spaCy/spacy/tests/tokenizer/test_explain.py

146 lines
5.3 KiB
Python
Raw Normal View History

import re
import string
import hypothesis
import hypothesis.strategies
import pytest
import spacy
from spacy.tokenizer import Tokenizer
from spacy.util import get_lang_class
Add tokenizer explain() debugging method (#4596) * Expose tokenizer rules as a property Expose the tokenizer rules property in the same way as the other core properties. (The cache resetting is overkill, but consistent with `from_bytes` for now.) Add tests and update Tokenizer API docs. * Update Hungarian punctuation to remove empty string Update Hungarian punctuation definitions so that `_units` does not match an empty string. * Use _load_special_tokenization consistently Use `_load_special_tokenization()` and have it to handle `None` checks. * Fix precedence of `token_match` vs. special cases Remove `token_match` check from `_split_affixes()` so that special cases have precedence over `token_match`. `token_match` is checked only before infixes are split. * Add `make_debug_doc()` to the Tokenizer Add `make_debug_doc()` to the Tokenizer as a working implementation of the pseudo-code in the docs. Add a test (marked as slow) that checks that `nlp.tokenizer()` and `nlp.tokenizer.make_debug_doc()` return the same non-whitespace tokens for all languages that have `examples.sentences` that can be imported. * Update tokenization usage docs Update pseudo-code and algorithm description to correspond to `nlp.tokenizer.make_debug_doc()` with example debugging usage. Add more examples for customizing tokenizers while preserving the existing defaults. Minor edits / clarifications. * Revert "Update Hungarian punctuation to remove empty string" This reverts commit f0a577f7a5c67f55807fdbda9e9a936464723931. * Rework `make_debug_doc()` as `explain()` Rework `make_debug_doc()` as `explain()`, which returns a list of `(pattern_string, token_string)` tuples rather than a non-standard `Doc`. Update docs and tests accordingly, leaving the visualization for future work. * Handle cases with bad tokenizer patterns Detect when tokenizer patterns match empty prefixes and suffixes so that `explain()` does not hang on bad patterns. * Remove unused displacy image * Add tokenizer.explain() to usage docs
2019-11-20 15:07:25 +03:00
# Only include languages with no external dependencies
2019-11-20 15:14:11 +03:00
# "is" seems to confuse importlib, so we're also excluding it for now
# excluded: ja, ru, th, uk, vi, zh, is
LANGUAGES = [
pytest.param("fr", marks=pytest.mark.slow()),
pytest.param("af", marks=pytest.mark.slow()),
pytest.param("ar", marks=pytest.mark.slow()),
pytest.param("bg", marks=pytest.mark.slow()),
2019-11-20 15:14:11 +03:00
"bn",
2024-09-09 12:18:03 +03:00
pytest.param("bo", marks=pytest.mark.slow()),
pytest.param("ca", marks=pytest.mark.slow()),
pytest.param("cs", marks=pytest.mark.slow()),
pytest.param("da", marks=pytest.mark.slow()),
pytest.param("de", marks=pytest.mark.slow()),
2019-11-20 15:14:11 +03:00
"el",
"en",
pytest.param("es", marks=pytest.mark.slow()),
pytest.param("et", marks=pytest.mark.slow()),
pytest.param("fa", marks=pytest.mark.slow()),
pytest.param("fi", marks=pytest.mark.slow()),
"fr",
pytest.param("ga", marks=pytest.mark.slow()),
pytest.param("he", marks=pytest.mark.slow()),
pytest.param("hi", marks=pytest.mark.slow()),
pytest.param("hr", marks=pytest.mark.slow()),
"hu",
pytest.param("id", marks=pytest.mark.slow()),
pytest.param("it", marks=pytest.mark.slow()),
pytest.param("kn", marks=pytest.mark.slow()),
pytest.param("lb", marks=pytest.mark.slow()),
pytest.param("lt", marks=pytest.mark.slow()),
pytest.param("lv", marks=pytest.mark.slow()),
pytest.param("nb", marks=pytest.mark.slow()),
pytest.param("nl", marks=pytest.mark.slow()),
"pl",
pytest.param("pt", marks=pytest.mark.slow()),
pytest.param("ro", marks=pytest.mark.slow()),
pytest.param("si", marks=pytest.mark.slow()),
pytest.param("sk", marks=pytest.mark.slow()),
pytest.param("sl", marks=pytest.mark.slow()),
pytest.param("sq", marks=pytest.mark.slow()),
pytest.param("sr", marks=pytest.mark.slow()),
pytest.param("sv", marks=pytest.mark.slow()),
pytest.param("ta", marks=pytest.mark.slow()),
pytest.param("te", marks=pytest.mark.slow()),
pytest.param("tl", marks=pytest.mark.slow()),
pytest.param("tr", marks=pytest.mark.slow()),
pytest.param("tt", marks=pytest.mark.slow()),
pytest.param("ur", marks=pytest.mark.slow()),
pytest.param("kmr", marks=pytest.mark.slow()),
2019-11-20 15:14:11 +03:00
]
Add tokenizer explain() debugging method (#4596) * Expose tokenizer rules as a property Expose the tokenizer rules property in the same way as the other core properties. (The cache resetting is overkill, but consistent with `from_bytes` for now.) Add tests and update Tokenizer API docs. * Update Hungarian punctuation to remove empty string Update Hungarian punctuation definitions so that `_units` does not match an empty string. * Use _load_special_tokenization consistently Use `_load_special_tokenization()` and have it to handle `None` checks. * Fix precedence of `token_match` vs. special cases Remove `token_match` check from `_split_affixes()` so that special cases have precedence over `token_match`. `token_match` is checked only before infixes are split. * Add `make_debug_doc()` to the Tokenizer Add `make_debug_doc()` to the Tokenizer as a working implementation of the pseudo-code in the docs. Add a test (marked as slow) that checks that `nlp.tokenizer()` and `nlp.tokenizer.make_debug_doc()` return the same non-whitespace tokens for all languages that have `examples.sentences` that can be imported. * Update tokenization usage docs Update pseudo-code and algorithm description to correspond to `nlp.tokenizer.make_debug_doc()` with example debugging usage. Add more examples for customizing tokenizers while preserving the existing defaults. Minor edits / clarifications. * Revert "Update Hungarian punctuation to remove empty string" This reverts commit f0a577f7a5c67f55807fdbda9e9a936464723931. * Rework `make_debug_doc()` as `explain()` Rework `make_debug_doc()` as `explain()`, which returns a list of `(pattern_string, token_string)` tuples rather than a non-standard `Doc`. Update docs and tests accordingly, leaving the visualization for future work. * Handle cases with bad tokenizer patterns Detect when tokenizer patterns match empty prefixes and suffixes so that `explain()` does not hang on bad patterns. * Remove unused displacy image * Add tokenizer.explain() to usage docs
2019-11-20 15:07:25 +03:00
2019-11-20 15:15:59 +03:00
Add tokenizer explain() debugging method (#4596) * Expose tokenizer rules as a property Expose the tokenizer rules property in the same way as the other core properties. (The cache resetting is overkill, but consistent with `from_bytes` for now.) Add tests and update Tokenizer API docs. * Update Hungarian punctuation to remove empty string Update Hungarian punctuation definitions so that `_units` does not match an empty string. * Use _load_special_tokenization consistently Use `_load_special_tokenization()` and have it to handle `None` checks. * Fix precedence of `token_match` vs. special cases Remove `token_match` check from `_split_affixes()` so that special cases have precedence over `token_match`. `token_match` is checked only before infixes are split. * Add `make_debug_doc()` to the Tokenizer Add `make_debug_doc()` to the Tokenizer as a working implementation of the pseudo-code in the docs. Add a test (marked as slow) that checks that `nlp.tokenizer()` and `nlp.tokenizer.make_debug_doc()` return the same non-whitespace tokens for all languages that have `examples.sentences` that can be imported. * Update tokenization usage docs Update pseudo-code and algorithm description to correspond to `nlp.tokenizer.make_debug_doc()` with example debugging usage. Add more examples for customizing tokenizers while preserving the existing defaults. Minor edits / clarifications. * Revert "Update Hungarian punctuation to remove empty string" This reverts commit f0a577f7a5c67f55807fdbda9e9a936464723931. * Rework `make_debug_doc()` as `explain()` Rework `make_debug_doc()` as `explain()`, which returns a list of `(pattern_string, token_string)` tuples rather than a non-standard `Doc`. Update docs and tests accordingly, leaving the visualization for future work. * Handle cases with bad tokenizer patterns Detect when tokenizer patterns match empty prefixes and suffixes so that `explain()` does not hang on bad patterns. * Remove unused displacy image * Add tokenizer.explain() to usage docs
2019-11-20 15:07:25 +03:00
@pytest.mark.parametrize("lang", LANGUAGES)
def test_tokenizer_explain(lang):
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 14:42:59 +03:00
tokenizer = get_lang_class(lang)().tokenizer
examples = pytest.importorskip(f"spacy.lang.{lang}.examples")
2019-11-20 15:14:11 +03:00
for sentence in examples.sentences:
tokens = [t.text for t in tokenizer(sentence) if not t.is_space]
debug_tokens = [t[1] for t in tokenizer.explain(sentence)]
2019-11-20 15:14:11 +03:00
assert tokens == debug_tokens
def test_tokenizer_explain_special_matcher(en_vocab):
suffix_re = re.compile(r"[\.]$")
infix_re = re.compile(r"[/]")
rules = {"a.": [{"ORTH": "a."}]}
tokenizer = Tokenizer(
en_vocab,
rules=rules,
suffix_search=suffix_re.search,
infix_finditer=infix_re.finditer,
)
tokens = [t.text for t in tokenizer("a/a.")]
explain_tokens = [t[1] for t in tokenizer.explain("a/a.")]
assert tokens == explain_tokens
def test_tokenizer_explain_special_matcher_whitespace(en_vocab):
rules = {":]": [{"ORTH": ":]"}]}
tokenizer = Tokenizer(
en_vocab,
rules=rules,
)
text = ": ]"
tokens = [t.text for t in tokenizer(text)]
explain_tokens = [t[1] for t in tokenizer.explain(text)]
assert tokens == explain_tokens
@hypothesis.strategies.composite
def sentence_strategy(draw: hypothesis.strategies.DrawFn, max_n_words: int = 4) -> str:
"""
Composite strategy for fuzzily generating sentence with varying interpunctation.
draw (hypothesis.strategies.DrawFn): Protocol for drawing function allowing to fuzzily pick from hypothesis'
strategies.
max_n_words (int): Max. number of words in generated sentence.
RETURNS (str): Fuzzily generated sentence.
"""
punctuation_and_space_regex = "|".join(
[*[re.escape(p) for p in string.punctuation], r"\s"]
)
sentence = [
[
draw(hypothesis.strategies.text(min_size=1)),
draw(hypothesis.strategies.from_regex(punctuation_and_space_regex)),
]
for _ in range(
draw(hypothesis.strategies.integers(min_value=2, max_value=max_n_words))
)
]
return " ".join([token for token_pair in sentence for token in token_pair])
@pytest.mark.xfail
@pytest.mark.parametrize("lang", LANGUAGES)
@hypothesis.given(sentence=sentence_strategy())
def test_tokenizer_explain_fuzzy(lang: str, sentence: str) -> None:
"""
Tests whether output of tokenizer.explain() matches tokenizer output. Input generated by hypothesis.
lang (str): Language to test.
text (str): Fuzzily generated sentence to tokenize.
"""
tokenizer: Tokenizer = spacy.blank(lang).tokenizer
# Tokenizer.explain is not intended to handle whitespace or control
# characters in the same way as Tokenizer
sentence = re.sub(r"\s+", " ", sentence).strip()
tokens = [t.text for t in tokenizer(sentence)]
debug_tokens = [t[1] for t in tokenizer.explain(sentence)]
assert tokens == debug_tokens, f"{tokens}, {debug_tokens}, {sentence}"