spaCy/examples/pipeline/wiki_entity_linking/train_el.py

335 lines
14 KiB
Python
Raw Normal View History

# coding: utf-8
from __future__ import unicode_literals
import os
import datetime
from os import listdir
2019-05-13 15:26:04 +03:00
from random import shuffle
from examples.pipeline.wiki_entity_linking import run_el, training_set_creator, kb_creator
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init
2019-05-14 09:37:52 +03:00
from thinc.api import chain, flatten_add_lengths, with_getitem, clone
from thinc.v2v import Model, Softmax, Maxout, Affine, ReLu
from thinc.t2v import Pooling, sum_pool, mean_pool
2019-05-14 09:37:52 +03:00
from thinc.t2t import ParametricAttention
from thinc.misc import Residual
2019-05-13 15:26:04 +03:00
from spacy.tokens import Doc
""" TODO: this code needs to be implemented in pipes.pyx"""
class EL_Model():
labels = ["MATCH", "NOMATCH"]
name = "entity_linker"
def __init__(self, kb, nlp):
run_el._prepare_pipeline(nlp, kb)
self.nlp = nlp
self.kb = kb
self.entity_encoder = self._simple_encoder(in_width=300, out_width=96)
self.article_encoder = self._simple_encoder(in_width=300, out_width=96)
2019-05-14 09:37:52 +03:00
def train_model(self, training_dir, entity_descr_output, trainlimit=None, devlimit=None, to_print=True):
2019-05-13 15:26:04 +03:00
Doc.set_extension("entity_id", default=None)
train_instances, train_pos, train_neg, train_doc = self._get_training_data(training_dir,
entity_descr_output,
False,
2019-05-14 09:37:52 +03:00
trainlimit,
to_print)
2019-05-13 15:26:04 +03:00
dev_instances, dev_pos, dev_neg, dev_doc = self._get_training_data(training_dir,
entity_descr_output,
True,
2019-05-14 09:37:52 +03:00
devlimit,
to_print)
if to_print:
print("Training on", len(train_instances.values()), "articles")
print("Dev test on", len(dev_instances.values()), "articles")
print()
self.sgd_entity = self.begin_training(self.entity_encoder)
self.sgd_article = self.begin_training(self.article_encoder)
2019-05-13 15:26:04 +03:00
self._test_dev(dev_instances, dev_pos, dev_neg, dev_doc)
losses = {}
instance_count = 0
for article_id, inst_cluster_set in train_instances.items():
article_doc = train_doc[article_id]
pos_ex_list = list()
neg_exs_list = list()
for inst_cluster in inst_cluster_set:
instance_count += 1
pos_ex_list.append(train_pos.get(inst_cluster))
neg_exs_list.append(train_neg.get(inst_cluster, []))
self.update(article_doc, pos_ex_list, neg_exs_list, losses=losses)
p, r, fscore = self._test_dev(dev_instances, dev_pos, dev_neg, dev_doc)
print(round(fscore, 1))
if to_print:
print("Trained on", instance_count, "instance clusters")
2019-05-13 15:26:04 +03:00
def _test_dev(self, dev_instances, dev_pos, dev_neg, dev_doc):
predictions = list()
golds = list()
for article_id, inst_cluster_set in dev_instances.items():
for inst_cluster in inst_cluster_set:
pos_ex = dev_pos.get(inst_cluster)
neg_exs = dev_neg.get(inst_cluster, [])
ex_to_id = dict()
2019-05-13 15:26:04 +03:00
if pos_ex and neg_exs:
ex_to_id[pos_ex] = pos_ex._.entity_id
for neg_ex in neg_exs:
ex_to_id[neg_ex] = neg_ex._.entity_id
2019-05-13 15:26:04 +03:00
article = inst_cluster.split(sep="_")[0]
entity_id = inst_cluster.split(sep="_")[1]
article_doc = dev_doc[article]
2019-05-13 15:26:04 +03:00
examples = list(neg_exs)
examples.append(pos_ex)
shuffle(examples)
2019-05-13 15:26:04 +03:00
best_entity, lowest_mse = self._predict(examples, article_doc)
predictions.append(ex_to_id[best_entity])
golds.append(ex_to_id[pos_ex])
2019-05-13 15:26:04 +03:00
# TODO: use lowest_mse and combine with prior probability
p, r, F = run_el.evaluate(predictions, golds, to_print=False)
return p, r, F
def _predict(self, entities, article_doc):
doc_encoding = self.article_encoder([article_doc])
lowest_mse = None
best_entity = None
for entity in entities:
entity_encoding = self.entity_encoder([entity])
mse, _ = self._calculate_similarity(doc_encoding, entity_encoding)
if not best_entity or mse < lowest_mse:
lowest_mse = mse
best_entity = entity
return best_entity, lowest_mse
def _simple_encoder(self, in_width, out_width):
conv_depth = 1
cnn_maxout_pieces = 3
with Model.define_operators({">>": chain, "**": clone}):
encoder = SpacyVectors \
2019-05-14 09:37:52 +03:00
>> flatten_add_lengths \
>> ParametricAttention(in_width)\
>> Pooling(mean_pool) \
>> Residual(zero_init(Maxout(in_width, in_width))) \
>> zero_init(Affine(out_width, in_width, drop_factor=0.0))
# encoder = SpacyVectors \
# >> flatten_add_lengths \
# >> with_getitem(0, Affine(in_width, in_width)) \
# >> ParametricAttention(in_width) \
# >> Pooling(sum_pool) \
# >> Residual(ReLu(in_width, in_width)) ** conv_depth \
# >> zero_init(Affine(out_width, in_width, drop_factor=0.0))
# >> zero_init(Affine(nr_class, width, drop_factor=0.0))
# >> logistic
# convolution = Residual(
# ExtractWindow(nW=1)
# >> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
# )
# embed = SpacyVectors >> LN(Maxout(width, width, pieces=3))
# encoder = SpacyVectors >> flatten_add_lengths >> convolution ** conv_depth
# encoder = with_flatten(embed >> convolution ** conv_depth, pad=conv_depth)
return encoder
def begin_training(self, model):
# TODO ? link_vectors_to_models(self.vocab)
sgd = create_default_optimizer(model.ops)
return sgd
def update(self, article_doc, true_entity_list, false_entities_list, drop=0., losses=None):
# TODO: one call only to begin_update ?
entity_diffs = None
doc_diffs = None
doc_encoding, article_bp = self.article_encoder.begin_update([article_doc], drop=drop)
for i, true_entity in enumerate(true_entity_list):
false_entities = false_entities_list[i]
true_entity_encoding, true_entity_bp = self.entity_encoder.begin_update([true_entity], drop=drop)
# print("encoding dim", len(true_entity_encoding[0]))
consensus_encoding = self._calculate_consensus(doc_encoding, true_entity_encoding)
doc_mse, doc_diff = self._calculate_similarity(doc_encoding, consensus_encoding)
entity_mses = list()
true_mse, true_diffs = self._calculate_similarity(true_entity_encoding, consensus_encoding)
# print("true_mse", true_mse)
# print("true_diffs", true_diffs)
entity_mses.append(true_mse)
# true_exp = np.exp(true_entity_encoding.dot(consensus_encoding_t))
# print("true_exp", true_exp)
# false_exp_sum = 0
if doc_diffs is not None:
doc_diffs += doc_diff
entity_diffs += true_diffs
else:
doc_diffs = doc_diff
entity_diffs = true_diffs
for false_entity in false_entities:
false_entity_encoding, false_entity_bp = self.entity_encoder.begin_update([false_entity], drop=drop)
false_mse, false_diffs = self._calculate_similarity(false_entity_encoding, consensus_encoding)
# print("false_mse", false_mse)
# false_exp = np.exp(false_entity_encoding.dot(consensus_encoding_t))
# print("false_exp", false_exp)
# print("false_diffs", false_diffs)
entity_mses.append(false_mse)
# if false_mse > true_mse:
# true_diffs = true_diffs - false_diffs ???
# false_exp_sum += false_exp
# prob = true_exp / false_exp_sum
# print("prob", prob)
entity_mses = sorted(entity_mses)
# mse_sum = sum(entity_mses)
# entity_probs = [1 - x/mse_sum for x in entity_mses]
# print("entity_mses", entity_mses)
# print("entity_probs", entity_probs)
true_index = entity_mses.index(true_mse)
# print("true index", true_index)
# print("true prob", entity_probs[true_index])
# print("training loss", true_mse)
# print()
# TODO: proper backpropagation taking ranking of elements into account ?
# TODO backpropagation also for negative examples
if doc_diffs is not None:
doc_diffs = doc_diffs / len(true_entity_list)
true_entity_bp(entity_diffs, sgd=self.sgd_entity)
article_bp(doc_diffs, sgd=self.sgd_article)
# TODO delete ?
def _simple_cnn_model(self, internal_dim):
nr_class = len(self.labels)
with Model.define_operators({">>": chain}):
model_entity = SpacyVectors >> flatten_add_lengths >> Pooling(mean_pool) # entity encoding
model_doc = SpacyVectors >> flatten_add_lengths >> Pooling(mean_pool) # doc encoding
output_layer = Softmax(nr_class, internal_dim*2)
model = (model_entity | model_doc) >> output_layer
# model.tok2vec = chain(tok2vec, flatten)
model.nO = nr_class
return model
def predict(self, entity_doc, article_doc):
entity_encoding = self.entity_encoder(entity_doc)
doc_encoding = self.article_encoder(article_doc)
print("entity_encodings", len(entity_encoding), entity_encoding)
print("doc_encodings", len(doc_encoding), doc_encoding)
mse, diffs = self._calculate_similarity(entity_encoding, doc_encoding)
print("mse", mse)
return mse
# TODO: expand to more than 2 vectors
def _calculate_consensus(self, vector1, vector2):
if len(vector1) != len(vector2):
raise ValueError("To calculate consenus, both vectors should be of equal length")
avg = (vector2 + vector1) / 2
return avg
def _calculate_similarity(self, vector1, vector2):
if len(vector1) != len(vector2):
raise ValueError("To calculate similarity, both vectors should be of equal length")
diffs = (vector1 - vector2)
error_sum = (diffs ** 2).sum()
mean_square_error = error_sum / len(vector1)
return float(mean_square_error), diffs
def _get_labels(self):
return tuple(self.labels)
2019-05-13 15:26:04 +03:00
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
correct_entries, incorrect_entries = training_set_creator.read_training_entities(training_output=training_dir,
collect_correct=True,
collect_incorrect=True)
2019-05-13 15:26:04 +03:00
instance_by_doc = dict()
local_vectors = list() # TODO: local vectors
doc_by_article = dict()
pos_entities = dict()
neg_entities = dict()
cnt = 0
for f in listdir(training_dir):
if not limit or cnt < limit:
2019-05-13 15:26:04 +03:00
if dev == run_el.is_dev(f):
article_id = f.replace(".txt", "")
if cnt % 500 == 0 and to_print:
print(datetime.datetime.now(), "processed", cnt, "files in the training dataset")
cnt += 1
if article_id not in doc_by_article:
with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file:
text = file.read()
doc = self.nlp(text)
doc_by_article[article_id] = doc
instance_by_doc[article_id] = set()
for mention, entity_pos in correct_entries[article_id].items():
descr = id_to_descr.get(entity_pos)
if descr:
instance_by_doc[article_id].add(article_id + "_" + mention)
doc_descr = self.nlp(descr)
2019-05-13 15:26:04 +03:00
doc_descr._.entity_id = entity_pos
pos_entities[article_id + "_" + mention] = doc_descr
for mention, entity_negs in incorrect_entries[article_id].items():
for entity_neg in entity_negs:
descr = id_to_descr.get(entity_neg)
if descr:
doc_descr = self.nlp(descr)
2019-05-13 15:26:04 +03:00
doc_descr._.entity_id = entity_neg
descr_list = neg_entities.get(article_id + "_" + mention, [])
descr_list.append(doc_descr)
neg_entities[article_id + "_" + mention] = descr_list
if to_print:
print()
print("Processed", cnt, "training articles, dev=" + str(dev))
print()
return instance_by_doc, pos_entities, neg_entities, doc_by_article