spaCy/website/src/widgets/landing.js

288 lines
12 KiB
JavaScript
Raw Normal View History

import React from 'react'
import PropTypes from 'prop-types'
import { StaticQuery, graphql } from 'gatsby'
import {
LandingHeader,
LandingTitle,
LandingSubtitle,
LandingGrid,
LandingCard,
2019-03-18 18:24:52 +03:00
LandingCol,
LandingDemo,
LandingBannerGrid,
LandingBanner,
LandingLogos,
} from '../components/landing'
import { H2 } from '../components/typography'
import { Ul, Li } from '../components/list'
import Button from '../components/button'
import Link from '../components/link'
2020-05-21 21:45:33 +03:00
import courseImage from '../../docs/images/course.jpg'
import BenchmarksChoi from 'usage/_benchmarks-choi.md'
const CODE_EXAMPLE = `# pip install spacy
2019-03-22 21:02:15 +03:00
# python -m spacy download en_core_web_sm
import spacy
# Load English tokenizer, tagger, parser, NER and word vectors
2019-03-22 21:02:15 +03:00
nlp = spacy.load("en_core_web_sm")
# Process whole documents
2019-03-22 21:02:15 +03:00
text = ("When Sebastian Thrun started working on self-driving cars at "
"Google in 2007, few people outside of the company took him "
"seriously. “I can tell you very senior CEOs of major American "
"car companies would shake my hand and turn away because I wasnt "
"worth talking to,” said Thrun, in an interview with Recode earlier "
"this week.")
doc = nlp(text)
2019-03-22 21:02:15 +03:00
# Analyze syntax
print("Noun phrases:", [chunk.text for chunk in doc.noun_chunks])
print("Verbs:", [token.lemma_ for token in doc if token.pos_ == "VERB"])
# Find named entities, phrases and concepts
for entity in doc.ents:
print(entity.text, entity.label_)
`
/**
* Compute the overall total counts of models and languages
*/
function getCounts(langs = []) {
return {
langs: langs.length,
modelLangs: langs.filter(({ models }) => models && !!models.length).length,
starterLangs: langs.filter(({ starters }) => starters && !!starters.length).length,
models: langs.map(({ models }) => (models ? models.length : 0)).reduce((a, b) => a + b, 0),
starters: langs
.map(({ starters }) => (starters ? starters.length : 0))
.reduce((a, b) => a + b, 0),
}
}
const Landing = ({ data }) => {
const counts = getCounts(data.languages)
return (
<>
<LandingHeader>
<LandingTitle>
Industrial-Strength
<br />
Natural Language
<br />
Processing
</LandingTitle>
<LandingSubtitle>in Python</LandingSubtitle>
</LandingHeader>
<LandingGrid blocks>
<LandingCard title="Get things done" url="/usage/spacy-101" button="Get started">
spaCy is designed to help you do real work to build real products, or gather
real insights. The library respects your time, and tries to avoid wasting it.
It's easy to install, and its API is simple and productive. We like to think of
spaCy as the Ruby on Rails of Natural Language Processing.
</LandingCard>
<LandingCard
title="Blazing fast"
url="/usage/facts-figures"
button="Facts &amp; Figures"
>
spaCy excels at large-scale information extraction tasks. It's written from the
ground up in carefully memory-managed Cython. Independent research in 2015 found
spaCy to be the fastest in the world. If your application needs to process
entire web dumps, spaCy is the library you want to be using.
2019-04-19 16:23:08 +03:00
</LandingCard>
<LandingCard title="Deep learning" url="/usage/training" button="Read more">
spaCy is the best way to prepare text for deep learning. It interoperates
seamlessly with TensorFlow, PyTorch, scikit-learn, Gensim and the rest of
Python's awesome AI ecosystem. With spaCy, you can easily construct
linguistically sophisticated statistical models for a variety of NLP problems.
</LandingCard>
</LandingGrid>
<LandingGrid>
<LandingDemo title="Edit the code & try spaCy">{CODE_EXAMPLE}</LandingDemo>
2019-03-18 18:24:52 +03:00
<LandingCol>
<H2>Features</H2>
<Ul>
<Li>
Non-destructive <strong>tokenization</strong>
</Li>
<Li>
<strong>Named entity</strong> recognition
</Li>
<Li>
Support for <strong>{counts.langs}+ languages</strong>
</Li>
<Li>
<strong>{counts.models} statistical models</strong> for{' '}
{counts.modelLangs} languages
</Li>
<Li>
Pretrained <strong>word vectors</strong>
</Li>
2019-04-19 16:23:08 +03:00
<Li>State-of-the-art speed</Li>
<Li>
Easy <strong>deep learning</strong> integration
</Li>
<Li>Part-of-speech tagging</Li>
<Li>Labelled dependency parsing</Li>
<Li>Syntax-driven sentence segmentation</Li>
<Li>
Built in <strong>visualizers</strong> for syntax and NER
</Li>
<Li>Convenient string-to-hash mapping</Li>
<Li>Export to numpy data arrays</Li>
<Li>Efficient binary serialization</Li>
<Li>
Easy <strong>model packaging</strong> and deployment
</Li>
<Li>Robust, rigorously evaluated accuracy</Li>
</Ul>
2019-03-18 18:24:52 +03:00
</LandingCol>
</LandingGrid>
<LandingBannerGrid>
2020-05-21 21:45:33 +03:00
<LandingBanner
to="https://course.spacy.io"
button="Start the course"
background="#f6f6f6"
color="#252a33"
small
>
<Link to="https://course.spacy.io" hidden>
<img
src={courseImage}
alt="Advanced NLP with spaCy: A free online course"
/>
</Link>
<br />
<br />
In this <strong>free and interactive online course</strong> youll learn how to
use spaCy to build advanced natural language understanding systems, using both
rule-based and machine learning approaches. It includes{' '}
<strong>55 exercises</strong> featuring videos, slide decks, multiple-choice
questions and interactive coding practice in the browser.
</LandingBanner>
2019-09-12 16:33:39 +03:00
<LandingBanner
title="Prodigy: Radically efficient machine teaching"
label="From the makers of spaCy"
to="https://prodi.gy"
button="Try it out"
background="#eee"
2020-05-21 21:45:33 +03:00
color="#000"
2019-09-12 16:33:39 +03:00
small
>
Prodigy is an <strong>annotation tool</strong> so efficient that data scientists
can do the annotation themselves, enabling a new level of rapid iteration.
Whether you're working on entity recognition, intent detection or image
classification, Prodigy can help you <strong>train and evaluate</strong> your
models faster. Stream in your own examples or real-world data from live APIs,
update your model in real-time and chain models together to build more complex
systems.
</LandingBanner>
</LandingBannerGrid>
<LandingLogos title="spaCy is trusted by" logos={data.logosUsers}>
<Button to={`https://github.com/${data.repo}/stargazers`}>and many more</Button>
</LandingLogos>
<LandingLogos title="Featured on" logos={data.logosPublications} />
<LandingBanner
2019-03-30 22:32:03 +03:00
title="BERT-style language model pretraining"
label="New in v2.1"
to="/usage/v2-1"
button="Read more"
>
2019-03-30 22:32:03 +03:00
Learn more from small training corpora by initializing your models with{' '}
<strong>knowledge from raw text</strong>. The new pretrain command teaches spaCy's
CNN model to predict words based on their context, producing representations of
words in contexts. If you've seen Google's BERT system or fast.ai's ULMFiT, spaCy's
pretraining is similar but much more efficient. It's still experimental, but users
are already reporting good results, so give it a try!
</LandingBanner>
<LandingGrid cols={2}>
2019-03-18 18:24:52 +03:00
<LandingCol>
<H2>Benchmarks</H2>
<p>
In 2015, independent researchers from Emory University and Yahoo! Labs
showed that spaCy offered the{' '}
<strong>fastest syntactic parser in the world</strong> and that its accuracy
was <strong>within 1% of the best</strong> available (
<Link to="https://aclweb.org/anthology/P/P15/P15-1038.pdf">
Choi et al., 2015
</Link>
). spaCy v2.0, released in 2017, is more accurate than any of the systems
Choi et al. evaluated.
</p>
<p>
<Button to="/usage/facts-figures#benchmarks" large>
See details
</Button>
</p>
2019-03-18 18:24:52 +03:00
</LandingCol>
2019-03-18 18:24:52 +03:00
<LandingCol>
<BenchmarksChoi />
2019-03-18 18:24:52 +03:00
</LandingCol>
</LandingGrid>
</>
)
}
Landing.propTypes = {
data: PropTypes.shape({
repo: PropTypes.string,
languages: PropTypes.arrayOf(
PropTypes.shape({
models: PropTypes.arrayOf(PropTypes.string),
})
),
logosUsers: PropTypes.arrayOf(
PropTypes.shape({
id: PropTypes.string.isRequired,
url: PropTypes.string.isRequired,
})
),
logosPublications: PropTypes.arrayOf(
PropTypes.shape({
id: PropTypes.string.isRequired,
url: PropTypes.string.isRequired,
})
),
}),
}
export default () => (
<StaticQuery query={landingQuery} render={({ site }) => <Landing data={site.siteMetadata} />} />
)
const landingQuery = graphql`
query LandingQuery {
site {
siteMetadata {
repo
languages {
models
starters
}
logosUsers {
id
url
}
logosPublications {
id
url
}
}
}
}
`