doc.sentiment] is spaCy, while
| #[code doc._.sent_score] isn't.
+under-construction
+h(3, "custom-components-user-hooks") Other user hooks
p
| While it's generally recommended to use the #[code Doc._], #[code Span._]
| and #[code Token._] proxies to add your own custom attributes, spaCy
| offers a few exceptions to allow #[strong customising the built-in methods]
| like #[+api("doc#similarity") #[code Doc.similarity]] or
| #[+api("doc#vector") #[code Doc.vector]]. with your own hooks, which can
| rely on statistical models you train yourself. For instance, you can
| provide your own on-the-fly sentence segmentation algorithm or document
| similarity method.
p
| Hooks let you customize some of the behaviours of the #[code Doc],
| #[code Span] or #[code Token] objects by adding a component to the
| pipeline. For instance, to customize the
| #[+api("doc#similarity") #[code Doc.similarity]] method, you can add a
| component that sets a custom function to
| #[code doc.user_hooks['similarity']]. The built-in #[code Doc.similarity]
| method will check the #[code user_hooks] dict, and delegate to your
| function if you've set one. Similar results can be achieved by setting
| functions to #[code Doc.user_span_hooks] and #[code Doc.user_token_hooks].
+aside("Implementation note")
| The hooks live on the #[code Doc] object because the #[code Span] and
| #[code Token] objects are created lazily, and don't own any data. They
| just proxy to their parent #[code Doc]. This turns out to be convenient
| here — we only have to worry about installing hooks in one place.
+table(["Name", "Customises"])
+row
+cell #[code user_hooks]
+cell
+api("doc#vector") #[code Doc.vector]
+api("doc#has_vector") #[code Doc.has_vector]
+api("doc#vector_norm") #[code Doc.vector_norm]
+api("doc#sents") #[code Doc.sents]
+row
+cell #[code user_token_hooks]
+cell
+api("token#similarity") #[code Token.similarity]
+api("token#vector") #[code Token.vector]
+api("token#has_vector") #[code Token.has_vector]
+api("token#vector_norm") #[code Token.vector_norm]
+api("token#conjuncts") #[code Token.conjuncts]
+row
+cell #[code user_span_hooks]
+cell
+api("span#similarity") #[code Span.similarity]
+api("span#vector") #[code Span.vector]
+api("span#has_vector") #[code Span.has_vector]
+api("span#vector_norm") #[code Span.vector_norm]
+api("span#root") #[code Span.root]
+code("Add custom similarity hooks").
class SimilarityModel(object):
def __init__(self, model):
self._model = model
def __call__(self, doc):
doc.user_hooks['similarity'] = self.similarity
doc.user_span_hooks['similarity'] = self.similarity
doc.user_token_hooks['similarity'] = self.similarity
def similarity(self, obj1, obj2):
y = self._model([obj1.vector, obj2.vector])
return float(y[0])

View File

@ -1,61 +0,0 @@
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > ATTRIBUTE HOOKS
p
| Hooks let you customize some of the behaviours of the #[code Doc],
| #[code Span] or #[code Token] objects by adding a component to the
| pipeline. For instance, to customize the
| #[+api("doc#similarity") #[code Doc.similarity]] method, you can add a
| component that sets a custom function to
| #[code doc.user_hooks['similarity']]. The built-in #[code Doc.similarity]
| method will check the #[code user_hooks] dict, and delegate to your
| function if you've set one. Similar results can be achieved by setting
| functions to #[code Doc.user_span_hooks] and #[code Doc.user_token_hooks].
+code("Polymorphic similarity example").
span.similarity(doc)
token.similarity(span)
doc1.similarity(doc2)
p
| By default, this just averages the vectors for each document, and
| computes their cosine. Obviously, spaCy should make it easy for you to
| install your own similarity model. This introduces a tricky design
| challenge. The current solution is to add three more dicts to the
| #[code Doc] object:
+aside("Implementation note")
| The hooks live on the #[code Doc] object because the #[code Span] and
| #[code Token] objects are created lazily, and don't own any data. They
| just proxy to their parent #[code Doc]. This turns out to be convenient
| here — we only have to worry about installing hooks in one place.
+table(["Name", "Description"])
+row
+cell #[code user_hooks]
+cell Customise behaviour of #[code doc.vector], #[code doc.has_vector], #[code doc.vector_norm] or #[code doc.sents]
+row
+cell #[code user_token_hooks]
+cell Customise behaviour of #[code token.similarity], #[code token.vector], #[code token.has_vector], #[code token.vector_norm] or #[code token.conjuncts]
+row
+cell #[code user_span_hooks]
+cell Customise behaviour of #[code span.similarity], #[code span.vector], #[code span.has_vector], #[code span.vector_norm] or #[code span.root]
p
| To sum up, here's an example of hooking in custom #[code .similarity()]
| methods:
+code("Add custom similarity hooks").
class SimilarityModel(object):
def __init__(self, model):
self._model = model
def __call__(self, doc):
doc.user_hooks['similarity'] = self.similarity
doc.user_span_hooks['similarity'] = self.similarity
doc.user_token_hooks['similarity'] = self.similarity
def similarity(self, obj1, obj2):
y = self._model([obj1.vector, obj2.vector])
return float(y[0])

View File

@ -8,18 +8,14 @@ include _spacy-101/_pipelines
+h(2, "pipelines") How pipelines work
include _processing-pipelines/_pipelines
+section("examples")
+h(2, "examples") Examples
include _processing-pipelines/_examples
+section("custom-components")
+h(2, "custom-components") Creating custom pipeline components
include _processing-pipelines/_custom-components
+section("multithreading")
+h(2, "multithreading") Multi-threading
include _processing-pipelines/_multithreading
+section("user-hooks")
+h(2, "user-hooks") User hooks
include _processing-pipelines/_user-hooks
+section("serialization")
+h(2, "serialization") Serialization
include _processing-pipelines/_serialization