2021-06-24 13:35:27 +03:00
|
|
|
from numpy.testing import assert_equal
|
|
|
|
from spacy.language import Language
|
|
|
|
from spacy.training import Example
|
|
|
|
from spacy.util import fix_random_seed, registry
|
|
|
|
|
|
|
|
|
|
|
|
SPAN_KEY = "labeled_spans"
|
|
|
|
|
|
|
|
TRAIN_DATA = [
|
|
|
|
("Who is Shaka Khan?", {"spans": {SPAN_KEY: [(7, 17, "PERSON")]}}),
|
|
|
|
(
|
|
|
|
"I like London and Berlin.",
|
|
|
|
{"spans": {SPAN_KEY: [(7, 13, "LOC"), (18, 24, "LOC")]}},
|
|
|
|
),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def make_get_examples(nlp):
|
|
|
|
train_examples = []
|
|
|
|
for t in TRAIN_DATA:
|
|
|
|
eg = Example.from_dict(nlp.make_doc(t[0]), t[1])
|
|
|
|
train_examples.append(eg)
|
|
|
|
|
|
|
|
def get_examples():
|
|
|
|
return train_examples
|
|
|
|
|
|
|
|
return get_examples
|
|
|
|
|
|
|
|
|
|
|
|
def test_simple_train():
|
|
|
|
fix_random_seed(0)
|
|
|
|
nlp = Language()
|
|
|
|
spancat = nlp.add_pipe("spancat", config={"spans_key": SPAN_KEY})
|
|
|
|
get_examples = make_get_examples(nlp)
|
|
|
|
nlp.initialize(get_examples)
|
|
|
|
sgd = nlp.create_optimizer()
|
|
|
|
assert len(spancat.labels) != 0
|
|
|
|
for i in range(40):
|
|
|
|
losses = {}
|
|
|
|
nlp.update(list(get_examples()), losses=losses, drop=0.1, sgd=sgd)
|
|
|
|
doc = nlp("I like London and Berlin.")
|
|
|
|
assert doc.spans[spancat.key] == doc.spans[SPAN_KEY]
|
|
|
|
assert len(doc.spans[spancat.key]) == 2
|
|
|
|
assert doc.spans[spancat.key][0].text == "London"
|
|
|
|
scores = nlp.evaluate(get_examples())
|
|
|
|
assert f"spans_{SPAN_KEY}_f" in scores
|
|
|
|
assert scores[f"spans_{SPAN_KEY}_f"] == 1.0
|
|
|
|
|
|
|
|
|
|
|
|
def test_ngram_suggester(en_tokenizer):
|
|
|
|
# test different n-gram lengths
|
|
|
|
for size in [1, 2, 3]:
|
|
|
|
ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[size])
|
|
|
|
docs = [
|
|
|
|
en_tokenizer(text)
|
|
|
|
for text in [
|
|
|
|
"a",
|
|
|
|
"a b",
|
|
|
|
"a b c",
|
|
|
|
"a b c d",
|
|
|
|
"a b c d e",
|
|
|
|
"a " * 100,
|
|
|
|
]
|
|
|
|
]
|
|
|
|
ngrams = ngram_suggester(docs)
|
|
|
|
# span sizes are correct
|
|
|
|
for s in ngrams.data:
|
|
|
|
assert s[1] - s[0] == size
|
|
|
|
# spans are within docs
|
|
|
|
offset = 0
|
|
|
|
for i, doc in enumerate(docs):
|
|
|
|
spans = ngrams.dataXd[offset : offset + ngrams.lengths[i]]
|
|
|
|
spans_set = set()
|
|
|
|
for span in spans:
|
|
|
|
assert 0 <= span[0] < len(doc)
|
|
|
|
assert 0 < span[1] <= len(doc)
|
|
|
|
spans_set.add((span[0], span[1]))
|
|
|
|
# spans are unique
|
|
|
|
assert spans.shape[0] == len(spans_set)
|
|
|
|
offset += ngrams.lengths[i]
|
|
|
|
# the number of spans is correct
|
2021-06-28 12:48:00 +03:00
|
|
|
assert_equal(ngrams.lengths, [max(0, len(doc) - (size - 1)) for doc in docs])
|
2021-06-24 13:35:27 +03:00
|
|
|
|
|
|
|
# test 1-3-gram suggestions
|
|
|
|
ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[1, 2, 3])
|
|
|
|
docs = [
|
|
|
|
en_tokenizer(text) for text in ["a", "a b", "a b c", "a b c d", "a b c d e"]
|
|
|
|
]
|
|
|
|
ngrams = ngram_suggester(docs)
|
|
|
|
assert_equal(ngrams.lengths, [1, 3, 6, 9, 12])
|
|
|
|
assert_equal(
|
|
|
|
ngrams.data,
|
|
|
|
[
|
|
|
|
# doc 0
|
|
|
|
[0, 1],
|
|
|
|
# doc 1
|
|
|
|
[0, 1],
|
|
|
|
[1, 2],
|
|
|
|
[0, 2],
|
|
|
|
# doc 2
|
|
|
|
[0, 1],
|
|
|
|
[1, 2],
|
|
|
|
[2, 3],
|
|
|
|
[0, 2],
|
|
|
|
[1, 3],
|
|
|
|
[0, 3],
|
|
|
|
# doc 3
|
|
|
|
[0, 1],
|
|
|
|
[1, 2],
|
|
|
|
[2, 3],
|
|
|
|
[3, 4],
|
|
|
|
[0, 2],
|
|
|
|
[1, 3],
|
|
|
|
[2, 4],
|
|
|
|
[0, 3],
|
|
|
|
[1, 4],
|
|
|
|
# doc 4
|
|
|
|
[0, 1],
|
|
|
|
[1, 2],
|
|
|
|
[2, 3],
|
|
|
|
[3, 4],
|
|
|
|
[4, 5],
|
|
|
|
[0, 2],
|
|
|
|
[1, 3],
|
|
|
|
[2, 4],
|
|
|
|
[3, 5],
|
|
|
|
[0, 3],
|
|
|
|
[1, 4],
|
|
|
|
[2, 5],
|
|
|
|
],
|
|
|
|
)
|
|
|
|
|
|
|
|
# test some empty docs
|
|
|
|
ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[1])
|
|
|
|
docs = [en_tokenizer(text) for text in ["", "a", ""]]
|
|
|
|
ngrams = ngram_suggester(docs)
|
|
|
|
assert_equal(ngrams.lengths, [len(doc) for doc in docs])
|
|
|
|
|
|
|
|
# test all empty docs
|
|
|
|
ngram_suggester = registry.misc.get("ngram_suggester.v1")(sizes=[1])
|
|
|
|
docs = [en_tokenizer(text) for text in ["", "", ""]]
|
|
|
|
ngrams = ngram_suggester(docs)
|
|
|
|
assert_equal(ngrams.lengths, [len(doc) for doc in docs])
|