spaCy/spacy/tokens/token.pyx

913 lines
31 KiB
Cython
Raw Normal View History

# cython: infer_types=True
2017-04-15 14:05:15 +03:00
# coding: utf8
from __future__ import unicode_literals
from libc.string cimport memcpy
from cpython.mem cimport PyMem_Malloc, PyMem_Free
# Compiler crashes on memory view coercion without this. Should report bug.
from cython.view cimport array as cvarray
cimport numpy as np
np.import_array()
import numpy
2016-09-23 15:22:06 +03:00
from ..typedefs cimport hash_t
from ..lexeme cimport Lexeme
from .. import parts_of_speech
from ..attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE
from ..attrs cimport IS_BRACKET, IS_QUOTE, IS_LEFT_PUNCT, IS_RIGHT_PUNCT
2018-02-11 20:55:48 +03:00
from ..attrs cimport IS_OOV, IS_TITLE, IS_UPPER, IS_CURRENCY, LIKE_URL, LIKE_NUM, LIKE_EMAIL
from ..attrs cimport IS_STOP, ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX
from ..attrs cimport LENGTH, CLUSTER, LEMMA, POS, TAG, DEP
2017-04-15 14:05:15 +03:00
from ..compat import is_config
from ..errors import Errors, Warnings, user_warning, models_warning
from .. import util
from .underscore import Underscore, get_ext_args
cdef class Token:
"""An individual token i.e. a word, punctuation symbol, whitespace,
etc."""
2017-10-07 19:56:01 +03:00
@classmethod
def set_extension(cls, name, **kwargs):
if cls.has_extension(name) and not kwargs.get('force', False):
raise ValueError(Errors.E090.format(name=name, obj='Token'))
Underscore.token_extensions[name] = get_ext_args(**kwargs)
2017-10-07 19:56:01 +03:00
@classmethod
def get_extension(cls, name):
2018-04-29 16:48:19 +03:00
return Underscore.token_extensions.get(name)
2017-10-07 19:56:01 +03:00
@classmethod
def has_extension(cls, name):
2018-04-29 16:48:19 +03:00
return name in Underscore.token_extensions
2017-10-07 19:56:01 +03:00
@classmethod
def remove_extension(cls, name):
if not cls.has_extension(name):
raise ValueError(Errors.E046.format(name=name))
return Underscore.token_extensions.pop(name)
def __cinit__(self, Vocab vocab, Doc doc, int offset):
"""Construct a `Token` object.
vocab (Vocab): A storage container for lexical types.
doc (Doc): The parent document.
offset (int): The index of the token within the document.
"""
self.vocab = vocab
self.doc = doc
2015-11-03 16:15:14 +03:00
self.c = &self.doc.c[offset]
self.i = offset
2017-01-16 15:27:57 +03:00
def __hash__(self):
return hash((self.doc, self.i))
def __len__(self):
"""The number of unicode characters in the token, i.e. `token.text`.
RETURNS (int): The number of unicode characters in the token.
2017-04-15 14:05:15 +03:00
"""
return self.c.lex.length
def __unicode__(self):
return self.text
2015-11-02 21:22:18 +03:00
def __bytes__(self):
return self.text.encode('utf8')
2015-11-02 21:22:18 +03:00
2015-07-24 04:49:30 +03:00
def __str__(self):
2017-04-15 14:05:15 +03:00
if is_config(python3=True):
2015-11-02 21:22:18 +03:00
return self.__unicode__()
return self.__bytes__()
2015-07-24 04:49:30 +03:00
def __repr__(self):
2015-11-02 21:22:18 +03:00
return self.__str__()
def __richcmp__(self, Token other, int op):
# http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html
if other is None:
if op in (0, 1, 2):
return False
else:
return True
cdef Doc my_doc = self.doc
cdef Doc other_doc = other.doc
my = self.idx
their = other.idx
if op == 0:
return my < their
elif op == 2:
if my_doc is other_doc:
return my == their
else:
return False
elif op == 4:
return my > their
elif op == 1:
return my <= their
elif op == 3:
if my_doc is other_doc:
return my != their
else:
return True
elif op == 5:
return my >= their
else:
raise ValueError(Errors.E041.format(op=op))
def __reduce__(self):
raise NotImplementedError(Errors.E111)
2017-10-07 19:56:01 +03:00
@property
def _(self):
return Underscore(Underscore.token_extensions, self,
start=self.idx, end=None)
cpdef bint check_flag(self, attr_id_t flag_id) except -1:
"""Check the value of a boolean flag.
flag_id (int): The ID of the flag attribute.
RETURNS (bool): Whether the flag is set.
EXAMPLE:
>>> from spacy.attrs import IS_TITLE
>>> doc = nlp(u'Give it back! He pleaded.')
>>> token = doc[0]
>>> token.check_flag(IS_TITLE)
True
2017-04-15 14:05:15 +03:00
"""
return Lexeme.c_check_flag(self.c.lex, flag_id)
def nbor(self, int i=1):
"""Get a neighboring token.
2016-11-01 14:25:36 +03:00
i (int): The relative position of the token to get. Defaults to 1.
RETURNS (Token): The token at position `self.doc[self.i+i]`.
2017-04-15 14:05:15 +03:00
"""
if self.i+i < 0 or (self.i+i >= len(self.doc)):
raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc)))
return self.doc[self.i+i]
def similarity(self, other):
"""Make a semantic similarity estimate. The default estimate is cosine
similarity using an average of word vectors.
other (object): The object to compare with. By default, accepts `Doc`,
`Span`, `Token` and `Lexeme` objects.
RETURNS (float): A scalar similarity score. Higher is more similar.
2017-04-15 14:05:15 +03:00
"""
if 'similarity' in self.doc.user_token_hooks:
return self.doc.user_token_hooks['similarity'](self)
if hasattr(other, '__len__') and len(other) == 1 and hasattr(other, "__getitem__"):
if self.c.lex.orth == getattr(other[0], 'orth', None):
return 1.0
elif hasattr(other, 'orth'):
if self.c.lex.orth == other.orth:
return 1.0
if self.vocab.vectors.n_keys == 0:
models_warning(Warnings.W007.format(obj='Token'))
2015-09-22 03:10:01 +03:00
if self.vector_norm == 0 or other.vector_norm == 0:
user_warning(Warnings.W008.format(obj='Token'))
2015-09-22 03:10:01 +03:00
return 0.0
return (numpy.dot(self.vector, other.vector) /
(self.vector_norm * other.vector_norm))
property lex_id:
"""RETURNS (int): Sequential ID of the token's lexical type."""
def __get__(self):
return self.c.lex.id
property rank:
"""RETURNS (int): Sequential ID of the token's lexical type, used to
index into tables, e.g. for word vectors."""
def __get__(self):
return self.c.lex.id
property string:
"""Deprecated: Use Token.text_with_ws instead."""
def __get__(self):
return self.text_with_ws
property text:
"""RETURNS (unicode): The original verbatim text of the token."""
def __get__(self):
return self.orth_
property text_with_ws:
"""RETURNS (unicode): The text content of the span (with trailing
whitespace).
"""
def __get__(self):
cdef unicode orth = self.vocab.strings[self.c.lex.orth]
if self.c.spacy:
return orth + u' '
else:
return orth
property prob:
"""RETURNS (float): Smoothed log probability estimate of token type."""
def __get__(self):
return self.c.lex.prob
property sentiment:
"""RETURNS (float): A scalar value indicating the positivity or
negativity of the token."""
def __get__(self):
if 'sentiment' in self.doc.user_token_hooks:
return self.doc.user_token_hooks['sentiment'](self)
return self.c.lex.sentiment
property lang:
"""RETURNS (uint64): ID of the language of the parent document's
vocabulary.
"""
def __get__(self):
return self.c.lex.lang
property idx:
"""RETURNS (int): The character offset of the token within the parent
document.
"""
def __get__(self):
return self.c.idx
property cluster:
"""RETURNS (int): Brown cluster ID."""
def __get__(self):
return self.c.lex.cluster
property orth:
"""RETURNS (uint64): ID of the verbatim text content."""
def __get__(self):
return self.c.lex.orth
property lower:
"""RETURNS (uint64): ID of the lowercase token text."""
def __get__(self):
return self.c.lex.lower
property norm:
"""RETURNS (uint64): ID of the token's norm, i.e. a normalised form of
the token text. Usually set in the language's tokenizer exceptions
or norm exceptions.
"""
def __get__(self):
if self.c.norm == 0:
return self.c.lex.norm
else:
return self.c.norm
property shape:
"""RETURNS (uint64): ID of the token's shape, a transform of the
tokens's string, to show orthographic features (e.g. "Xxxx", "dd").
"""
def __get__(self):
return self.c.lex.shape
property prefix:
"""RETURNS (uint64): ID of a length-N substring from the start of the
token. Defaults to `N=1`.
"""
def __get__(self):
return self.c.lex.prefix
property suffix:
"""RETURNS (uint64): ID of a length-N substring from the end of the
token. Defaults to `N=3`.
"""
def __get__(self):
return self.c.lex.suffix
property lemma:
"""RETURNS (uint64): ID of the base form of the word, with no
inflectional suffixes.
"""
def __get__(self):
2017-11-18 05:33:31 +03:00
if self.c.lemma == 0:
lemma_ = self.vocab.morphology.lemmatizer.lookup(self.orth_)
return self.vocab.strings[lemma_]
2017-11-18 05:33:31 +03:00
else:
return self.c.lemma
def __set__(self, attr_t lemma):
self.c.lemma = lemma
property pos:
"""RETURNS (uint64): ID of coarse-grained part-of-speech tag."""
def __get__(self):
return self.c.pos
2018-03-27 22:21:11 +03:00
def __set__(self, pos):
self.c.pos = pos
property tag:
"""RETURNS (uint64): ID of fine-grained part-of-speech tag."""
def __get__(self):
return self.c.tag
def __set__(self, attr_t tag):
self.vocab.morphology.assign_tag(self.c, tag)
property dep:
"""RETURNS (uint64): ID of syntactic dependency label."""
def __get__(self):
return self.c.dep
def __set__(self, attr_t label):
self.c.dep = label
property has_vector:
"""A boolean value indicating whether a word vector is associated with
the object.
RETURNS (bool): Whether a word vector is associated with the object.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
if 'has_vector' in self.doc.user_token_hooks:
return self.doc.user_token_hooks['has_vector'](self)
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
return True
2017-06-04 22:19:58 +03:00
return self.vocab.has_vector(self.c.lex.orth)
property vector:
"""A real-valued meaning representation.
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
representing the token's semantics.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
if 'vector' in self.doc.user_token_hooks:
return self.doc.user_token_hooks['vector'](self)
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
return self.doc.tensor[self.i]
else:
return self.vocab.get_vector(self.c.lex.orth)
property vector_norm:
"""The L2 norm of the token's vector representation.
RETURNS (float): The L2 norm of the vector representation.
"""
def __get__(self):
if 'vector_norm' in self.doc.user_token_hooks:
return self.doc.user_token_hooks['vector_norm'](self)
2017-10-10 05:15:14 +03:00
vector = self.vector
2017-05-28 12:46:10 +03:00
return numpy.sqrt((vector ** 2).sum())
property n_lefts:
"""RETURNS (int): The number of leftward immediate children of the
word, in the syntactic dependency parse.
"""
def __get__(self):
return self.c.l_kids
property n_rights:
"""RETURNS (int): The number of rightward immediate children of the
word, in the syntactic dependency parse.
"""
def __get__(self):
return self.c.r_kids
property sent:
"""RETURNS (Span): The sentence span that the token is a part of."""
def __get__(self):
if 'sent' in self.doc.user_token_hooks:
return self.doc.user_token_hooks['sent'](self)
return self.doc[self.i : self.i+1].sent
property sent_start:
def __get__(self):
# Raising a deprecation warning here causes errors for autocomplete
# Handle broken backwards compatibility case: doc[0].sent_start
# was False.
if self.i == 0:
return False
else:
return self.c.sent_start
def __set__(self, value):
self.is_sent_start = value
property is_sent_start:
"""RETURNS (bool / None): Whether the token starts a sentence.
None if unknown.
"""
def __get__(self):
if self.c.sent_start == 0:
return None
elif self.c.sent_start < 0:
return False
else:
return True
def __set__(self, value):
if self.doc.is_parsed:
raise ValueError(Errors.E043)
if value is None:
self.c.sent_start = 0
elif value is True:
self.c.sent_start = 1
elif value is False:
self.c.sent_start = -1
else:
raise ValueError(Errors.E044.format(value=value))
property lefts:
"""The leftward immediate children of the word, in the syntactic
dependency parse.
YIELDS (Token): A left-child of the token.
"""
def __get__(self):
cdef int nr_iter = 0
cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
while ptr < self.c:
if ptr + ptr.head == self.c:
yield self.doc[ptr - (self.c - self.i)]
ptr += 1
nr_iter += 1
# This is ugly, but it's a way to guard out infinite loops
if nr_iter >= 10000000:
raise RuntimeError(Errors.E045.format(attr='token.lefts'))
property rights:
"""The rightward immediate children of the word, in the syntactic
dependency parse.
YIELDS (Token): A right-child of the token.
"""
def __get__(self):
cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
tokens = []
cdef int nr_iter = 0
while ptr > self.c:
if ptr + ptr.head == self.c:
tokens.append(self.doc[ptr - (self.c - self.i)])
ptr -= 1
nr_iter += 1
if nr_iter >= 10000000:
raise RuntimeError(Errors.E045.format(attr='token.rights'))
tokens.reverse()
for t in tokens:
yield t
property children:
"""A sequence of the token's immediate syntactic children.
2016-11-01 14:25:36 +03:00
YIELDS (Token): A child token such that child.head==self
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
yield from self.lefts
yield from self.rights
property subtree:
"""A sequence containing the token and all the token's syntactic
descendants.
2016-11-01 14:25:36 +03:00
YIELDS (Token): A descendent token such that
`self.is_ancestor(descendent) or token == self`.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
for word in self.lefts:
yield from word.subtree
yield self
for word in self.rights:
yield from word.subtree
property left_edge:
"""The leftmost token of this token's syntactic descendents.
2016-11-01 14:25:36 +03:00
RETURNS (Token): The first token such that `self.is_ancestor(token)`.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
return self.doc[self.c.l_edge]
2015-08-09 00:37:44 +03:00
property right_edge:
"""The rightmost token of this token's syntactic descendents.
2016-11-01 14:25:36 +03:00
RETURNS (Token): The last token such that `self.is_ancestor(token)`.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
return self.doc[self.c.r_edge]
property ancestors:
"""A sequence of this token's syntactic ancestors.
2016-11-01 14:25:36 +03:00
YIELDS (Token): A sequence of ancestor tokens such that
`ancestor.is_ancestor(self)`.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
cdef const TokenC* head_ptr = self.c
# guard against infinite loop, no token can have
# more ancestors than tokens in the tree
cdef int i = 0
while head_ptr.head != 0 and i < self.doc.length:
head_ptr += head_ptr.head
yield self.doc[head_ptr - (self.c - self.i)]
i += 1
2016-11-01 14:25:36 +03:00
def is_ancestor(self, descendant):
"""Check whether this token is a parent, grandparent, etc. of another
2016-11-01 14:25:36 +03:00
in the dependency tree.
descendant (Token): Another token.
RETURNS (bool): Whether this token is the ancestor of the descendant.
2017-04-15 14:05:15 +03:00
"""
2016-11-01 15:28:00 +03:00
if self.doc is not descendant.doc:
2016-11-01 14:25:36 +03:00
return False
return any(ancestor.i == self.i for ancestor in descendant.ancestors)
property head:
"""The syntactic parent, or "governor", of this token.
RETURNS (Token): The token predicted by the parser to be the head of
the current token.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
return self.doc[self.i + self.c.head]
def __set__(self, Token new_head):
# this function sets the head of self to new_head
# and updates the counters for left/right dependents
# and left/right corner for the new and the old head
# do nothing if old head is new head
if self.i + self.c.head == new_head.i:
return
cdef Token old_head = self.head
cdef int rel_newhead_i = new_head.i - self.i
# is the new head a descendant of the old head
cdef bint is_desc = old_head.is_ancestor(new_head)
cdef int new_edge
cdef Token anc, child
# update number of deps of old head
if self.c.head > 0: # left dependent
old_head.c.l_kids -= 1
if self.c.l_edge == old_head.c.l_edge:
# the token dominates the left edge so the left edge of
# the head may change when the token is reattached, it may
# not change if the new head is a descendant of the current
# head
new_edge = self.c.l_edge
# the new l_edge is the left-most l_edge on any of the
# other dependents where the l_edge is left of the head,
# otherwise it is the head
if not is_desc:
new_edge = old_head.i
for child in old_head.children:
if child == self:
continue
if child.c.l_edge < new_edge:
new_edge = child.c.l_edge
old_head.c.l_edge = new_edge
# walk up the tree from old_head and assign new l_edge to
# ancestors until an ancestor already has an l_edge that's
# further left
for anc in old_head.ancestors:
if anc.c.l_edge <= new_edge:
break
anc.c.l_edge = new_edge
elif self.c.head < 0: # right dependent
old_head.c.r_kids -= 1
# do the same thing as for l_edge
if self.c.r_edge == old_head.c.r_edge:
new_edge = self.c.r_edge
if not is_desc:
new_edge = old_head.i
for child in old_head.children:
if child == self:
continue
if child.c.r_edge > new_edge:
new_edge = child.c.r_edge
old_head.c.r_edge = new_edge
for anc in old_head.ancestors:
if anc.c.r_edge >= new_edge:
break
anc.c.r_edge = new_edge
# update number of deps of new head
if rel_newhead_i > 0: # left dependent
new_head.c.l_kids += 1
# walk up the tree from new head and set l_edge to self.l_edge
# until you hit a token with an l_edge further to the left
if self.c.l_edge < new_head.c.l_edge:
new_head.c.l_edge = self.c.l_edge
for anc in new_head.ancestors:
if anc.c.l_edge <= self.c.l_edge:
break
anc.c.l_edge = self.c.l_edge
elif rel_newhead_i < 0: # right dependent
new_head.c.r_kids += 1
# do the same as for l_edge
if self.c.r_edge > new_head.c.r_edge:
new_head.c.r_edge = self.c.r_edge
for anc in new_head.ancestors:
if anc.c.r_edge >= self.c.r_edge:
break
anc.c.r_edge = self.c.r_edge
# set new head
self.c.head = rel_newhead_i
2015-08-09 00:37:44 +03:00
property conjuncts:
"""A sequence of coordinated tokens, including the token itself.
2016-11-01 14:25:36 +03:00
YIELDS (Token): A coordinated token.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
2015-10-14 19:34:57 +03:00
"""Get a list of conjoined words."""
cdef Token word
if 'conjuncts' in self.doc.user_token_hooks:
yield from self.doc.user_token_hooks['conjuncts'](self)
else:
if self.dep_ != 'conj':
for word in self.rights:
if word.dep_ == 'conj':
yield word
yield from word.conjuncts
property ent_type:
"""RETURNS (uint64): Named entity type."""
def __get__(self):
return self.c.ent_type
def __set__(self, ent_type):
self.c.ent_type = ent_type
property ent_iob:
"""IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
is assigned.
RETURNS (uint64): IOB code of named entity tag.
"""
def __get__(self):
return self.c.ent_iob
property ent_type_:
"""RETURNS (unicode): Named entity type."""
def __get__(self):
return self.vocab.strings[self.c.ent_type]
def __set__(self, ent_type):
self.c.ent_type = self.vocab.strings.add(ent_type)
property ent_iob_:
"""IOB code of named entity tag. "B" means the token begins an entity,
"I" means it is inside an entity, "O" means it is outside an entity,
and "" means no entity tag is set.
RETURNS (unicode): IOB code of named entity tag.
"""
def __get__(self):
iob_strings = ('', 'I', 'O', 'B')
return iob_strings[self.c.ent_iob]
property ent_id:
"""RETURNS (uint64): ID of the entity the token is an instance of,
if any.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
2016-09-23 16:07:07 +03:00
return self.c.ent_id
def __set__(self, hash_t key):
2017-03-31 15:00:14 +03:00
self.c.ent_id = key
property ent_id_:
"""RETURNS (unicode): ID of the entity the token is an instance of,
if any.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
return self.vocab.strings[self.c.ent_id]
2017-03-31 15:00:14 +03:00
def __set__(self, name):
self.c.ent_id = self.vocab.strings.add(name)
2019-03-14 17:48:40 +03:00
property ent_kb_id:
"""RETURNS (uint64): Named entity KB ID."""
def __get__(self):
return self.c.ent_kb_id
def __set__(self, attr_t ent_kb_id):
self.c.ent_kb_id = ent_kb_id
property ent_kb_id_:
"""RETURNS (unicode): Named entity KB ID."""
def __get__(self):
return self.vocab.strings[self.c.ent_kb_id]
def __set__(self, ent_kb_id):
self.c.ent_kb_id = self.vocab.strings.add(ent_kb_id)
property whitespace_:
"""RETURNS (unicode): The trailing whitespace character, if present.
"""
def __get__(self):
2015-10-18 09:21:11 +03:00
return ' ' if self.c.spacy else ''
property orth_:
"""RETURNS (unicode): Verbatim text content (identical to
💫 Port master changes over to develop (#2979) * Create aryaprabhudesai.md (#2681) * Update _install.jade (#2688) Typo fix: "models" -> "model" * Add FAC to spacy.explain (resolves #2706) * Remove docstrings for deprecated arguments (see #2703) * When calling getoption() in conftest.py, pass a default option (#2709) * When calling getoption() in conftest.py, pass a default option This is necessary to allow testing an installed spacy by running: pytest --pyargs spacy * Add contributor agreement * update bengali token rules for hyphen and digits (#2731) * Less norm computations in token similarity (#2730) * Less norm computations in token similarity * Contributor agreement * Remove ')' for clarity (#2737) Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know. * added contributor agreement for mbkupfer (#2738) * Basic support for Telugu language (#2751) * Lex _attrs for polish language (#2750) * Signed spaCy contributor agreement * Added polish version of english lex_attrs * Introduces a bulk merge function, in order to solve issue #653 (#2696) * Fix comment * Introduce bulk merge to increase performance on many span merges * Sign contributor agreement * Implement pull request suggestions * Describe converters more explicitly (see #2643) * Add multi-threading note to Language.pipe (resolves #2582) [ci skip] * Fix formatting * Fix dependency scheme docs (closes #2705) [ci skip] * Don't set stop word in example (closes #2657) [ci skip] * Add words to portuguese language _num_words (#2759) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Update Indonesian model (#2752) * adding e-KTP in tokenizer exceptions list * add exception token * removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception * add tokenizer exceptions list * combining base_norms with norm_exceptions * adding norm_exception * fix double key in lemmatizer * remove unused import on punctuation.py * reformat stop_words to reduce number of lines, improve readibility * updating tokenizer exception * implement is_currency for lang/id * adding orth_first_upper in tokenizer_exceptions * update the norm_exception list * remove bunch of abbreviations * adding contributors file * Fixed spaCy+Keras example (#2763) * bug fixes in keras example * created contributor agreement * Adding French hyphenated first name (#2786) * Fix typo (closes #2784) * Fix typo (#2795) [ci skip] Fixed typo on line 6 "regcognizer --> recognizer" * Adding basic support for Sinhala language. (#2788) * adding Sinhala language package, stop words, examples and lex_attrs. * Adding contributor agreement * Updating contributor agreement * Also include lowercase norm exceptions * Fix error (#2802) * Fix error ValueError: cannot resize an array that references or is referenced by another array in this way. Use the resize function * added spaCy Contributor Agreement * Add charlax's contributor agreement (#2805) * agreement of contributor, may I introduce a tiny pl languge contribution (#2799) * Contributors agreement * Contributors agreement * Contributors agreement * Add jupyter=True to displacy.render in documentation (#2806) * Revert "Also include lowercase norm exceptions" This reverts commit 70f4e8adf37cfcfab60be2b97d6deae949b30e9e. * Remove deprecated encoding argument to msgpack * Set up dependency tree pattern matching skeleton (#2732) * Fix bug when too many entity types. Fixes #2800 * Fix Python 2 test failure * Require older msgpack-numpy * Restore encoding arg on msgpack-numpy * Try to fix version pin for msgpack-numpy * Update Portuguese Language (#2790) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols * Extended punctuation and norm_exceptions in the Portuguese language * Correct error in spacy universe docs concerning spacy-lookup (#2814) * Update Keras Example for (Parikh et al, 2016) implementation (#2803) * bug fixes in keras example * created contributor agreement * baseline for Parikh model * initial version of parikh 2016 implemented * tested asymmetric models * fixed grevious error in normalization * use standard SNLI test file * begin to rework parikh example * initial version of running example * start to document the new version * start to document the new version * Update Decompositional Attention.ipynb * fixed calls to similarity * updated the README * import sys package duh * simplified indexing on mapping word to IDs * stupid python indent error * added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround * Fix typo (closes #2815) [ci skip] * Update regex version dependency * Set version to 2.0.13.dev3 * Skip seemingly problematic test * Remove problematic test * Try previous version of regex * Revert "Remove problematic test" This reverts commit bdebbef45552d698d390aa430b527ee27830f11b. * Unskip test * Try older version of regex * 💫 Update training examples and use minibatching (#2830) <!--- Provide a general summary of your changes in the title. --> ## Description Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results. ### Types of change enhancements ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Visual C++ link updated (#2842) (closes #2841) [ci skip] * New landing page * Add contribution agreement * Correcting lang/ru/examples.py (#2845) * Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement * Correct some grammatical inaccuracies in lang\ru\examples.py * Move contributor agreement to separate file * Set version to 2.0.13.dev4 * Add Persian(Farsi) language support (#2797) * Also include lowercase norm exceptions * Remove in favour of https://github.com/explosion/spaCy/graphs/contributors * Rule-based French Lemmatizer (#2818) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class. ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> - Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version. - Add several files containing exhaustive list of words for each part of speech - Add some lemma rules - Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX - Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned - Modify the lemmatize function to check in lookup table as a last resort - Init files are updated so the model can support all the functionalities mentioned above - Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [X] I have submitted the spaCy Contributor Agreement. - [X] I ran the tests, and all new and existing tests passed. - [X] My changes don't require a change to the documentation, or if they do, I've added all required information. * Set version to 2.0.13 * Fix formatting and consistency * Update docs for new version [ci skip] * Increment version [ci skip] * Add info on wheels [ci skip] * Adding "This is a sentence" example to Sinhala (#2846) * Add wheels badge * Update badge [ci skip] * Update README.rst [ci skip] * Update murmurhash pin * Increment version to 2.0.14.dev0 * Update GPU docs for v2.0.14 * Add wheel to setup_requires * Import prefer_gpu and require_gpu functions from Thinc * Add tests for prefer_gpu() and require_gpu() * Update requirements and setup.py * Workaround bug in thinc require_gpu * Set version to v2.0.14 * Update push-tag script * Unhack prefer_gpu * Require thinc 6.10.6 * Update prefer_gpu and require_gpu docs [ci skip] * Fix specifiers for GPU * Set version to 2.0.14.dev1 * Set version to 2.0.14 * Update Thinc version pin * Increment version * Fix msgpack-numpy version pin * Increment version * Update version to 2.0.16 * Update version [ci skip] * Redundant ')' in the Stop words' example (#2856) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [ ] I have submitted the spaCy Contributor Agreement. - [ ] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information. * Documentation improvement regarding joblib and SO (#2867) Some documentation improvements ## Description 1. Fixed the dead URL to joblib 2. Fixed Stack Overflow brand name (with space) ### Types of change Documentation ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * raise error when setting overlapping entities as doc.ents (#2880) * Fix out-of-bounds access in NER training The helper method state.B(1) gets the index of the first token of the buffer, or -1 if no such token exists. Normally this is safe because we pass this to functions like state.safe_get(), which returns an empty token. Here we used it directly as an array index, which is not okay! This error may have been the cause of out-of-bounds access errors during training. Similar errors may still be around, so much be hunted down. Hunting this one down took a long time...I printed out values across training runs and diffed, looking for points of divergence between runs, when no randomness should be allowed. * Change PyThaiNLP Url (#2876) * Fix missing comma * Add example showing a fix-up rule for space entities * Set version to 2.0.17.dev0 * Update regex version * Revert "Update regex version" This reverts commit 62358dd867d15bc6a475942dff34effba69dd70a. * Try setting older regex version, to align with conda * Set version to 2.0.17 * Add spacy-js to universe [ci-skip] * Add spacy-raspberry to universe (closes #2889) * Add script to validate universe json [ci skip] * Removed space in docs + added contributor indo (#2909) * - removed unneeded space in documentation * - added contributor info * Allow input text of length up to max_length, inclusive (#2922) * Include universe spec for spacy-wordnet component (#2919) * feat: include universe spec for spacy-wordnet component * chore: include spaCy contributor agreement * Minor formatting changes [ci skip] * Fix image [ci skip] Twitter URL doesn't work on live site * Check if the word is in one of the regular lists specific to each POS (#2886) * 💫 Create random IDs for SVGs to prevent ID clashes (#2927) Resolves #2924. ## Description Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.) ### Types of change bug fix ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix typo [ci skip] * fixes symbolic link on py3 and windows (#2949) * fixes symbolic link on py3 and windows during setup of spacy using command python -m spacy link en_core_web_sm en closes #2948 * Update spacy/compat.py Co-Authored-By: cicorias <cicorias@users.noreply.github.com> * Fix formatting * Update universe [ci skip] * Catalan Language Support (#2940) * Catalan language Support * Ddding Catalan to documentation * Sort languages alphabetically [ci skip] * Update tests for pytest 4.x (#2965) <!--- Provide a general summary of your changes in the title. --> ## Description - [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize)) - [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here) ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix regex pin to harmonize with conda (#2964) * Update README.rst * Fix bug where Vocab.prune_vector did not use 'batch_size' (#2977) Fixes #2976 * Fix typo * Fix typo * Remove duplicate file * Require thinc 7.0.0.dev2 Fixes bug in gpu_ops that would use cupy instead of numpy on CPU * Add missing import * Fix error IDs * Fix tests
2018-11-29 18:30:29 +03:00
`Token.text`). Exists mostly for consistency with the other
attributes.
"""
def __get__(self):
return self.vocab.strings[self.c.lex.orth]
property lower_:
"""RETURNS (unicode): The lowercase token text. Equivalent to
`Token.text.lower()`.
"""
def __get__(self):
return self.vocab.strings[self.c.lex.lower]
property norm_:
"""RETURNS (unicode): The token's norm, i.e. a normalised form of the
token text. Usually set in the language's tokenizer exceptions or
norm exceptions.
"""
def __get__(self):
return self.vocab.strings[self.norm]
def __set__(self, unicode norm_):
self.c.norm = self.vocab.strings.add(norm_)
property shape_:
"""RETURNS (unicode): Transform of the tokens's string, to show
orthographic features. For example, "Xxxx" or "dd".
"""
def __get__(self):
return self.vocab.strings[self.c.lex.shape]
property prefix_:
"""RETURNS (unicode): A length-N substring from the start of the token.
Defaults to `N=1`.
"""
def __get__(self):
return self.vocab.strings[self.c.lex.prefix]
property suffix_:
"""RETURNS (unicode): A length-N substring from the end of the token.
Defaults to `N=3`.
"""
def __get__(self):
return self.vocab.strings[self.c.lex.suffix]
property lang_:
"""RETURNS (unicode): Language of the parent document's vocabulary,
e.g. 'en'.
"""
def __get__(self):
return self.vocab.strings[self.c.lex.lang]
property lemma_:
"""RETURNS (unicode): The token lemma, i.e. the base form of the word,
with no inflectional suffixes.
"""
def __get__(self):
2017-11-18 05:33:31 +03:00
if self.c.lemma == 0:
return self.vocab.morphology.lemmatizer.lookup(self.orth_)
else:
return self.vocab.strings[self.c.lemma]
def __set__(self, unicode lemma_):
self.c.lemma = self.vocab.strings.add(lemma_)
property pos_:
"""RETURNS (unicode): Coarse-grained part-of-speech tag."""
def __get__(self):
return parts_of_speech.NAMES[self.c.pos]
2018-03-27 22:21:11 +03:00
def __set__(self, pos_name):
self.c.pos = parts_of_speech.IDS[pos_name]
property tag_:
"""RETURNS (unicode): Fine-grained part-of-speech tag."""
def __get__(self):
return self.vocab.strings[self.c.tag]
def __set__(self, tag):
self.tag = self.vocab.strings.add(tag)
property dep_:
"""RETURNS (unicode): The syntactic dependency label."""
def __get__(self):
return self.vocab.strings[self.c.dep]
def __set__(self, unicode label):
self.c.dep = self.vocab.strings.add(label)
property is_oov:
"""RETURNS (bool): Whether the token is out-of-vocabulary."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_OOV)
property is_stop:
"""RETURNS (bool): Whether the token is a stop word, i.e. part of a
"stop list" defined by the language data.
"""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_STOP)
property is_alpha:
"""RETURNS (bool): Whether the token consists of alpha characters.
Equivalent to `token.text.isalpha()`.
"""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)
2015-08-09 00:37:44 +03:00
property is_ascii:
"""RETURNS (bool): Whether the token consists of ASCII characters.
Equivalent to `[any(ord(c) >= 128 for c in token.text)]`.
"""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_ASCII)
property is_digit:
"""RETURNS (bool): Whether the token consists of digits. Equivalent to
`token.text.isdigit()`.
"""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)
property is_lower:
"""RETURNS (bool): Whether the token is in lowercase. Equivalent to
`token.text.islower()`.
"""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_LOWER)
property is_upper:
"""RETURNS (bool): Whether the token is in uppercase. Equivalent to
`token.text.isupper()`
"""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_UPPER)
property is_title:
"""RETURNS (bool): Whether the token is in titlecase. Equivalent to
`token.text.istitle()`.
"""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_TITLE)
property is_punct:
"""RETURNS (bool): Whether the token is punctuation."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)
property is_space:
"""RETURNS (bool): Whether the token consists of whitespace characters.
Equivalent to `token.text.isspace()`.
"""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_SPACE)
property is_bracket:
"""RETURNS (bool): Whether the token is a bracket."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)
property is_quote:
"""RETURNS (bool): Whether the token is a quotation mark."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)
property is_left_punct:
"""RETURNS (bool): Whether the token is a left punctuation mark."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)
property is_right_punct:
"""RETURNS (bool): Whether the token is a right punctuation mark."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)
2018-02-11 20:55:48 +03:00
property is_currency:
"""RETURNS (bool): Whether the token is a currency symbol."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY)
property like_url:
"""RETURNS (bool): Whether the token resembles a URL."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, LIKE_URL)
2015-08-09 00:37:44 +03:00
property like_num:
"""RETURNS (bool): Whether the token resembles a number, e.g. "10.9",
"10", "ten", etc.
"""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)
property like_email:
"""RETURNS (bool): Whether the token resembles an email address."""
def __get__(self):
return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)