spaCy/spacy/tagger.pyx

228 lines
6.1 KiB
Cython
Raw Normal View History

import json
from os import path
from collections import defaultdict
from libc.string cimport memset
from cymem.cymem cimport Pool
from thinc.typedefs cimport atom_t, weight_t
from thinc.api cimport Example, ExampleC
from thinc.features cimport ConjunctionExtracter
from .typedefs cimport attr_t
from .tokens.doc cimport Doc
from .attrs cimport TAG
from .parts_of_speech cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON
from .parts_of_speech cimport VERB, X, PUNCT, EOL, SPACE
from .attrs cimport *
cpdef enum:
P2_orth
P2_cluster
P2_shape
P2_prefix
P2_suffix
P2_pos
P2_lemma
P2_flags
P1_orth
P1_cluster
P1_shape
P1_prefix
P1_suffix
P1_pos
P1_lemma
P1_flags
W_orth
W_cluster
W_shape
W_prefix
W_suffix
W_pos
W_lemma
W_flags
N1_orth
N1_cluster
N1_shape
N1_prefix
N1_suffix
N1_pos
N1_lemma
N1_flags
N2_orth
N2_cluster
N2_shape
N2_prefix
N2_suffix
N2_pos
N2_lemma
N2_flags
N_CONTEXT_FIELDS
cdef class TaggerModel(AveragedPerceptron):
def __init__(self, n_classes, templates):
AveragedPerceptron.__init__(self, n_classes,
ConjunctionExtracter(N_CONTEXT_FIELDS, templates))
cdef void set_features(self, ExampleC* eg, const TokenC* tokens, int i) except *:
_fill_from_token(&eg.atoms[P2_orth], &tokens[i-2])
_fill_from_token(&eg.atoms[P1_orth], &tokens[i-1])
_fill_from_token(&eg.atoms[W_orth], &tokens[i])
_fill_from_token(&eg.atoms[N1_orth], &tokens[i+1])
_fill_from_token(&eg.atoms[N2_orth], &tokens[i+2])
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
cdef void update(self, ExampleC* eg) except *:
self.updater.update(eg)
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
context[0] = t.lex.lower
context[1] = t.lex.cluster
context[2] = t.lex.shape
context[3] = t.lex.prefix
context[4] = t.lex.suffix
context[5] = t.tag
context[6] = t.lemma
if t.lex.flags & (1 << IS_ALPHA):
context[7] = 1
elif t.lex.flags & (1 << IS_PUNCT):
context[7] = 2
elif t.lex.flags & (1 << LIKE_URL):
context[7] = 3
elif t.lex.flags & (1 << LIKE_NUM):
context[7] = 4
else:
context[7] = 0
cdef class Tagger:
"""A part-of-speech tagger for English"""
@classmethod
def read_config(cls, data_dir):
return json.load(open(path.join(data_dir, 'pos', 'config.json')))
@classmethod
def default_templates(cls):
return (
(W_orth,),
(P1_lemma, P1_pos),
(P2_lemma, P2_pos),
(N1_orth,),
(N2_orth,),
(W_suffix,),
(W_prefix,),
(P1_pos,),
(P2_pos,),
(P1_pos, P2_pos),
(P1_pos, W_orth),
(P1_suffix,),
(N1_suffix,),
(W_shape,),
(W_cluster,),
(N1_cluster,),
(N2_cluster,),
(P1_cluster,),
(P2_cluster,),
(W_flags,),
(N1_flags,),
(N2_flags,),
(P1_flags,),
(P2_flags,),
)
@classmethod
def blank(cls, vocab, templates):
model = TaggerModel(vocab.morphology.n_tags, templates)
return cls(vocab, model)
@classmethod
def from_dir(cls, data_dir, vocab):
if path.exists(path.join(data_dir, 'templates.json')):
templates = json.loads(open(path.join(data_dir, 'templates.json')))
else:
templates = cls.default_templates()
model = TaggerModel(vocab.morphology.n_tags, templates)
if path.exists(path.join(data_dir, 'model')):
model.load(path.join(data_dir, 'model'))
return cls(vocab, model)
def __init__(self, Vocab vocab, TaggerModel model):
self.vocab = vocab
self.model = model
# TODO: Move this to tag map
self.freqs = {TAG: defaultdict(int)}
for tag in self.tag_names:
self.freqs[TAG][self.vocab.strings[tag]] = 1
self.freqs[TAG][0] = 1
@property
def tag_names(self):
return self.vocab.morphology.tag_names
def __reduce__(self):
return (self.__class__, (self.vocab, self.model), None, None)
def tag_from_strings(self, Doc tokens, object tag_strs):
cdef int i
for i in range(tokens.length):
self.vocab.morphology.assign_tag(&tokens.c[i], tag_strs[i])
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
def __call__(self, Doc tokens):
"""Apply the tagger, setting the POS tags onto the Doc object.
Args:
tokens (Doc): The tokens to be tagged.
"""
if tokens.length == 0:
return 0
2015-11-05 16:25:59 +03:00
cdef Pool mem = Pool()
cdef ExampleC eg
cdef int i, tag
for i in range(tokens.length):
if tokens.c[i].pos == 0:
eg = self.model.allocate(mem)
self.model.set_features(&eg, tokens.c, i)
self.model.set_prediction(&eg)
self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
def train(self, Doc tokens, object gold_tag_strs):
assert len(tokens) == len(gold_tag_strs)
golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
cdef int correct = 0
cdef Pool mem = Pool()
cdef ExampleC eg
for i in range(tokens.length):
eg = self.model.allocate(mem)
self.model.set_features(&eg, tokens.c, i)
self.model.set_costs(&eg, golds[i])
self.model.set_prediction(&eg)
self.model.update(&eg)
self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
correct += eg.cost == 0
2015-11-03 16:15:14 +03:00
self.freqs[TAG][tokens.c[i].tag] += 1
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
return correct