spaCy/spacy/tokens/span.pyx

756 lines
28 KiB
Cython
Raw Normal View History

2017-04-15 14:05:15 +03:00
cimport numpy as np
from libc.math cimport sqrt
import numpy
import numpy.linalg
Update spaCy for thinc 8.0.0 (#4920) * Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
2020-01-29 19:06:46 +03:00
from thinc.util import get_array_module
from collections import defaultdict
from .doc cimport token_by_start, token_by_end, get_token_attr, _get_lca_matrix
from .token cimport TokenC
2015-08-26 20:20:46 +03:00
from ..structs cimport TokenC, LexemeC
2016-09-23 17:02:28 +03:00
from ..typedefs cimport flags_t, attr_t, hash_t
2015-07-16 20:55:21 +03:00
from ..attrs cimport attr_id_t
from ..parts_of_speech cimport univ_pos_t
from ..attrs cimport *
from ..lexeme cimport Lexeme
from ..symbols cimport dep
from ..util import normalize_slice
from ..errors import Errors, TempErrors, Warnings, user_warning, models_warning
from ..errors import deprecation_warning
from .underscore import Underscore, get_ext_args
cdef class Span:
"""A slice from a Doc object.
DOCS: https://spacy.io/api/span
"""
2017-10-07 19:56:01 +03:00
@classmethod
def set_extension(cls, name, **kwargs):
"""Define a custom attribute which becomes available as `Span._`.
name (unicode): Name of the attribute to set.
default: Optional default value of the attribute.
getter (callable): Optional getter function.
setter (callable): Optional setter function.
method (callable): Optional method for method extension.
force (bool): Force overwriting existing attribute.
DOCS: https://spacy.io/api/span#set_extension
USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes
"""
if cls.has_extension(name) and not kwargs.get("force", False):
raise ValueError(Errors.E090.format(name=name, obj="Span"))
Underscore.span_extensions[name] = get_ext_args(**kwargs)
2017-10-07 19:56:01 +03:00
@classmethod
def get_extension(cls, name):
"""Look up a previously registered extension by name.
name (unicode): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple.
DOCS: https://spacy.io/api/span#get_extension
"""
2017-10-07 19:56:01 +03:00
return Underscore.span_extensions.get(name)
@classmethod
def has_extension(cls, name):
"""Check whether an extension has been registered.
name (unicode): Name of the extension.
RETURNS (bool): Whether the extension has been registered.
DOCS: https://spacy.io/api/span#has_extension
"""
2017-10-07 19:56:01 +03:00
return name in Underscore.span_extensions
@classmethod
def remove_extension(cls, name):
"""Remove a previously registered extension.
name (unicode): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
removed extension.
DOCS: https://spacy.io/api/span#remove_extension
"""
if not cls.has_extension(name):
raise ValueError(Errors.E046.format(name=name))
return Underscore.span_extensions.pop(name)
def __cinit__(self, Doc doc, int start, int end, label=0, vector=None,
2019-03-14 17:48:40 +03:00
vector_norm=None, kb_id=0):
2017-05-18 23:17:24 +03:00
"""Create a `Span` object from the slice `doc[start : end]`.
doc (Doc): The parent document.
start (int): The index of the first token of the span.
end (int): The index of the first token after the span.
2017-05-28 15:06:40 +03:00
label (uint64): A label to attach to the Span, e.g. for named entities.
2019-03-14 17:48:40 +03:00
kb_id (uint64): An identifier from a Knowledge Base to capture the meaning of a named entity.
vector (ndarray[ndim=1, dtype='float32']): A meaning representation
of the span.
2017-05-18 23:17:24 +03:00
RETURNS (Span): The newly constructed object.
DOCS: https://spacy.io/api/span#init
2017-04-15 14:05:15 +03:00
"""
2016-11-01 15:27:44 +03:00
if not (0 <= start <= end <= len(doc)):
raise IndexError(Errors.E035.format(start=start, end=end, length=len(doc)))
2016-11-01 14:25:36 +03:00
self.doc = doc
self.start = start
2015-11-07 09:05:16 +03:00
self.start_char = self.doc[start].idx if start < self.doc.length else 0
self.end = end
2015-11-07 09:05:16 +03:00
if end >= 1:
self.end_char = self.doc[end - 1].idx + len(self.doc[end - 1])
else:
self.end_char = 0
if isinstance(label, str):
label = doc.vocab.strings.add(label)
if isinstance(kb_id, str):
kb_id = doc.vocab.strings.add(kb_id)
if label not in doc.vocab.strings:
raise ValueError(Errors.E084.format(label=label))
self.label = label
self._vector = vector
self._vector_norm = vector_norm
2019-03-14 17:48:40 +03:00
self.kb_id = kb_id
def __richcmp__(self, Span other, int op):
if other is None:
if op == 0 or op == 1 or op == 2:
return False
else:
return True
# Eq
if op == 0:
return self.start_char < other.start_char
elif op == 1:
return self.start_char <= other.start_char
elif op == 2:
2015-11-07 01:54:14 +03:00
return self.start_char == other.start_char and self.end_char == other.end_char
elif op == 3:
return self.start_char != other.start_char or self.end_char != other.end_char
elif op == 4:
return self.start_char > other.start_char
elif op == 5:
return self.start_char >= other.start_char
2017-04-26 20:01:05 +03:00
def __hash__(self):
return hash((self.doc, self.label, self.start_char, self.end_char))
def __len__(self):
"""Get the number of tokens in the span.
RETURNS (int): The number of tokens in the span.
DOCS: https://spacy.io/api/span#len
"""
self._recalculate_indices()
if self.end < self.start:
return 0
return self.end - self.start
def __repr__(self):
return self.text
2015-10-06 12:45:49 +03:00
def __getitem__(self, object i):
"""Get a `Token` or a `Span` object
i (int or tuple): The index of the token within the span, or slice of
the span to get.
RETURNS (Token or Span): The token at `span[i]`.
DOCS: https://spacy.io/api/span#getitem
"""
self._recalculate_indices()
2015-10-06 12:45:49 +03:00
if isinstance(i, slice):
start, end = normalize_slice(len(self), i.start, i.stop, i.step)
return Span(self.doc, start + self.start, end + self.start)
2015-07-30 03:30:24 +03:00
else:
if i < 0:
return self.doc[self.end + i]
else:
return self.doc[self.start + i]
def __iter__(self):
"""Iterate over `Token` objects.
YIELDS (Token): A `Token` object.
DOCS: https://spacy.io/api/span#iter
"""
self._recalculate_indices()
for i in range(self.start, self.end):
2015-09-29 16:03:55 +03:00
yield self.doc[i]
2019-02-13 15:22:05 +03:00
def __reduce__(self):
raise NotImplementedError(Errors.E112)
2017-10-07 19:56:01 +03:00
@property
def _(self):
"""Custom extension attributes registered via `set_extension`."""
2017-10-07 19:56:01 +03:00
return Underscore(Underscore.span_extensions, self,
start=self.start_char, end=self.end_char)
2017-10-23 11:38:06 +03:00
def as_doc(self, bint copy_user_data=False):
"""Create a `Doc` object with a copy of the `Span`'s data.
2017-10-09 00:50:20 +03:00
copy_user_data (bool): Whether or not to copy the original doc's user data.
RETURNS (Doc): The `Doc` copy of the span.
DOCS: https://spacy.io/api/span#as_doc
"""
# TODO: make copy_user_data a keyword-only argument (Python 3 only)
words = [t.text for t in self]
spaces = [bool(t.whitespace_) for t in self]
cdef Doc doc = Doc(self.doc.vocab, words=words, spaces=spaces)
array_head = [LENGTH, SPACY, LEMMA, ENT_IOB, ENT_TYPE, ENT_KB_ID]
if self.doc.is_tagged:
array_head.append(TAG)
# If doc parsed add head and dep attribute
if self.doc.is_parsed:
array_head.extend([HEAD, DEP])
# Otherwise add sent_start
else:
array_head.append(SENT_START)
array = self.doc.to_array(array_head)
array = array[self.start : self.end]
self._fix_dep_copy(array_head, array)
doc.from_array(array_head, array)
2017-10-09 00:50:20 +03:00
doc.noun_chunks_iterator = self.doc.noun_chunks_iterator
doc.user_hooks = self.doc.user_hooks
doc.user_span_hooks = self.doc.user_span_hooks
doc.user_token_hooks = self.doc.user_token_hooks
doc.vector = self.vector
doc.vector_norm = self.vector_norm
doc.tensor = self.doc.tensor[self.start : self.end]
2017-10-09 00:50:20 +03:00
for key, value in self.doc.cats.items():
if hasattr(key, "__len__") and len(key) == 3:
2017-10-09 00:50:20 +03:00
cat_start, cat_end, cat_label = key
if cat_start == self.start_char and cat_end == self.end_char:
doc.cats[cat_label] = value
if copy_user_data:
doc.user_data = self.doc.user_data
2017-10-09 00:50:20 +03:00
return doc
2017-10-07 19:56:01 +03:00
def _fix_dep_copy(self, attrs, array):
""" Rewire dependency links to make sure their heads fall into the span
while still keeping the correct number of sentences. """
cdef int length = len(array)
cdef attr_t value
cdef int i, head_col, ancestor_i
old_to_new_root = dict()
if HEAD in attrs:
head_col = attrs.index(HEAD)
for i in range(length):
# if the HEAD refers to a token outside this span, find a more appropriate ancestor
token = self[i]
ancestor_i = token.head.i - self.start # span offset
if ancestor_i not in range(length):
if DEP in attrs:
array[i, attrs.index(DEP)] = dep
# try finding an ancestor within this span
ancestors = token.ancestors
for ancestor in ancestors:
ancestor_i = ancestor.i - self.start
if ancestor_i in range(length):
array[i, head_col] = ancestor_i - i
# if there is no appropriate ancestor, define a new artificial root
value = array[i, head_col]
if (i+value) not in range(length):
new_root = old_to_new_root.get(ancestor_i, None)
if new_root is not None:
# take the same artificial root as a previous token from the same sentence
array[i, head_col] = new_root - i
else:
# set this token as the new artificial root
array[i, head_col] = 0
old_to_new_root[ancestor_i] = i
return array
def merge(self, *args, **attributes):
"""Retokenize the document, such that the span is merged into a single
token.
2017-05-18 23:17:24 +03:00
**attributes: Attributes to assign to the merged token. By default,
attributes are inherited from the syntactic root token of the span.
RETURNS (Token): The newly merged token.
2016-11-01 14:25:36 +03:00
"""
deprecation_warning(Warnings.W013.format(obj="Span"))
return self.doc.merge(self.start_char, self.end_char, *args,
**attributes)
2015-07-30 03:30:24 +03:00
def get_lca_matrix(self):
"""Calculates a matrix of Lowest Common Ancestors (LCA) for a given
`Span`, where LCA[i, j] is the index of the lowest common ancestor among
the tokens span[i] and span[j]. If they have no common ancestor within
the span, LCA[i, j] will be -1.
RETURNS (np.array[ndim=2, dtype=numpy.int32]): LCA matrix with shape
(n, n), where n = len(self).
DOCS: https://spacy.io/api/span#get_lca_matrix
"""
return numpy.asarray(_get_lca_matrix(self.doc, self.start, self.end))
def similarity(self, other):
"""Make a semantic similarity estimate. The default estimate is cosine
2016-11-01 14:25:36 +03:00
similarity using an average of word vectors.
2017-05-18 23:17:24 +03:00
other (object): The object to compare with. By default, accepts `Doc`,
`Span`, `Token` and `Lexeme` objects.
RETURNS (float): A scalar similarity score. Higher is more similar.
DOCS: https://spacy.io/api/span#similarity
2017-04-15 14:05:15 +03:00
"""
if "similarity" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["similarity"](self, other)
if len(self) == 1 and hasattr(other, "orth"):
if self[0].orth == other.orth:
return 1.0
elif hasattr(other, "__len__") and len(self) == len(other):
for i in range(len(self)):
if self[i].orth != getattr(other[i], "orth", None):
break
else:
return 1.0
if self.vocab.vectors.n_keys == 0:
models_warning(Warnings.W007.format(obj="Span"))
2015-09-22 03:10:01 +03:00
if self.vector_norm == 0.0 or other.vector_norm == 0.0:
user_warning(Warnings.W008.format(obj="Span"))
2015-09-22 03:10:01 +03:00
return 0.0
vector = self.vector
xp = get_array_module(vector)
2019-03-07 03:06:12 +03:00
return xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
2017-08-19 13:20:45 +03:00
cpdef np.ndarray to_array(self, object py_attr_ids):
"""Given a list of M attribute IDs, export the tokens to a numpy
`ndarray` of shape `(N, M)`, where `N` is the length of the document.
The values will be 32-bit integers.
attr_ids (list[int]): A list of attribute ID ints.
RETURNS (numpy.ndarray[long, ndim=2]): A feature matrix, with one row
per word, and one column per attribute indicated in the input
`attr_ids`.
"""
cdef int i, j
cdef attr_id_t feature
cdef np.ndarray[attr_t, ndim=2] output
# Make an array from the attributes - otherwise our inner loop is Python
# dict iteration
2017-08-19 13:20:45 +03:00
cdef np.ndarray[attr_t, ndim=1] attr_ids = numpy.asarray(py_attr_ids, dtype=numpy.uint64)
2017-08-19 17:24:28 +03:00
cdef int length = self.end - self.start
output = numpy.ndarray(shape=(length, len(attr_ids)), dtype=numpy.uint64)
2017-08-19 13:20:45 +03:00
for i in range(self.start, self.end):
for j, feature in enumerate(attr_ids):
2017-08-19 17:24:28 +03:00
output[i-self.start, j] = get_token_attr(&self.doc.c[i], feature)
2017-08-19 13:20:45 +03:00
return output
cpdef int _recalculate_indices(self) except -1:
2015-11-07 09:05:16 +03:00
if self.end > self.doc.length \
or self.doc.c[self.start].idx != self.start_char \
or (self.doc.c[self.end-1].idx + self.doc.c[self.end-1].lex.length) != self.end_char:
start = token_by_start(self.doc.c, self.doc.length, self.start_char)
if self.start == -1:
raise IndexError(Errors.E036.format(start=self.start_char))
end = token_by_end(self.doc.c, self.doc.length, self.end_char)
if end == -1:
raise IndexError(Errors.E037.format(end=self.end_char))
self.start = start
self.end = end + 1
@property
def vocab(self):
"""RETURNS (Vocab): The Span's Doc's vocab."""
return self.doc.vocab
@property
def sent(self):
"""RETURNS (Span): The sentence span that the span is a part of."""
if "sent" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["sent"](self)
# This should raise if not parsed / no custom sentence boundaries
self.doc.sents
# If doc is parsed we can use the deps to find the sentence
# otherwise we use the `sent_start` token attribute
cdef int n = 0
cdef int i
if self.doc.is_parsed:
root = &self.doc.c[self.start]
while root.head != 0:
root += root.head
n += 1
if n >= self.doc.length:
raise RuntimeError(Errors.E038)
return self.doc[root.l_edge:root.r_edge + 1]
elif self.doc.is_sentenced:
# Find start of the sentence
start = self.start
while self.doc.c[start].sent_start != 1 and start > 0:
start += -1
# Find end of the sentence
end = self.end
n = 0
while end < self.doc.length and self.doc.c[end].sent_start != 1:
end += 1
n += 1
if n >= self.doc.length:
break
return self.doc[start:end]
@property
def ents(self):
"""The named entities in the span. Returns a tuple of named entity
`Span` objects, if the entity recognizer has been applied.
RETURNS (tuple): Entities in the span, one `Span` per entity.
DOCS: https://spacy.io/api/span#ents
"""
ents = []
for ent in self.doc.ents:
if ent.start >= self.start and ent.end <= self.end:
ents.append(ent)
return ents
@property
def has_vector(self):
"""A boolean value indicating whether a word vector is associated with
the object.
RETURNS (bool): Whether a word vector is associated with the object.
DOCS: https://spacy.io/api/span#has_vector
"""
if "has_vector" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["has_vector"](self)
elif self.vocab.vectors.data.size > 0:
return any(token.has_vector for token in self)
elif self.doc.tensor.size > 0:
return True
else:
return False
2017-04-01 11:19:01 +03:00
@property
def vector(self):
"""A real-valued meaning representation. Defaults to an average of the
token vectors.
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
representing the span's semantics.
DOCS: https://spacy.io/api/span#vector
"""
if "vector" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["vector"](self)
if self._vector is None:
self._vector = sum(t.vector for t in self) / len(self)
return self._vector
@property
def vector_norm(self):
"""The L2 norm of the span's vector representation.
RETURNS (float): The L2 norm of the vector representation.
DOCS: https://spacy.io/api/span#vector_norm
"""
if "vector_norm" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["vector"](self)
vector = self.vector
xp = get_array_module(vector)
if self._vector_norm is None:
total = (vector*vector).sum()
self._vector_norm = xp.sqrt(total) if total != 0. else 0.
return self._vector_norm
@property
def tensor(self):
"""The span's slice of the doc's tensor.
RETURNS (ndarray[ndim=2, dtype='float32']): A 2D numpy or cupy array
representing the span's semantics.
"""
if self.doc.tensor is None:
return None
return self.doc.tensor[self.start : self.end]
@property
def sentiment(self):
"""RETURNS (float): A scalar value indicating the positivity or
negativity of the span.
"""
if "sentiment" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["sentiment"](self)
else:
return sum([token.sentiment for token in self]) / len(self)
@property
def text(self):
"""RETURNS (unicode): The original verbatim text of the span."""
text = self.text_with_ws
if self[-1].whitespace_:
text = text[:-1]
return text
@property
def text_with_ws(self):
"""The text content of the span with a trailing whitespace character if
the last token has one.
RETURNS (unicode): The text content of the span (with trailing
whitespace).
"""
return "".join([t.text_with_ws for t in self])
@property
def noun_chunks(self):
2017-05-18 23:17:24 +03:00
"""Yields base noun-phrase `Span` objects, if the document has been
syntactically parsed. A base noun phrase, or "NP chunk", is a noun
phrase that does not permit other NPs to be nested within it so no
NP-level coordination, no prepositional phrases, and no relative
clauses.
2017-05-18 23:17:24 +03:00
YIELDS (Span): Base noun-phrase `Span` objects.
DOCS: https://spacy.io/api/span#noun_chunks
2017-04-15 14:05:15 +03:00
"""
if not self.doc.is_parsed:
raise ValueError(Errors.E029)
# Accumulate the result before beginning to iterate over it. This
# prevents the tokenisation from being changed out from under us
# during the iteration. The tricky thing here is that Span accepts
# its tokenisation changing, so it's okay once we have the Span
# objects. See Issue #375
spans = []
cdef attr_t label
if self.doc.noun_chunks_iterator is not None:
for start, end, label in self.doc.noun_chunks_iterator(self):
spans.append(Span(self.doc, start, end, label=label))
for span in spans:
yield span
@property
def root(self):
"""The token with the shortest path to the root of the
sentence (or the root itself). If multiple tokens are equally
high in the tree, the first token is taken.
2016-11-01 14:25:36 +03:00
2017-05-18 23:17:24 +03:00
RETURNS (Token): The root token.
2017-04-01 11:19:01 +03:00
DOCS: https://spacy.io/api/span#root
2015-05-13 22:45:19 +03:00
"""
self._recalculate_indices()
if "root" in self.doc.user_span_hooks:
return self.doc.user_span_hooks["root"](self)
# This should probably be called 'head', and the other one called
# 'gov'. But we went with 'head' elsewhere, and now we're stuck =/
cdef int i
# First, we scan through the Span, and check whether there's a word
# with head==0, i.e. a sentence root. If so, we can return it. The
# longer the span, the more likely it contains a sentence root, and
# in this case we return in linear time.
for i in range(self.start, self.end):
if self.doc.c[i].head == 0:
return self.doc[i]
# If we don't have a sentence root, we do something that's not so
# algorithmically clever, but I think should be quite fast,
# especially for short spans.
# For each word, we count the path length, and arg min this measure.
# We could use better tree logic to save steps here...But I
# think this should be okay.
cdef int current_best = self.doc.length
cdef int root = -1
for i in range(self.start, self.end):
if self.start <= (i+self.doc.c[i].head) < self.end:
continue
words_to_root = _count_words_to_root(&self.doc.c[i], self.doc.length)
if words_to_root < current_best:
current_best = words_to_root
root = i
if root == -1:
return self.doc[self.start]
else:
return self.doc[root]
2017-04-01 11:19:01 +03:00
2019-12-13 17:54:58 +03:00
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None):
"""Create a `Span` object from the slice `span.text[start : end]`.
start (int): The index of the first character of the span.
end (int): The index of the first character after the span.
label (uint64 or string): A label to attach to the Span, e.g. for
named entities.
kb_id (uint64 or string): An ID from a KB to capture the meaning of a named entity.
vector (ndarray[ndim=1, dtype='float32']): A meaning representation of
the span.
RETURNS (Span): The newly constructed object.
"""
start_idx += self.start_char
end_idx += self.start_char
return self.doc.char_span(start_idx, end_idx)
@property
def conjuncts(self):
"""Tokens that are conjoined to the span's root.
RETURNS (tuple): A tuple of Token objects.
DOCS: https://spacy.io/api/span#lefts
"""
return self.root.conjuncts
@property
def lefts(self):
"""Tokens that are to the left of the span, whose head is within the
2017-05-18 23:17:24 +03:00
`Span`.
2017-04-01 11:19:01 +03:00
2017-05-18 23:17:24 +03:00
YIELDS (Token):A left-child of a token of the span.
DOCS: https://spacy.io/api/span#lefts
2016-11-01 14:25:36 +03:00
"""
for token in reversed(self): # Reverse, so we get tokens in order
for left in token.lefts:
if left.i < self.start:
yield left
2015-05-13 22:45:19 +03:00
@property
def rights(self):
2017-05-18 23:17:24 +03:00
"""Tokens that are to the right of the Span, whose head is within the
`Span`.
2017-04-01 11:19:01 +03:00
2017-05-18 23:17:24 +03:00
YIELDS (Token): A right-child of a token of the span.
DOCS: https://spacy.io/api/span#rights
2016-11-01 14:25:36 +03:00
"""
for token in self:
for right in token.rights:
if right.i >= self.end:
yield right
2015-05-13 22:45:19 +03:00
@property
def n_lefts(self):
"""The number of tokens that are to the left of the span, whose
heads are within the span.
RETURNS (int): The number of leftward immediate children of the
span, in the syntactic dependency parse.
DOCS: https://spacy.io/api/span#n_lefts
"""
return len(list(self.lefts))
@property
def n_rights(self):
"""The number of tokens that are to the right of the span, whose
heads are within the span.
RETURNS (int): The number of rightward immediate children of the
span, in the syntactic dependency parse.
DOCS: https://spacy.io/api/span#n_rights
"""
return len(list(self.rights))
@property
def subtree(self):
"""Tokens within the span and tokens which descend from them.
2016-11-01 14:25:36 +03:00
YIELDS (Token): A token within the span, or a descendant from it.
DOCS: https://spacy.io/api/span#subtree
2016-11-01 14:25:36 +03:00
"""
for word in self.lefts:
yield from word.subtree
yield from self
for word in self.rights:
yield from word.subtree
2015-07-09 18:30:58 +03:00
property ent_id:
"""RETURNS (uint64): The entity ID."""
def __get__(self):
return self.root.ent_id
def __set__(self, hash_t key):
raise NotImplementedError(TempErrors.T007.format(attr="ent_id"))
2017-05-18 23:17:24 +03:00
property ent_id_:
"""RETURNS (unicode): The (string) entity ID."""
def __get__(self):
return self.root.ent_id_
def __set__(self, hash_t key):
raise NotImplementedError(TempErrors.T007.format(attr="ent_id_"))
@property
def orth_(self):
"""Verbatim text content (identical to `Span.text`). Exists mostly for
consistency with other attributes.
RETURNS (unicode): The span's text."""
return self.text
@property
def lemma_(self):
"""RETURNS (unicode): The span's lemma."""
return " ".join([t.lemma_ for t in self]).strip()
2017-03-11 03:50:02 +03:00
@property
def upper_(self):
"""Deprecated. Use `Span.text.upper()` instead."""
return "".join([t.text_with_ws.upper() for t in self]).strip()
2017-03-11 03:50:02 +03:00
@property
def lower_(self):
"""Deprecated. Use `Span.text.lower()` instead."""
return "".join([t.text_with_ws.lower() for t in self]).strip()
@property
def string(self):
"""Deprecated: Use `Span.text_with_ws` instead."""
return "".join([t.text_with_ws for t in self])
property label_:
"""RETURNS (unicode): The span's label."""
def __get__(self):
2015-09-29 16:03:55 +03:00
return self.doc.vocab.strings[self.label]
def __set__(self, unicode label_):
if not label_:
label_ = ''
raise NotImplementedError(Errors.E129.format(start=self.start, end=self.end, label=label_))
2019-03-14 17:48:40 +03:00
property kb_id_:
"""RETURNS (unicode): The named entity's KB ID."""
def __get__(self):
return self.doc.vocab.strings[self.kb_id]
2019-03-15 17:00:53 +03:00
2019-03-14 17:48:40 +03:00
def __set__(self, unicode kb_id_):
if not kb_id_:
kb_id_ = ''
current_label = self.label_
if not current_label:
current_label = ''
raise NotImplementedError(Errors.E131.format(start=self.start, end=self.end,
label=current_label, kb_id=kb_id_))
2019-03-14 17:48:40 +03:00
cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1:
# Don't allow spaces to be the root, if there are
# better candidates
if Lexeme.c_check_flag(token.lex, IS_SPACE) and token.l_kids == 0 and token.r_kids == 0:
return sent_length-1
if Lexeme.c_check_flag(token.lex, IS_PUNCT) and token.l_kids == 0 and token.r_kids == 0:
return sent_length-1
cdef int n = 0
while token.head != 0:
token += token.head
n += 1
if n >= sent_length:
raise RuntimeError(Errors.E039)
return n