mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Update spaCy for thinc 8.0.0 (#4920)
* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
This commit is contained in:
parent
06b251dd1e
commit
569cc98982
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -39,6 +39,7 @@ __pycache__/
|
|||
.env*
|
||||
.~env/
|
||||
.venv
|
||||
env3.6/
|
||||
venv/
|
||||
.dev
|
||||
.denv
|
||||
|
@ -111,3 +112,6 @@ Desktop.ini
|
|||
|
||||
# Pycharm project files
|
||||
*.idea
|
||||
|
||||
# IPython
|
||||
.ipynb_checkpoints/
|
||||
|
|
|
@ -4,12 +4,12 @@ from random import shuffle
|
|||
import logging
|
||||
import numpy as np
|
||||
|
||||
from spacy._ml import zero_init, create_default_optimizer
|
||||
from spacy.cli.pretrain import get_cossim_loss
|
||||
|
||||
from thinc.v2v import Model
|
||||
from thinc.model import Model
|
||||
from thinc.api import chain
|
||||
from thinc.neural._classes.affine import Affine
|
||||
from thinc.loss import CosineDistance
|
||||
from thinc.layers import Linear
|
||||
|
||||
from spacy.util import create_default_optimizer
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -34,6 +34,7 @@ class EntityEncoder:
|
|||
self.input_dim = input_dim
|
||||
self.desc_width = desc_width
|
||||
self.epochs = epochs
|
||||
self.distance = CosineDistance(ignore_zeros=True, normalize=False)
|
||||
|
||||
def apply_encoder(self, description_list):
|
||||
if self.encoder is None:
|
||||
|
@ -132,21 +133,17 @@ class EntityEncoder:
|
|||
def _build_network(self, orig_width, hidden_with):
|
||||
with Model.define_operators({">>": chain}):
|
||||
# very simple encoder-decoder model
|
||||
self.encoder = Affine(hidden_with, orig_width)
|
||||
self.model = self.encoder >> zero_init(
|
||||
Affine(orig_width, hidden_with, drop_factor=0.0)
|
||||
)
|
||||
self.sgd = create_default_optimizer(self.model.ops)
|
||||
self.encoder = Linear(hidden_with, orig_width)
|
||||
# TODO: removed the zero_init here - is oK?
|
||||
self.model = self.encoder >> Linear(orig_width, hidden_with)
|
||||
self.sgd = create_default_optimizer()
|
||||
|
||||
def _update(self, vectors):
|
||||
truths = self.model.ops.asarray(vectors)
|
||||
predictions, bp_model = self.model.begin_update(
|
||||
np.asarray(vectors), drop=self.DROP
|
||||
truths, drop=self.DROP
|
||||
)
|
||||
loss, d_scores = self._get_loss(scores=predictions, golds=np.asarray(vectors))
|
||||
d_scores, loss = self.distance(predictions, truths)
|
||||
bp_model(d_scores, sgd=self.sgd)
|
||||
return loss / len(vectors)
|
||||
|
||||
@staticmethod
|
||||
def _get_loss(golds, scores):
|
||||
loss, gradients = get_cossim_loss(scores, golds)
|
||||
return loss, gradients
|
||||
|
|
|
@ -103,7 +103,7 @@ def main(
|
|||
logger.info("STEP 3: Creating and training an Entity Linking pipe")
|
||||
|
||||
el_pipe = nlp.create_pipe(
|
||||
name="entity_linker", config={"pretrained_vectors": nlp.vocab.vectors.name,
|
||||
name="entity_linker", config={"pretrained_vectors": nlp.vocab.vectors,
|
||||
"labels_discard": labels_discard}
|
||||
)
|
||||
el_pipe.set_kb(kb)
|
||||
|
|
|
@ -14,7 +14,7 @@ pip install keras==2.0.9
|
|||
|
||||
Compatible with: spaCy v2.0.0+
|
||||
"""
|
||||
|
||||
import ml_datasets
|
||||
import plac
|
||||
import random
|
||||
import pathlib
|
||||
|
@ -24,7 +24,6 @@ from keras.models import Sequential, model_from_json
|
|||
from keras.layers import LSTM, Dense, Embedding, Bidirectional
|
||||
from keras.layers import TimeDistributed
|
||||
from keras.optimizers import Adam
|
||||
import thinc.extra.datasets
|
||||
from spacy.compat import pickle
|
||||
import spacy
|
||||
|
||||
|
@ -224,7 +223,7 @@ def main(
|
|||
if model_dir is not None:
|
||||
model_dir = pathlib.Path(model_dir)
|
||||
if train_dir is None or dev_dir is None:
|
||||
imdb_data = thinc.extra.datasets.imdb()
|
||||
imdb_data = ml_datasets.imdb()
|
||||
if is_runtime:
|
||||
if dev_dir is None:
|
||||
dev_texts, dev_labels = zip(*imdb_data[1])
|
||||
|
|
63
examples/experiments/ptb-joint-pos-dep/bilstm_tok2vec.cfg
Normal file
63
examples/experiments/ptb-joint-pos-dep/bilstm_tok2vec.cfg
Normal file
|
@ -0,0 +1,63 @@
|
|||
[training]
|
||||
patience = 10000
|
||||
eval_frequency = 200
|
||||
dropout = 0.2
|
||||
init_tok2vec = null
|
||||
vectors = null
|
||||
max_epochs = 100
|
||||
orth_variant_level = 0.0
|
||||
gold_preproc = true
|
||||
max_length = 0
|
||||
use_gpu = 0
|
||||
scores = ["tags_acc", "uas", "las"]
|
||||
score_weights = {"las": 0.8, "tags_acc": 0.2}
|
||||
limit = 0
|
||||
|
||||
[training.batch_size]
|
||||
@schedules = "compounding.v1"
|
||||
start = 100
|
||||
stop = 1000
|
||||
compound = 1.001
|
||||
|
||||
[optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
learn_rate = 0.001
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
|
||||
[nlp]
|
||||
lang = "en"
|
||||
vectors = ${training:vectors}
|
||||
|
||||
[nlp.pipeline.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[nlp.pipeline.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[nlp.pipeline.parser]
|
||||
factory = "parser"
|
||||
|
||||
[nlp.pipeline.tagger.model]
|
||||
@architectures = "tagger_model.v1"
|
||||
|
||||
[nlp.pipeline.tagger.model.tok2vec]
|
||||
@architectures = "tok2vec_tensors.v1"
|
||||
width = ${nlp.pipeline.tok2vec.model:width}
|
||||
|
||||
[nlp.pipeline.parser.model]
|
||||
@architectures = "transition_based_parser.v1"
|
||||
nr_feature_tokens = 8
|
||||
hidden_width = 64
|
||||
maxout_pieces = 3
|
||||
|
||||
[nlp.pipeline.parser.model.tok2vec]
|
||||
@architectures = "tok2vec_tensors.v1"
|
||||
width = ${nlp.pipeline.tok2vec.model:width}
|
||||
|
||||
[nlp.pipeline.tok2vec.model]
|
||||
@architectures = "hash_embed_bilstm.v1"
|
||||
pretrained_vectors = ${nlp:vectors}
|
||||
width = 96
|
||||
depth = 4
|
||||
embed_size = 2000
|
65
examples/experiments/ptb-joint-pos-dep/defaults.cfg
Normal file
65
examples/experiments/ptb-joint-pos-dep/defaults.cfg
Normal file
|
@ -0,0 +1,65 @@
|
|||
[training]
|
||||
patience = 10000
|
||||
eval_frequency = 200
|
||||
dropout = 0.2
|
||||
init_tok2vec = null
|
||||
vectors = null
|
||||
max_epochs = 100
|
||||
orth_variant_level = 0.0
|
||||
gold_preproc = true
|
||||
max_length = 0
|
||||
use_gpu = -1
|
||||
scores = ["tags_acc", "uas", "las"]
|
||||
score_weights = {"las": 0.8, "tags_acc": 0.2}
|
||||
limit = 0
|
||||
|
||||
[training.batch_size]
|
||||
@schedules = "compounding.v1"
|
||||
start = 100
|
||||
stop = 1000
|
||||
compound = 1.001
|
||||
|
||||
[optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
learn_rate = 0.001
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
|
||||
[nlp]
|
||||
lang = "en"
|
||||
vectors = ${training:vectors}
|
||||
|
||||
[nlp.pipeline.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[nlp.pipeline.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[nlp.pipeline.parser]
|
||||
factory = "parser"
|
||||
|
||||
[nlp.pipeline.tagger.model]
|
||||
@architectures = "tagger_model.v1"
|
||||
|
||||
[nlp.pipeline.tagger.model.tok2vec]
|
||||
@architectures = "tok2vec_tensors.v1"
|
||||
width = ${nlp.pipeline.tok2vec.model:width}
|
||||
|
||||
[nlp.pipeline.parser.model]
|
||||
@architectures = "transition_based_parser.v1"
|
||||
nr_feature_tokens = 8
|
||||
hidden_width = 64
|
||||
maxout_pieces = 3
|
||||
|
||||
[nlp.pipeline.parser.model.tok2vec]
|
||||
@architectures = "tok2vec_tensors.v1"
|
||||
width = ${nlp.pipeline.tok2vec.model:width}
|
||||
|
||||
[nlp.pipeline.tok2vec.model]
|
||||
@architectures = "hash_embed_cnn.v1"
|
||||
pretrained_vectors = ${nlp:vectors}
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
embed_size = 2000
|
||||
maxout_pieces = 3
|
|
@ -13,9 +13,10 @@ Prerequisites: pip install joblib
|
|||
from __future__ import print_function, unicode_literals
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import ml_datasets
|
||||
from joblib import Parallel, delayed
|
||||
from functools import partial
|
||||
import thinc.extra.datasets
|
||||
import plac
|
||||
import spacy
|
||||
from spacy.util import minibatch
|
||||
|
@ -35,7 +36,7 @@ def main(output_dir, model="en_core_web_sm", n_jobs=4, batch_size=1000, limit=10
|
|||
output_dir.mkdir()
|
||||
# load and pre-process the IMBD dataset
|
||||
print("Loading IMDB data...")
|
||||
data, _ = thinc.extra.datasets.imdb()
|
||||
data, _ = ml_datasets.imdb()
|
||||
texts, _ = zip(*data[-limit:])
|
||||
print("Processing texts...")
|
||||
partitions = minibatch(texts, size=batch_size)
|
||||
|
|
|
@ -16,16 +16,18 @@ the development labels, after all --- only the unlabelled text.
|
|||
import plac
|
||||
import tqdm
|
||||
import random
|
||||
|
||||
import ml_datasets
|
||||
|
||||
import spacy
|
||||
import thinc.extra.datasets
|
||||
from spacy.util import minibatch, use_gpu, compounding
|
||||
from spacy._ml import Tok2Vec
|
||||
from spacy.pipeline import TextCategorizer
|
||||
from spacy.ml.tok2vec import Tok2Vec
|
||||
import numpy
|
||||
|
||||
|
||||
def load_texts(limit=0):
|
||||
train, dev = thinc.extra.datasets.imdb()
|
||||
train, dev = ml_datasets.imdb()
|
||||
train_texts, train_labels = zip(*train)
|
||||
dev_texts, dev_labels = zip(*train)
|
||||
train_texts = list(train_texts)
|
||||
|
@ -41,7 +43,7 @@ def load_texts(limit=0):
|
|||
def load_textcat_data(limit=0):
|
||||
"""Load data from the IMDB dataset."""
|
||||
# Partition off part of the train data for evaluation
|
||||
train_data, eval_data = thinc.extra.datasets.imdb()
|
||||
train_data, eval_data = ml_datasets.imdb()
|
||||
random.shuffle(train_data)
|
||||
train_data = train_data[-limit:]
|
||||
texts, labels = zip(*train_data)
|
||||
|
@ -63,17 +65,15 @@ def prefer_gpu():
|
|||
|
||||
|
||||
def build_textcat_model(tok2vec, nr_class, width):
|
||||
from thinc.v2v import Model, Softmax, Maxout
|
||||
from thinc.api import flatten_add_lengths, chain
|
||||
from thinc.t2v import Pooling, sum_pool, mean_pool, max_pool
|
||||
from thinc.misc import Residual, LayerNorm
|
||||
from spacy._ml import logistic, zero_init
|
||||
from thinc.model import Model
|
||||
from thinc.layers import Softmax, chain, reduce_mean
|
||||
from thinc.layers import list2ragged
|
||||
|
||||
with Model.define_operators({">>": chain}):
|
||||
model = (
|
||||
tok2vec
|
||||
>> flatten_add_lengths
|
||||
>> Pooling(mean_pool)
|
||||
>> list2ragged()
|
||||
>> reduce_mean()
|
||||
>> Softmax(nr_class, width)
|
||||
)
|
||||
model.tok2vec = tok2vec
|
||||
|
@ -81,7 +81,7 @@ def build_textcat_model(tok2vec, nr_class, width):
|
|||
|
||||
|
||||
def block_gradients(model):
|
||||
from thinc.api import wrap
|
||||
from thinc.api import wrap # TODO FIX
|
||||
|
||||
def forward(X, drop=0.0):
|
||||
Y, _ = model.begin_update(X, drop=drop)
|
||||
|
|
|
@ -58,7 +58,7 @@ def main(model_name, unlabelled_loc):
|
|||
# yet, but I'm getting weird results from Adam. Try commenting out the
|
||||
# nlp.update(), and using Adam -- you'll find the models drift apart.
|
||||
# I guess Adam is losing precision, introducing gradient noise?
|
||||
optimizer.alpha = 0.1
|
||||
optimizer.learn_rate = 0.1
|
||||
optimizer.b1 = 0.0
|
||||
optimizer.b2 = 0.0
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ import plac
|
|||
import random
|
||||
from pathlib import Path
|
||||
|
||||
from spacy.symbols import PERSON
|
||||
import srsly
|
||||
from spacy.vocab import Vocab
|
||||
|
||||
import spacy
|
||||
|
@ -68,7 +68,7 @@ def main(kb_path, vocab_path=None, output_dir=None, n_iter=50):
|
|||
vocab = Vocab().from_disk(vocab_path)
|
||||
# create blank Language class with correct vocab
|
||||
nlp = spacy.blank("en", vocab=vocab)
|
||||
nlp.vocab.vectors.name = "spacy_pretrained_vectors"
|
||||
nlp.vocab.vectors.name = "nel_vectors"
|
||||
print("Created blank 'en' model with vocab from '%s'" % vocab_path)
|
||||
|
||||
# Add a sentencizer component. Alternatively, add a dependency parser for higher accuracy.
|
||||
|
@ -93,7 +93,7 @@ def main(kb_path, vocab_path=None, output_dir=None, n_iter=50):
|
|||
nlp.add_pipe(entity_linker, last=True)
|
||||
|
||||
# Convert the texts to docs to make sure we have doc.ents set for the training examples.
|
||||
# Also ensure that the annotated examples correspond to known identifiers in the knowlege base.
|
||||
# Also ensure that the annotated examples correspond to known identifiers in the knowledge base.
|
||||
kb_ids = nlp.get_pipe("entity_linker").kb.get_entity_strings()
|
||||
TRAIN_DOCS = []
|
||||
for text, annotation in TRAIN_DATA:
|
||||
|
@ -117,6 +117,7 @@ def main(kb_path, vocab_path=None, output_dir=None, n_iter=50):
|
|||
with nlp.disable_pipes(*other_pipes): # only train entity linker
|
||||
# reset and initialize the weights randomly
|
||||
optimizer = nlp.begin_training()
|
||||
|
||||
for itn in range(n_iter):
|
||||
random.shuffle(TRAIN_DOCS)
|
||||
losses = {}
|
||||
|
|
|
@ -10,10 +10,11 @@ see the documentation:
|
|||
Compatible with: spaCy v2.0.0+
|
||||
"""
|
||||
from __future__ import unicode_literals, print_function
|
||||
|
||||
import ml_datasets
|
||||
import plac
|
||||
import random
|
||||
from pathlib import Path
|
||||
import thinc.extra.datasets
|
||||
|
||||
import spacy
|
||||
from spacy.util import minibatch, compounding
|
||||
|
@ -115,7 +116,7 @@ def main(model=None, output_dir=None, n_iter=20, n_texts=2000, init_tok2vec=None
|
|||
def load_data(limit=0, split=0.8):
|
||||
"""Load data from the IMDB dataset."""
|
||||
# Partition off part of the train data for evaluation
|
||||
train_data, _ = thinc.extra.datasets.imdb()
|
||||
train_data, _ = ml_datasets.imdb()
|
||||
random.shuffle(train_data)
|
||||
train_data = train_data[-limit:]
|
||||
texts, labels = zip(*train_data)
|
||||
|
|
|
@ -1,17 +1,20 @@
|
|||
# Our libraries
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc==7.4.0.dev0
|
||||
thinc==8.0.0a0
|
||||
blis>=0.4.0,<0.5.0
|
||||
ml_datasets>=0.1.1
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
wasabi>=0.4.0,<1.1.0
|
||||
srsly>=0.1.0,<1.1.0
|
||||
srsly>=2.0.0,<3.0.0
|
||||
catalogue>=0.0.7,<1.1.0
|
||||
# Third party dependencies
|
||||
numpy>=1.15.0
|
||||
requests>=2.13.0,<3.0.0
|
||||
plac>=0.9.6,<1.2.0
|
||||
tqdm>=4.38.0,<5.0.0
|
||||
# Optional dependencies
|
||||
jsonschema>=2.6.0,<3.1.0
|
||||
pydantic>=1.0.0,<2.0.0
|
||||
# Development dependencies
|
||||
cython>=0.25
|
||||
|
|
|
@ -35,16 +35,16 @@ setup_requires =
|
|||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
thinc==7.4.0.dev0
|
||||
thinc==8.0.0a0
|
||||
install_requires =
|
||||
# Our libraries
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc==7.4.0.dev0
|
||||
thinc==8.0.0a0
|
||||
blis>=0.4.0,<0.5.0
|
||||
wasabi>=0.4.0,<1.1.0
|
||||
srsly>=0.1.0,<1.1.0
|
||||
srsly>=2.0.0,<3.0.0
|
||||
catalogue>=0.0.7,<1.1.0
|
||||
# Third-party dependencies
|
||||
setuptools
|
||||
|
|
|
@ -5,7 +5,7 @@ warnings.filterwarnings("ignore", message="numpy.dtype size changed")
|
|||
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
|
||||
|
||||
# These are imported as part of the API
|
||||
from thinc.neural.util import prefer_gpu, require_gpu
|
||||
from thinc.util import prefer_gpu, require_gpu
|
||||
|
||||
from . import pipeline
|
||||
from .cli.info import info as cli_info
|
||||
|
@ -21,6 +21,9 @@ if sys.maxunicode == 65535:
|
|||
raise SystemError(Errors.E130)
|
||||
|
||||
|
||||
config = registry
|
||||
|
||||
|
||||
def load(name, **overrides):
|
||||
depr_path = overrides.get("path")
|
||||
if depr_path not in (True, False, None):
|
||||
|
|
|
@ -4,12 +4,14 @@ if __name__ == "__main__":
|
|||
from wasabi import msg
|
||||
from spacy.cli import download, link, info, package, train, pretrain, convert
|
||||
from spacy.cli import init_model, profile, evaluate, validate, debug_data
|
||||
from spacy.cli import train_from_config_cli
|
||||
|
||||
commands = {
|
||||
"download": download,
|
||||
"link": link,
|
||||
"info": info,
|
||||
"train": train,
|
||||
"train-from-config": train_from_config_cli,
|
||||
"pretrain": pretrain,
|
||||
"debug-data": debug_data,
|
||||
"evaluate": evaluate,
|
||||
|
|
982
spacy/_ml.py
982
spacy/_ml.py
|
@ -1,982 +0,0 @@
|
|||
import numpy
|
||||
from thinc.v2v import Model, Maxout, Softmax, Affine, ReLu
|
||||
from thinc.t2t import ExtractWindow, ParametricAttention
|
||||
from thinc.t2v import Pooling, sum_pool, mean_pool
|
||||
from thinc.i2v import HashEmbed
|
||||
from thinc.misc import Residual, FeatureExtracter
|
||||
from thinc.misc import LayerNorm as LN
|
||||
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
|
||||
from thinc.api import with_getitem, flatten_add_lengths
|
||||
from thinc.api import uniqued, wrap, noop
|
||||
from thinc.linear.linear import LinearModel
|
||||
from thinc.neural.ops import NumpyOps, CupyOps
|
||||
from thinc.neural.util import get_array_module, copy_array
|
||||
from thinc.neural.optimizers import Adam
|
||||
|
||||
from thinc import describe
|
||||
from thinc.describe import Dimension, Synapses, Biases, Gradient
|
||||
from thinc.neural._classes.affine import _set_dimensions_if_needed
|
||||
import thinc.extra.load_nlp
|
||||
|
||||
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE
|
||||
from .errors import Errors, user_warning, Warnings
|
||||
from . import util
|
||||
from . import ml as new_ml
|
||||
from .ml import _legacy_tok2vec
|
||||
|
||||
|
||||
VECTORS_KEY = "spacy_pretrained_vectors"
|
||||
# Backwards compatibility with <2.2.2
|
||||
USE_MODEL_REGISTRY_TOK2VEC = False
|
||||
|
||||
|
||||
def cosine(vec1, vec2):
|
||||
xp = get_array_module(vec1)
|
||||
norm1 = xp.linalg.norm(vec1)
|
||||
norm2 = xp.linalg.norm(vec2)
|
||||
if norm1 == 0.0 or norm2 == 0.0:
|
||||
return 0
|
||||
else:
|
||||
return vec1.dot(vec2) / (norm1 * norm2)
|
||||
|
||||
|
||||
def create_default_optimizer(ops, **cfg):
|
||||
learn_rate = util.env_opt("learn_rate", 0.001)
|
||||
beta1 = util.env_opt("optimizer_B1", 0.9)
|
||||
beta2 = util.env_opt("optimizer_B2", 0.999)
|
||||
eps = util.env_opt("optimizer_eps", 1e-8)
|
||||
L2 = util.env_opt("L2_penalty", 1e-6)
|
||||
max_grad_norm = util.env_opt("grad_norm_clip", 1.0)
|
||||
optimizer = Adam(ops, learn_rate, L2=L2, beta1=beta1, beta2=beta2, eps=eps)
|
||||
optimizer.max_grad_norm = max_grad_norm
|
||||
optimizer.device = ops.device
|
||||
return optimizer
|
||||
|
||||
|
||||
@layerize
|
||||
def _flatten_add_lengths(seqs, pad=0, drop=0.0):
|
||||
ops = Model.ops
|
||||
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
|
||||
|
||||
def finish_update(d_X, sgd=None):
|
||||
return ops.unflatten(d_X, lengths, pad=pad)
|
||||
|
||||
X = ops.flatten(seqs, pad=pad)
|
||||
return (X, lengths), finish_update
|
||||
|
||||
|
||||
def _zero_init(model):
|
||||
def _zero_init_impl(self, *args, **kwargs):
|
||||
self.W.fill(0)
|
||||
|
||||
model.on_init_hooks.append(_zero_init_impl)
|
||||
if model.W is not None:
|
||||
model.W.fill(0.0)
|
||||
return model
|
||||
|
||||
|
||||
def with_cpu(ops, model):
|
||||
"""Wrap a model that should run on CPU, transferring inputs and outputs
|
||||
as necessary."""
|
||||
model.to_cpu()
|
||||
|
||||
def with_cpu_forward(inputs, drop=0.0):
|
||||
cpu_outputs, backprop = model.begin_update(_to_cpu(inputs), drop=drop)
|
||||
gpu_outputs = _to_device(ops, cpu_outputs)
|
||||
|
||||
def with_cpu_backprop(d_outputs, sgd=None):
|
||||
cpu_d_outputs = _to_cpu(d_outputs)
|
||||
return backprop(cpu_d_outputs, sgd=sgd)
|
||||
|
||||
return gpu_outputs, with_cpu_backprop
|
||||
|
||||
return wrap(with_cpu_forward, model)
|
||||
|
||||
|
||||
def _to_cpu(X):
|
||||
if isinstance(X, numpy.ndarray):
|
||||
return X
|
||||
elif isinstance(X, tuple):
|
||||
return tuple([_to_cpu(x) for x in X])
|
||||
elif isinstance(X, list):
|
||||
return [_to_cpu(x) for x in X]
|
||||
elif hasattr(X, "get"):
|
||||
return X.get()
|
||||
else:
|
||||
return X
|
||||
|
||||
|
||||
def _to_device(ops, X):
|
||||
if isinstance(X, tuple):
|
||||
return tuple([_to_device(ops, x) for x in X])
|
||||
elif isinstance(X, list):
|
||||
return [_to_device(ops, x) for x in X]
|
||||
else:
|
||||
return ops.asarray(X)
|
||||
|
||||
|
||||
class extract_ngrams(Model):
|
||||
def __init__(self, ngram_size, attr=LOWER):
|
||||
Model.__init__(self)
|
||||
self.ngram_size = ngram_size
|
||||
self.attr = attr
|
||||
|
||||
def begin_update(self, docs, drop=0.0):
|
||||
batch_keys = []
|
||||
batch_vals = []
|
||||
for doc in docs:
|
||||
unigrams = doc.to_array([self.attr])
|
||||
ngrams = [unigrams]
|
||||
for n in range(2, self.ngram_size + 1):
|
||||
ngrams.append(self.ops.ngrams(n, unigrams))
|
||||
keys = self.ops.xp.concatenate(ngrams)
|
||||
keys, vals = self.ops.xp.unique(keys, return_counts=True)
|
||||
batch_keys.append(keys)
|
||||
batch_vals.append(vals)
|
||||
# The dtype here matches what thinc is expecting -- which differs per
|
||||
# platform (by int definition). This should be fixed once the problem
|
||||
# is fixed on Thinc's side.
|
||||
lengths = self.ops.asarray(
|
||||
[arr.shape[0] for arr in batch_keys], dtype=numpy.int_
|
||||
)
|
||||
batch_keys = self.ops.xp.concatenate(batch_keys)
|
||||
batch_vals = self.ops.asarray(self.ops.xp.concatenate(batch_vals), dtype="f")
|
||||
return (batch_keys, batch_vals, lengths), None
|
||||
|
||||
|
||||
@describe.on_data(
|
||||
_set_dimensions_if_needed, lambda model, X, y: model.init_weights(model)
|
||||
)
|
||||
@describe.attributes(
|
||||
nI=Dimension("Input size"),
|
||||
nF=Dimension("Number of features"),
|
||||
nO=Dimension("Output size"),
|
||||
nP=Dimension("Maxout pieces"),
|
||||
W=Synapses("Weights matrix", lambda obj: (obj.nF, obj.nO, obj.nP, obj.nI)),
|
||||
b=Biases("Bias vector", lambda obj: (obj.nO, obj.nP)),
|
||||
pad=Synapses(
|
||||
"Pad",
|
||||
lambda obj: (1, obj.nF, obj.nO, obj.nP),
|
||||
lambda M, ops: ops.normal_init(M, 1.0),
|
||||
),
|
||||
d_W=Gradient("W"),
|
||||
d_pad=Gradient("pad"),
|
||||
d_b=Gradient("b"),
|
||||
)
|
||||
class PrecomputableAffine(Model):
|
||||
def __init__(self, nO=None, nI=None, nF=None, nP=None, **kwargs):
|
||||
Model.__init__(self, **kwargs)
|
||||
self.nO = nO
|
||||
self.nP = nP
|
||||
self.nI = nI
|
||||
self.nF = nF
|
||||
|
||||
def begin_update(self, X, drop=0.0):
|
||||
Yf = self.ops.gemm(
|
||||
X, self.W.reshape((self.nF * self.nO * self.nP, self.nI)), trans2=True
|
||||
)
|
||||
Yf = Yf.reshape((Yf.shape[0], self.nF, self.nO, self.nP))
|
||||
Yf = self._add_padding(Yf)
|
||||
|
||||
def backward(dY_ids, sgd=None):
|
||||
dY, ids = dY_ids
|
||||
dY, ids = self._backprop_padding(dY, ids)
|
||||
Xf = X[ids]
|
||||
Xf = Xf.reshape((Xf.shape[0], self.nF * self.nI))
|
||||
|
||||
self.d_b += dY.sum(axis=0)
|
||||
dY = dY.reshape((dY.shape[0], self.nO * self.nP))
|
||||
|
||||
Wopfi = self.W.transpose((1, 2, 0, 3))
|
||||
Wopfi = self.ops.xp.ascontiguousarray(Wopfi)
|
||||
Wopfi = Wopfi.reshape((self.nO * self.nP, self.nF * self.nI))
|
||||
dXf = self.ops.gemm(dY.reshape((dY.shape[0], self.nO * self.nP)), Wopfi)
|
||||
|
||||
# Reuse the buffer
|
||||
dWopfi = Wopfi
|
||||
dWopfi.fill(0.0)
|
||||
self.ops.gemm(dY, Xf, out=dWopfi, trans1=True)
|
||||
dWopfi = dWopfi.reshape((self.nO, self.nP, self.nF, self.nI))
|
||||
# (o, p, f, i) --> (f, o, p, i)
|
||||
self.d_W += dWopfi.transpose((2, 0, 1, 3))
|
||||
|
||||
if sgd is not None:
|
||||
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||
return dXf.reshape((dXf.shape[0], self.nF, self.nI))
|
||||
|
||||
return Yf, backward
|
||||
|
||||
def _add_padding(self, Yf):
|
||||
Yf_padded = self.ops.xp.vstack((self.pad, Yf))
|
||||
return Yf_padded
|
||||
|
||||
def _backprop_padding(self, dY, ids):
|
||||
# (1, nF, nO, nP) += (nN, nF, nO, nP) where IDs (nN, nF) < 0
|
||||
mask = ids < 0.0
|
||||
mask = mask.sum(axis=1)
|
||||
d_pad = dY * mask.reshape((ids.shape[0], 1, 1))
|
||||
self.d_pad += d_pad.sum(axis=0)
|
||||
return dY, ids
|
||||
|
||||
@staticmethod
|
||||
def init_weights(model):
|
||||
"""This is like the 'layer sequential unit variance', but instead
|
||||
of taking the actual inputs, we randomly generate whitened data.
|
||||
|
||||
Why's this all so complicated? We have a huge number of inputs,
|
||||
and the maxout unit makes guessing the dynamics tricky. Instead
|
||||
we set the maxout weights to values that empirically result in
|
||||
whitened outputs given whitened inputs.
|
||||
"""
|
||||
if (model.W ** 2).sum() != 0.0:
|
||||
return
|
||||
ops = model.ops
|
||||
xp = ops.xp
|
||||
ops.normal_init(model.W, model.nF * model.nI, inplace=True)
|
||||
|
||||
ids = ops.allocate((5000, model.nF), dtype="f")
|
||||
ids += xp.random.uniform(0, 1000, ids.shape)
|
||||
ids = ops.asarray(ids, dtype="i")
|
||||
tokvecs = ops.allocate((5000, model.nI), dtype="f")
|
||||
tokvecs += xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
|
||||
tokvecs.shape
|
||||
)
|
||||
|
||||
def predict(ids, tokvecs):
|
||||
# nS ids. nW tokvecs. Exclude the padding array.
|
||||
hiddens = model(tokvecs[:-1]) # (nW, f, o, p)
|
||||
vectors = model.ops.allocate((ids.shape[0], model.nO * model.nP), dtype="f")
|
||||
# need nS vectors
|
||||
hiddens = hiddens.reshape(
|
||||
(hiddens.shape[0] * model.nF, model.nO * model.nP)
|
||||
)
|
||||
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
|
||||
vectors = vectors.reshape((vectors.shape[0], model.nO, model.nP))
|
||||
vectors += model.b
|
||||
vectors = model.ops.asarray(vectors)
|
||||
if model.nP >= 2:
|
||||
return model.ops.maxout(vectors)[0]
|
||||
else:
|
||||
return vectors * (vectors >= 0)
|
||||
|
||||
tol_var = 0.01
|
||||
tol_mean = 0.01
|
||||
t_max = 10
|
||||
t_i = 0
|
||||
for t_i in range(t_max):
|
||||
acts1 = predict(ids, tokvecs)
|
||||
var = model.ops.xp.var(acts1)
|
||||
mean = model.ops.xp.mean(acts1)
|
||||
if abs(var - 1.0) >= tol_var:
|
||||
model.W /= model.ops.xp.sqrt(var)
|
||||
elif abs(mean) >= tol_mean:
|
||||
model.b -= mean
|
||||
else:
|
||||
break
|
||||
|
||||
|
||||
def link_vectors_to_models(vocab):
|
||||
vectors = vocab.vectors
|
||||
if vectors.name is None:
|
||||
vectors.name = VECTORS_KEY
|
||||
if vectors.data.size != 0:
|
||||
user_warning(Warnings.W020.format(shape=vectors.data.shape))
|
||||
ops = Model.ops
|
||||
for word in vocab:
|
||||
if word.orth in vectors.key2row:
|
||||
word.rank = vectors.key2row[word.orth]
|
||||
else:
|
||||
word.rank = 0
|
||||
data = ops.asarray(vectors.data)
|
||||
# Set an entry here, so that vectors are accessed by StaticVectors
|
||||
# (unideal, I know)
|
||||
key = (ops.device, vectors.name)
|
||||
if key in thinc.extra.load_nlp.VECTORS:
|
||||
if thinc.extra.load_nlp.VECTORS[key].shape != data.shape:
|
||||
# This is a hack to avoid the problem in #3853. Maybe we should
|
||||
# print a warning as well?
|
||||
old_name = vectors.name
|
||||
new_name = f"{vectors.name}_{data.shape[0]}"
|
||||
user_warning(Warnings.W019.format(old=old_name, new=new_name))
|
||||
vectors.name = new_name
|
||||
key = (ops.device, vectors.name)
|
||||
thinc.extra.load_nlp.VECTORS[key] = data
|
||||
|
||||
|
||||
def PyTorchBiLSTM(nO, nI, depth, dropout=0.2):
|
||||
import torch.nn
|
||||
from thinc.api import with_square_sequences
|
||||
from thinc.extra.wrappers import PyTorchWrapperRNN
|
||||
|
||||
if depth == 0:
|
||||
return layerize(noop())
|
||||
model = torch.nn.LSTM(nI, nO // 2, depth, bidirectional=True, dropout=dropout)
|
||||
return with_square_sequences(PyTorchWrapperRNN(model))
|
||||
|
||||
|
||||
def Tok2Vec(width, embed_size, **kwargs):
|
||||
if not USE_MODEL_REGISTRY_TOK2VEC:
|
||||
# Preserve prior tok2vec for backwards compat, in v2.2.2
|
||||
return _legacy_tok2vec.Tok2Vec(width, embed_size, **kwargs)
|
||||
pretrained_vectors = kwargs.get("pretrained_vectors", None)
|
||||
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
|
||||
subword_features = kwargs.get("subword_features", True)
|
||||
char_embed = kwargs.get("char_embed", False)
|
||||
conv_depth = kwargs.get("conv_depth", 4)
|
||||
bilstm_depth = kwargs.get("bilstm_depth", 0)
|
||||
conv_window = kwargs.get("conv_window", 1)
|
||||
|
||||
cols = ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]
|
||||
|
||||
doc2feats_cfg = {"arch": "spacy.Doc2Feats.v1", "config": {"columns": cols}}
|
||||
if char_embed:
|
||||
embed_cfg = {
|
||||
"arch": "spacy.CharacterEmbed.v1",
|
||||
"config": {
|
||||
"width": 64,
|
||||
"chars": 6,
|
||||
"@mix": {
|
||||
"arch": "spacy.LayerNormalizedMaxout.v1",
|
||||
"config": {"width": width, "pieces": 3},
|
||||
},
|
||||
"@embed_features": None,
|
||||
},
|
||||
}
|
||||
else:
|
||||
embed_cfg = {
|
||||
"arch": "spacy.MultiHashEmbed.v1",
|
||||
"config": {
|
||||
"width": width,
|
||||
"rows": embed_size,
|
||||
"columns": cols,
|
||||
"use_subwords": subword_features,
|
||||
"@pretrained_vectors": None,
|
||||
"@mix": {
|
||||
"arch": "spacy.LayerNormalizedMaxout.v1",
|
||||
"config": {"width": width, "pieces": 3},
|
||||
},
|
||||
},
|
||||
}
|
||||
if pretrained_vectors:
|
||||
embed_cfg["config"]["@pretrained_vectors"] = {
|
||||
"arch": "spacy.PretrainedVectors.v1",
|
||||
"config": {
|
||||
"vectors_name": pretrained_vectors,
|
||||
"width": width,
|
||||
"column": cols.index("ID"),
|
||||
},
|
||||
}
|
||||
if cnn_maxout_pieces >= 2:
|
||||
cnn_cfg = {
|
||||
"arch": "spacy.MaxoutWindowEncoder.v1",
|
||||
"config": {
|
||||
"width": width,
|
||||
"window_size": conv_window,
|
||||
"pieces": cnn_maxout_pieces,
|
||||
"depth": conv_depth,
|
||||
},
|
||||
}
|
||||
else:
|
||||
cnn_cfg = {
|
||||
"arch": "spacy.MishWindowEncoder.v1",
|
||||
"config": {"width": width, "window_size": conv_window, "depth": conv_depth},
|
||||
}
|
||||
bilstm_cfg = {
|
||||
"arch": "spacy.TorchBiLSTMEncoder.v1",
|
||||
"config": {"width": width, "depth": bilstm_depth},
|
||||
}
|
||||
if conv_depth == 0 and bilstm_depth == 0:
|
||||
encode_cfg = {}
|
||||
elif conv_depth >= 1 and bilstm_depth >= 1:
|
||||
encode_cfg = {
|
||||
"arch": "thinc.FeedForward.v1",
|
||||
"config": {"children": [cnn_cfg, bilstm_cfg]},
|
||||
}
|
||||
elif conv_depth >= 1:
|
||||
encode_cfg = cnn_cfg
|
||||
else:
|
||||
encode_cfg = bilstm_cfg
|
||||
config = {"@doc2feats": doc2feats_cfg, "@embed": embed_cfg, "@encode": encode_cfg}
|
||||
return new_ml.Tok2Vec(config)
|
||||
|
||||
|
||||
def reapply(layer, n_times):
|
||||
def reapply_fwd(X, drop=0.0):
|
||||
backprops = []
|
||||
for i in range(n_times):
|
||||
Y, backprop = layer.begin_update(X, drop=drop)
|
||||
X = Y
|
||||
backprops.append(backprop)
|
||||
|
||||
def reapply_bwd(dY, sgd=None):
|
||||
dX = None
|
||||
for backprop in reversed(backprops):
|
||||
dY = backprop(dY, sgd=sgd)
|
||||
if dX is None:
|
||||
dX = dY
|
||||
else:
|
||||
dX += dY
|
||||
return dX
|
||||
|
||||
return Y, reapply_bwd
|
||||
|
||||
return wrap(reapply_fwd, layer)
|
||||
|
||||
|
||||
def asarray(ops, dtype):
|
||||
def forward(X, drop=0.0):
|
||||
return ops.asarray(X, dtype=dtype), None
|
||||
|
||||
return layerize(forward)
|
||||
|
||||
|
||||
def _divide_array(X, size):
|
||||
parts = []
|
||||
index = 0
|
||||
while index < len(X):
|
||||
parts.append(X[index : index + size])
|
||||
index += size
|
||||
return parts
|
||||
|
||||
|
||||
def get_col(idx):
|
||||
if idx < 0:
|
||||
raise IndexError(Errors.E066.format(value=idx))
|
||||
|
||||
def forward(X, drop=0.0):
|
||||
if isinstance(X, numpy.ndarray):
|
||||
ops = NumpyOps()
|
||||
else:
|
||||
ops = CupyOps()
|
||||
output = ops.xp.ascontiguousarray(X[:, idx], dtype=X.dtype)
|
||||
|
||||
def backward(y, sgd=None):
|
||||
dX = ops.allocate(X.shape)
|
||||
dX[:, idx] += y
|
||||
return dX
|
||||
|
||||
return output, backward
|
||||
|
||||
return layerize(forward)
|
||||
|
||||
|
||||
def doc2feats(cols=None):
|
||||
if cols is None:
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
|
||||
def forward(docs, drop=0.0):
|
||||
feats = []
|
||||
for doc in docs:
|
||||
feats.append(doc.to_array(cols))
|
||||
return feats, None
|
||||
|
||||
model = layerize(forward)
|
||||
model.cols = cols
|
||||
return model
|
||||
|
||||
|
||||
def print_shape(prefix):
|
||||
def forward(X, drop=0.0):
|
||||
return X, lambda dX, **kwargs: dX
|
||||
|
||||
return layerize(forward)
|
||||
|
||||
|
||||
@layerize
|
||||
def get_token_vectors(tokens_attrs_vectors, drop=0.0):
|
||||
tokens, attrs, vectors = tokens_attrs_vectors
|
||||
|
||||
def backward(d_output, sgd=None):
|
||||
return (tokens, d_output)
|
||||
|
||||
return vectors, backward
|
||||
|
||||
|
||||
@layerize
|
||||
def logistic(X, drop=0.0):
|
||||
xp = get_array_module(X)
|
||||
if not isinstance(X, xp.ndarray):
|
||||
X = xp.asarray(X)
|
||||
# Clip to range (-10, 10)
|
||||
X = xp.minimum(X, 10.0, X)
|
||||
X = xp.maximum(X, -10.0, X)
|
||||
Y = 1.0 / (1.0 + xp.exp(-X))
|
||||
|
||||
def logistic_bwd(dY, sgd=None):
|
||||
dX = dY * (Y * (1 - Y))
|
||||
return dX
|
||||
|
||||
return Y, logistic_bwd
|
||||
|
||||
|
||||
def zero_init(model):
|
||||
def _zero_init_impl(self, X, y):
|
||||
self.W.fill(0)
|
||||
|
||||
model.on_data_hooks.append(_zero_init_impl)
|
||||
return model
|
||||
|
||||
|
||||
def getitem(i):
|
||||
def getitem_fwd(X, drop=0.0):
|
||||
return X[i], None
|
||||
|
||||
return layerize(getitem_fwd)
|
||||
|
||||
|
||||
@describe.attributes(
|
||||
W=Synapses("Weights matrix", lambda obj: (obj.nO, obj.nI), lambda W, ops: None)
|
||||
)
|
||||
class MultiSoftmax(Affine):
|
||||
"""Neural network layer that predicts several multi-class attributes at once.
|
||||
For instance, we might predict one class with 6 variables, and another with 5.
|
||||
We predict the 11 neurons required for this, and then softmax them such
|
||||
that columns 0-6 make a probability distribution and coumns 6-11 make another.
|
||||
"""
|
||||
|
||||
name = "multisoftmax"
|
||||
|
||||
def __init__(self, out_sizes, nI=None, **kwargs):
|
||||
Model.__init__(self, **kwargs)
|
||||
self.out_sizes = out_sizes
|
||||
self.nO = sum(out_sizes)
|
||||
self.nI = nI
|
||||
|
||||
def predict(self, input__BI):
|
||||
output__BO = self.ops.affine(self.W, self.b, input__BI)
|
||||
i = 0
|
||||
for out_size in self.out_sizes:
|
||||
self.ops.softmax(output__BO[:, i : i + out_size], inplace=True)
|
||||
i += out_size
|
||||
return output__BO
|
||||
|
||||
def begin_update(self, input__BI, drop=0.0):
|
||||
output__BO = self.predict(input__BI)
|
||||
|
||||
def finish_update(grad__BO, sgd=None):
|
||||
self.d_W += self.ops.gemm(grad__BO, input__BI, trans1=True)
|
||||
self.d_b += grad__BO.sum(axis=0)
|
||||
grad__BI = self.ops.gemm(grad__BO, self.W)
|
||||
if sgd is not None:
|
||||
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||
return grad__BI
|
||||
|
||||
return output__BO, finish_update
|
||||
|
||||
|
||||
def build_tagger_model(nr_class, **cfg):
|
||||
embed_size = util.env_opt("embed_size", 2000)
|
||||
if "token_vector_width" in cfg:
|
||||
token_vector_width = cfg["token_vector_width"]
|
||||
else:
|
||||
token_vector_width = util.env_opt("token_vector_width", 96)
|
||||
pretrained_vectors = cfg.get("pretrained_vectors")
|
||||
subword_features = cfg.get("subword_features", True)
|
||||
with Model.define_operators({">>": chain, "+": add}):
|
||||
if "tok2vec" in cfg:
|
||||
tok2vec = cfg["tok2vec"]
|
||||
else:
|
||||
tok2vec = Tok2Vec(
|
||||
token_vector_width,
|
||||
embed_size,
|
||||
subword_features=subword_features,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
)
|
||||
softmax = with_flatten(Softmax(nr_class, token_vector_width))
|
||||
model = tok2vec >> softmax
|
||||
model.nI = None
|
||||
model.tok2vec = tok2vec
|
||||
model.softmax = softmax
|
||||
return model
|
||||
|
||||
|
||||
def build_morphologizer_model(class_nums, **cfg):
|
||||
embed_size = util.env_opt("embed_size", 7000)
|
||||
if "token_vector_width" in cfg:
|
||||
token_vector_width = cfg["token_vector_width"]
|
||||
else:
|
||||
token_vector_width = util.env_opt("token_vector_width", 128)
|
||||
pretrained_vectors = cfg.get("pretrained_vectors")
|
||||
char_embed = cfg.get("char_embed", True)
|
||||
with Model.define_operators({">>": chain, "+": add, "**": clone}):
|
||||
if "tok2vec" in cfg:
|
||||
tok2vec = cfg["tok2vec"]
|
||||
else:
|
||||
tok2vec = Tok2Vec(
|
||||
token_vector_width,
|
||||
embed_size,
|
||||
char_embed=char_embed,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
)
|
||||
softmax = with_flatten(MultiSoftmax(class_nums, token_vector_width))
|
||||
softmax.out_sizes = class_nums
|
||||
model = tok2vec >> softmax
|
||||
model.nI = None
|
||||
model.tok2vec = tok2vec
|
||||
model.softmax = softmax
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def SpacyVectors(docs, drop=0.0):
|
||||
batch = []
|
||||
for doc in docs:
|
||||
indices = numpy.zeros((len(doc),), dtype="i")
|
||||
for i, word in enumerate(doc):
|
||||
if word.orth in doc.vocab.vectors.key2row:
|
||||
indices[i] = doc.vocab.vectors.key2row[word.orth]
|
||||
else:
|
||||
indices[i] = 0
|
||||
vectors = doc.vocab.vectors.data[indices]
|
||||
batch.append(vectors)
|
||||
return batch, None
|
||||
|
||||
|
||||
def build_text_classifier(nr_class, width=64, **cfg):
|
||||
depth = cfg.get("depth", 2)
|
||||
nr_vector = cfg.get("nr_vector", 5000)
|
||||
pretrained_dims = cfg.get("pretrained_dims", 0)
|
||||
with Model.define_operators({">>": chain, "+": add, "|": concatenate, "**": clone}):
|
||||
if cfg.get("low_data") and pretrained_dims:
|
||||
model = (
|
||||
SpacyVectors
|
||||
>> flatten_add_lengths
|
||||
>> with_getitem(0, Affine(width, pretrained_dims))
|
||||
>> ParametricAttention(width)
|
||||
>> Pooling(sum_pool)
|
||||
>> Residual(ReLu(width, width)) ** 2
|
||||
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
||||
>> logistic
|
||||
)
|
||||
return model
|
||||
|
||||
lower = HashEmbed(width, nr_vector, column=1)
|
||||
prefix = HashEmbed(width // 2, nr_vector, column=2)
|
||||
suffix = HashEmbed(width // 2, nr_vector, column=3)
|
||||
shape = HashEmbed(width // 2, nr_vector, column=4)
|
||||
|
||||
trained_vectors = FeatureExtracter(
|
||||
[ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID]
|
||||
) >> with_flatten(
|
||||
uniqued(
|
||||
(lower | prefix | suffix | shape)
|
||||
>> LN(Maxout(width, width + (width // 2) * 3)),
|
||||
column=0,
|
||||
)
|
||||
)
|
||||
|
||||
if pretrained_dims:
|
||||
static_vectors = SpacyVectors >> with_flatten(
|
||||
Affine(width, pretrained_dims)
|
||||
)
|
||||
# TODO Make concatenate support lists
|
||||
vectors = concatenate_lists(trained_vectors, static_vectors)
|
||||
vectors_width = width * 2
|
||||
else:
|
||||
vectors = trained_vectors
|
||||
vectors_width = width
|
||||
static_vectors = None
|
||||
tok2vec = vectors >> with_flatten(
|
||||
LN(Maxout(width, vectors_width))
|
||||
>> Residual((ExtractWindow(nW=1) >> LN(Maxout(width, width * 3)))) ** depth,
|
||||
pad=depth,
|
||||
)
|
||||
cnn_model = (
|
||||
tok2vec
|
||||
>> flatten_add_lengths
|
||||
>> ParametricAttention(width)
|
||||
>> Pooling(sum_pool)
|
||||
>> Residual(zero_init(Maxout(width, width)))
|
||||
>> zero_init(Affine(nr_class, width, drop_factor=0.0))
|
||||
)
|
||||
|
||||
linear_model = build_bow_text_classifier(
|
||||
nr_class, ngram_size=cfg.get("ngram_size", 1), exclusive_classes=False
|
||||
)
|
||||
if cfg.get("exclusive_classes"):
|
||||
output_layer = Softmax(nr_class, nr_class * 2)
|
||||
else:
|
||||
output_layer = (
|
||||
zero_init(Affine(nr_class, nr_class * 2, drop_factor=0.0)) >> logistic
|
||||
)
|
||||
model = (linear_model | cnn_model) >> output_layer
|
||||
model.tok2vec = chain(tok2vec, flatten)
|
||||
model.nO = nr_class
|
||||
model.lsuv = False
|
||||
return model
|
||||
|
||||
|
||||
def build_bow_text_classifier(
|
||||
nr_class, ngram_size=1, exclusive_classes=False, no_output_layer=False, **cfg
|
||||
):
|
||||
with Model.define_operators({">>": chain}):
|
||||
model = with_cpu(
|
||||
Model.ops, extract_ngrams(ngram_size, attr=ORTH) >> LinearModel(nr_class)
|
||||
)
|
||||
if not no_output_layer:
|
||||
model = model >> (cpu_softmax if exclusive_classes else logistic)
|
||||
model.nO = nr_class
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def cpu_softmax(X, drop=0.0):
|
||||
ops = NumpyOps()
|
||||
|
||||
def cpu_softmax_backward(dY, sgd=None):
|
||||
return dY
|
||||
|
||||
return ops.softmax(X), cpu_softmax_backward
|
||||
|
||||
|
||||
def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=False, **cfg):
|
||||
"""
|
||||
Build a simple CNN text classifier, given a token-to-vector model as inputs.
|
||||
If exclusive_classes=True, a softmax non-linearity is applied, so that the
|
||||
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
|
||||
is applied instead, so that outputs are in the range [0, 1].
|
||||
"""
|
||||
with Model.define_operators({">>": chain}):
|
||||
if exclusive_classes:
|
||||
output_layer = Softmax(nr_class, tok2vec.nO)
|
||||
else:
|
||||
output_layer = (
|
||||
zero_init(Affine(nr_class, tok2vec.nO, drop_factor=0.0)) >> logistic
|
||||
)
|
||||
model = tok2vec >> flatten_add_lengths >> Pooling(mean_pool) >> output_layer
|
||||
model.tok2vec = chain(tok2vec, flatten)
|
||||
model.nO = nr_class
|
||||
return model
|
||||
|
||||
|
||||
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
|
||||
if "entity_width" not in cfg:
|
||||
raise ValueError(Errors.E144.format(param="entity_width"))
|
||||
|
||||
conv_depth = cfg.get("conv_depth", 2)
|
||||
cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
|
||||
pretrained_vectors = cfg.get("pretrained_vectors", None)
|
||||
context_width = cfg.get("entity_width")
|
||||
|
||||
with Model.define_operators({">>": chain, "**": clone}):
|
||||
# context encoder
|
||||
tok2vec = Tok2Vec(
|
||||
width=hidden_width,
|
||||
embed_size=embed_width,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
cnn_maxout_pieces=cnn_maxout_pieces,
|
||||
subword_features=True,
|
||||
conv_depth=conv_depth,
|
||||
bilstm_depth=0,
|
||||
)
|
||||
|
||||
model = (
|
||||
tok2vec
|
||||
>> flatten_add_lengths
|
||||
>> Pooling(mean_pool)
|
||||
>> Residual(zero_init(Maxout(hidden_width, hidden_width)))
|
||||
>> zero_init(Affine(context_width, hidden_width, drop_factor=0.0))
|
||||
)
|
||||
|
||||
model.tok2vec = tok2vec
|
||||
model.nO = context_width
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def flatten(seqs, drop=0.0):
|
||||
ops = Model.ops
|
||||
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
|
||||
|
||||
def finish_update(d_X, sgd=None):
|
||||
return ops.unflatten(d_X, lengths, pad=0)
|
||||
|
||||
X = ops.flatten(seqs, pad=0)
|
||||
return X, finish_update
|
||||
|
||||
|
||||
def concatenate_lists(*layers, **kwargs): # pragma: no cover
|
||||
"""Compose two or more models `f`, `g`, etc, such that their outputs are
|
||||
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
|
||||
"""
|
||||
if not layers:
|
||||
return noop()
|
||||
drop_factor = kwargs.get("drop_factor", 1.0)
|
||||
ops = layers[0].ops
|
||||
layers = [chain(layer, flatten) for layer in layers]
|
||||
concat = concatenate(*layers)
|
||||
|
||||
def concatenate_lists_fwd(Xs, drop=0.0):
|
||||
if drop is not None:
|
||||
drop *= drop_factor
|
||||
lengths = ops.asarray([len(X) for X in Xs], dtype="i")
|
||||
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
|
||||
ys = ops.unflatten(flat_y, lengths)
|
||||
|
||||
def concatenate_lists_bwd(d_ys, sgd=None):
|
||||
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
|
||||
|
||||
return ys, concatenate_lists_bwd
|
||||
|
||||
model = wrap(concatenate_lists_fwd, concat)
|
||||
return model
|
||||
|
||||
|
||||
def masked_language_model(vocab, model, mask_prob=0.15):
|
||||
"""Convert a model into a BERT-style masked language model"""
|
||||
|
||||
random_words = _RandomWords(vocab)
|
||||
|
||||
def mlm_forward(docs, drop=0.0):
|
||||
mask, docs = _apply_mask(docs, random_words, mask_prob=mask_prob)
|
||||
mask = model.ops.asarray(mask).reshape((mask.shape[0], 1))
|
||||
output, backprop = model.begin_update(docs, drop=drop)
|
||||
|
||||
def mlm_backward(d_output, sgd=None):
|
||||
d_output *= 1 - mask
|
||||
return backprop(d_output, sgd=sgd)
|
||||
|
||||
return output, mlm_backward
|
||||
|
||||
return wrap(mlm_forward, model)
|
||||
|
||||
|
||||
class _RandomWords(object):
|
||||
def __init__(self, vocab):
|
||||
self.words = [lex.text for lex in vocab if lex.prob != 0.0]
|
||||
self.probs = [lex.prob for lex in vocab if lex.prob != 0.0]
|
||||
self.words = self.words[:10000]
|
||||
self.probs = self.probs[:10000]
|
||||
self.probs = numpy.exp(numpy.array(self.probs, dtype="f"))
|
||||
self.probs /= self.probs.sum()
|
||||
self._cache = []
|
||||
|
||||
def next(self):
|
||||
if not self._cache:
|
||||
self._cache.extend(
|
||||
numpy.random.choice(len(self.words), 10000, p=self.probs)
|
||||
)
|
||||
index = self._cache.pop()
|
||||
return self.words[index]
|
||||
|
||||
|
||||
def _apply_mask(docs, random_words, mask_prob=0.15):
|
||||
# This needs to be here to avoid circular imports
|
||||
from .tokens.doc import Doc
|
||||
|
||||
N = sum(len(doc) for doc in docs)
|
||||
mask = numpy.random.uniform(0.0, 1.0, (N,))
|
||||
mask = mask >= mask_prob
|
||||
i = 0
|
||||
masked_docs = []
|
||||
for doc in docs:
|
||||
words = []
|
||||
for token in doc:
|
||||
if not mask[i]:
|
||||
word = _replace_word(token.text, random_words)
|
||||
else:
|
||||
word = token.text
|
||||
words.append(word)
|
||||
i += 1
|
||||
spaces = [bool(w.whitespace_) for w in doc]
|
||||
# NB: If you change this implementation to instead modify
|
||||
# the docs in place, take care that the IDs reflect the original
|
||||
# words. Currently we use the original docs to make the vectors
|
||||
# for the target, so we don't lose the original tokens. But if
|
||||
# you modified the docs in place here, you would.
|
||||
masked_docs.append(Doc(doc.vocab, words=words, spaces=spaces))
|
||||
return mask, masked_docs
|
||||
|
||||
|
||||
def _replace_word(word, random_words, mask="[MASK]"):
|
||||
roll = numpy.random.random()
|
||||
if roll < 0.8:
|
||||
return mask
|
||||
elif roll < 0.9:
|
||||
return random_words.next()
|
||||
else:
|
||||
return word
|
||||
|
||||
|
||||
def _uniform_init(lo, hi):
|
||||
def wrapped(W, ops):
|
||||
copy_array(W, ops.xp.random.uniform(lo, hi, W.shape))
|
||||
|
||||
return wrapped
|
||||
|
||||
|
||||
@describe.attributes(
|
||||
nM=Dimension("Vector dimensions"),
|
||||
nC=Dimension("Number of characters per word"),
|
||||
vectors=Synapses(
|
||||
"Embed matrix", lambda obj: (obj.nC, obj.nV, obj.nM), _uniform_init(-0.1, 0.1)
|
||||
),
|
||||
d_vectors=Gradient("vectors"),
|
||||
)
|
||||
class CharacterEmbed(Model):
|
||||
def __init__(self, nM=None, nC=None, **kwargs):
|
||||
Model.__init__(self, **kwargs)
|
||||
self.nM = nM
|
||||
self.nC = nC
|
||||
|
||||
@property
|
||||
def nO(self):
|
||||
return self.nM * self.nC
|
||||
|
||||
@property
|
||||
def nV(self):
|
||||
return 256
|
||||
|
||||
def begin_update(self, docs, drop=0.0):
|
||||
if not docs:
|
||||
return []
|
||||
ids = []
|
||||
output = []
|
||||
weights = self.vectors
|
||||
# This assists in indexing; it's like looping over this dimension.
|
||||
# Still consider this weird witch craft...But thanks to Mark Neumann
|
||||
# for the tip.
|
||||
nCv = self.ops.xp.arange(self.nC)
|
||||
for doc in docs:
|
||||
doc_ids = doc.to_utf8_array(nr_char=self.nC)
|
||||
doc_vectors = self.ops.allocate((len(doc), self.nC, self.nM))
|
||||
# Let's say I have a 2d array of indices, and a 3d table of data. What numpy
|
||||
# incantation do I chant to get
|
||||
# output[i, j, k] == data[j, ids[i, j], k]?
|
||||
doc_vectors[:, nCv] = weights[nCv, doc_ids[:, nCv]]
|
||||
output.append(doc_vectors.reshape((len(doc), self.nO)))
|
||||
ids.append(doc_ids)
|
||||
|
||||
def backprop_character_embed(d_vectors, sgd=None):
|
||||
gradient = self.d_vectors
|
||||
for doc_ids, d_doc_vectors in zip(ids, d_vectors):
|
||||
d_doc_vectors = d_doc_vectors.reshape((len(doc_ids), self.nC, self.nM))
|
||||
gradient[nCv, doc_ids[:, nCv]] += d_doc_vectors[:, nCv]
|
||||
if sgd is not None:
|
||||
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||
return None
|
||||
|
||||
return output, backprop_character_embed
|
||||
|
||||
|
||||
def get_cossim_loss(yh, y, ignore_zeros=False):
|
||||
xp = get_array_module(yh)
|
||||
# Find the zero vectors
|
||||
if ignore_zeros:
|
||||
zero_indices = xp.abs(y).sum(axis=1) == 0
|
||||
# Add a small constant to avoid 0 vectors
|
||||
yh = yh + 1e-8
|
||||
y = y + 1e-8
|
||||
# https://math.stackexchange.com/questions/1923613/partial-derivative-of-cosine-similarity
|
||||
norm_yh = xp.linalg.norm(yh, axis=1, keepdims=True)
|
||||
norm_y = xp.linalg.norm(y, axis=1, keepdims=True)
|
||||
mul_norms = norm_yh * norm_y
|
||||
cosine = (yh * y).sum(axis=1, keepdims=True) / mul_norms
|
||||
d_yh = (y / mul_norms) - (cosine * (yh / norm_yh ** 2))
|
||||
losses = xp.abs(cosine - 1)
|
||||
if ignore_zeros:
|
||||
# If the target was a zero vector, don't count it in the loss.
|
||||
d_yh[zero_indices] = 0
|
||||
losses[zero_indices] = 0
|
||||
loss = losses.sum()
|
||||
return loss, -d_yh
|
|
@ -4,6 +4,7 @@ from .link import link # noqa: F401
|
|||
from .package import package # noqa: F401
|
||||
from .profile import profile # noqa: F401
|
||||
from .train import train # noqa: F401
|
||||
from .train_from_config import train_from_config_cli # noqa: F401
|
||||
from .pretrain import pretrain # noqa: F401
|
||||
from .debug_data import debug_data # noqa: F401
|
||||
from .evaluate import evaluate # noqa: F401
|
||||
|
|
|
@ -4,19 +4,21 @@ import time
|
|||
import re
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
from thinc.v2v import Affine, Maxout
|
||||
from thinc.misc import LayerNorm as LN
|
||||
from thinc.neural.util import prefer_gpu
|
||||
from thinc.layers import Linear, Maxout
|
||||
from thinc.util import prefer_gpu
|
||||
from wasabi import msg
|
||||
import srsly
|
||||
from thinc.layers import chain, list2array
|
||||
from thinc.loss import CosineDistance, L2Distance
|
||||
|
||||
from spacy.gold import Example
|
||||
from ..errors import Errors
|
||||
from ..tokens import Doc
|
||||
from ..attrs import ID, HEAD
|
||||
from .._ml import Tok2Vec, flatten, chain, create_default_optimizer
|
||||
from .._ml import masked_language_model, get_cossim_loss
|
||||
from ..ml.component_models import Tok2Vec
|
||||
from ..ml.component_models import masked_language_model
|
||||
from .. import util
|
||||
from ..util import create_default_optimizer
|
||||
from .train import _load_pretrained_tok2vec
|
||||
|
||||
|
||||
|
@ -99,7 +101,7 @@ def pretrain(
|
|||
with msg.loading(f"Loading model '{vectors_model}'..."):
|
||||
nlp = util.load_model(vectors_model)
|
||||
msg.good(f"Loaded model '{vectors_model}'")
|
||||
pretrained_vectors = None if not use_vectors else nlp.vocab.vectors.name
|
||||
pretrained_vectors = None if not use_vectors else nlp.vocab.vectors
|
||||
model = create_pretraining_model(
|
||||
nlp,
|
||||
Tok2Vec(
|
||||
|
@ -136,7 +138,7 @@ def pretrain(
|
|||
# Without '--init-tok2vec' the '--epoch-start' argument is ignored
|
||||
epoch_start = 0
|
||||
|
||||
optimizer = create_default_optimizer(model.ops)
|
||||
optimizer = create_default_optimizer()
|
||||
tracker = ProgressTracker(frequency=10000)
|
||||
msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_start}")
|
||||
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
|
||||
|
@ -251,13 +253,14 @@ def get_vectors_loss(ops, docs, prediction, objective="L2"):
|
|||
# and look them up all at once. This prevents data copying.
|
||||
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
|
||||
target = docs[0].vocab.vectors.data[ids]
|
||||
# TODO: this code originally didn't normalize, but shouldn't normalize=True ?
|
||||
if objective == "L2":
|
||||
d_target = prediction - target
|
||||
loss = (d_target ** 2).sum()
|
||||
distance = L2Distance(normalize=False)
|
||||
elif objective == "cosine":
|
||||
loss, d_target = get_cossim_loss(prediction, target)
|
||||
distance = CosineDistance(normalize=False)
|
||||
else:
|
||||
raise ValueError(Errors.E142.format(loss_func=objective))
|
||||
d_target, loss = distance(prediction, target)
|
||||
return loss, d_target
|
||||
|
||||
|
||||
|
@ -269,18 +272,18 @@ def create_pretraining_model(nlp, tok2vec):
|
|||
"""
|
||||
output_size = nlp.vocab.vectors.data.shape[1]
|
||||
output_layer = chain(
|
||||
LN(Maxout(300, pieces=3)), Affine(output_size, drop_factor=0.0)
|
||||
Maxout(300, pieces=3, normalize=True, dropout=0.0), Linear(output_size)
|
||||
)
|
||||
# This is annoying, but the parser etc have the flatten step after
|
||||
# the tok2vec. To load the weights in cleanly, we need to match
|
||||
# the shape of the models' components exactly. So what we cann
|
||||
# "tok2vec" has to be the same set of processes as what the components do.
|
||||
tok2vec = chain(tok2vec, flatten)
|
||||
tok2vec = chain(tok2vec, list2array())
|
||||
model = chain(tok2vec, output_layer)
|
||||
model = masked_language_model(nlp.vocab, model)
|
||||
model.tok2vec = tok2vec
|
||||
model.output_layer = output_layer
|
||||
model.begin_training([nlp.make_doc("Give it a doc to infer shapes")])
|
||||
model.set_ref("tok2vec", tok2vec)
|
||||
model.set_ref("output_layer", output_layer)
|
||||
model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")])
|
||||
return model
|
||||
|
||||
|
||||
|
|
|
@ -5,7 +5,7 @@ import cProfile
|
|||
import pstats
|
||||
import sys
|
||||
import itertools
|
||||
import thinc.extra.datasets
|
||||
import ml_datasets
|
||||
from wasabi import msg
|
||||
|
||||
from ..util import load_model
|
||||
|
@ -29,7 +29,7 @@ def profile(
|
|||
if inputs is None:
|
||||
n_inputs = 25000
|
||||
with msg.loading("Loading IMDB dataset via Thinc..."):
|
||||
imdb_train, _ = thinc.extra.datasets.imdb()
|
||||
imdb_train, _ = ml_datasets.imdb()
|
||||
inputs, _ = zip(*imdb_train)
|
||||
msg.info(f"Loaded IMDB dataset and using {n_inputs} examples")
|
||||
inputs = inputs[:n_inputs]
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import os
|
||||
import tqdm
|
||||
from pathlib import Path
|
||||
from thinc.neural._classes.model import Model
|
||||
from thinc.backends import use_ops
|
||||
from timeit import default_timer as timer
|
||||
import shutil
|
||||
import srsly
|
||||
|
@ -9,7 +9,7 @@ from wasabi import msg
|
|||
import contextlib
|
||||
import random
|
||||
|
||||
from .._ml import create_default_optimizer
|
||||
from ..util import create_default_optimizer
|
||||
from ..attrs import PROB, IS_OOV, CLUSTER, LANG
|
||||
from ..gold import GoldCorpus
|
||||
from .. import util
|
||||
|
@ -200,7 +200,7 @@ def train(
|
|||
|
||||
if base_model:
|
||||
# Start with an existing model, use default optimizer
|
||||
optimizer = create_default_optimizer(Model.ops)
|
||||
optimizer = create_default_optimizer()
|
||||
else:
|
||||
# Start with a blank model, call begin_training
|
||||
optimizer = nlp.begin_training(lambda: corpus.train_examples, device=use_gpu)
|
||||
|
@ -367,7 +367,7 @@ def train(
|
|||
cpu_wps = nwords / (end_time - start_time)
|
||||
else:
|
||||
gpu_wps = nwords / (end_time - start_time)
|
||||
with Model.use_device("cpu"):
|
||||
with use_ops("numpy"):
|
||||
nlp_loaded = util.load_model_from_path(epoch_model_path)
|
||||
for name, component in nlp_loaded.pipeline:
|
||||
if hasattr(component, "cfg"):
|
||||
|
|
445
spacy/cli/train_from_config.py
Normal file
445
spacy/cli/train_from_config.py
Normal file
|
@ -0,0 +1,445 @@
|
|||
import plac
|
||||
from thinc.util import require_gpu
|
||||
from wasabi import msg
|
||||
from pathlib import Path
|
||||
import thinc
|
||||
import thinc.schedules
|
||||
from thinc.model import Model
|
||||
from spacy.gold import GoldCorpus
|
||||
import spacy
|
||||
from spacy.pipeline.tok2vec import Tok2VecListener
|
||||
from typing import Optional, Dict, List, Union, Sequence
|
||||
from pydantic import BaseModel, FilePath, StrictInt
|
||||
import tqdm
|
||||
|
||||
from ..ml import component_models
|
||||
from .. import util
|
||||
|
||||
registry = util.registry
|
||||
|
||||
CONFIG_STR = """
|
||||
[training]
|
||||
patience = 10
|
||||
eval_frequency = 10
|
||||
dropout = 0.2
|
||||
init_tok2vec = null
|
||||
vectors = null
|
||||
max_epochs = 100
|
||||
orth_variant_level = 0.0
|
||||
gold_preproc = false
|
||||
max_length = 0
|
||||
use_gpu = 0
|
||||
scores = ["ents_p", "ents_r", "ents_f"]
|
||||
score_weights = {"ents_f": 1.0}
|
||||
limit = 0
|
||||
|
||||
[training.batch_size]
|
||||
@schedules = "compounding.v1"
|
||||
start = 100
|
||||
stop = 1000
|
||||
compound = 1.001
|
||||
|
||||
[optimizer]
|
||||
@optimizers = "Adam.v1"
|
||||
learn_rate = 0.001
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
|
||||
[nlp]
|
||||
lang = "en"
|
||||
vectors = ${training:vectors}
|
||||
|
||||
[nlp.pipeline.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[nlp.pipeline.ner]
|
||||
factory = "ner"
|
||||
|
||||
[nlp.pipeline.ner.model]
|
||||
@architectures = "transition_based_ner.v1"
|
||||
nr_feature_tokens = 3
|
||||
hidden_width = 64
|
||||
maxout_pieces = 3
|
||||
|
||||
[nlp.pipeline.ner.model.tok2vec]
|
||||
@architectures = "tok2vec_tensors.v1"
|
||||
width = ${nlp.pipeline.tok2vec.model:width}
|
||||
|
||||
[nlp.pipeline.tok2vec.model]
|
||||
@architectures = "hash_embed_cnn.v1"
|
||||
pretrained_vectors = ${nlp:vectors}
|
||||
width = 128
|
||||
depth = 4
|
||||
window_size = 1
|
||||
embed_size = 10000
|
||||
maxout_pieces = 3
|
||||
"""
|
||||
|
||||
|
||||
class PipelineComponent(BaseModel):
|
||||
factory: str
|
||||
model: Model
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
class ConfigSchema(BaseModel):
|
||||
optimizer: Optional["Optimizer"]
|
||||
|
||||
class training(BaseModel):
|
||||
patience: int = 10
|
||||
eval_frequency: int = 100
|
||||
dropout: float = 0.2
|
||||
init_tok2vec: Optional[FilePath] = None
|
||||
vectors: Optional[str] = None
|
||||
max_epochs: int = 100
|
||||
orth_variant_level: float = 0.0
|
||||
gold_preproc: bool = False
|
||||
max_length: int = 0
|
||||
use_gpu: int = 0
|
||||
scores: List[str] = ["ents_p", "ents_r", "ents_f"]
|
||||
score_weights: Dict[str, Union[int, float]] = {"ents_f": 1.0}
|
||||
limit: int = 0
|
||||
batch_size: Union[Sequence[int], int]
|
||||
|
||||
class nlp(BaseModel):
|
||||
lang: str
|
||||
vectors: Optional[str]
|
||||
pipeline: Optional[Dict[str, PipelineComponent]]
|
||||
|
||||
class Config:
|
||||
extra = "allow"
|
||||
|
||||
|
||||
# Of course, these would normally decorate the functions where they're defined.
|
||||
# But for now...
|
||||
@registry.architectures.register("hash_embed_cnn.v1")
|
||||
def hash_embed_cnn(
|
||||
pretrained_vectors, width, depth, embed_size, maxout_pieces, window_size
|
||||
):
|
||||
return component_models.Tok2Vec(
|
||||
width=width,
|
||||
embed_size=embed_size,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
conv_depth=depth,
|
||||
cnn_maxout_pieces=maxout_pieces,
|
||||
bilstm_depth=0,
|
||||
window_size=window_size,
|
||||
)
|
||||
|
||||
|
||||
@registry.architectures.register("hash_embed_bilstm.v1")
|
||||
def hash_embed_bilstm_v1(pretrained_vectors, width, depth, embed_size):
|
||||
return component_models.Tok2Vec(
|
||||
width=width,
|
||||
embed_size=embed_size,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
bilstm_depth=depth,
|
||||
conv_depth=0,
|
||||
cnn_maxout_pieces=0,
|
||||
)
|
||||
|
||||
|
||||
@registry.architectures.register("tagger_model.v1")
|
||||
def build_tagger_model_v1(tok2vec):
|
||||
return component_models.build_tagger_model(nr_class=None, tok2vec=tok2vec)
|
||||
|
||||
|
||||
@registry.architectures.register("transition_based_parser.v1")
|
||||
def create_tb_parser_model(
|
||||
tok2vec: Model,
|
||||
nr_feature_tokens: StrictInt = 3,
|
||||
hidden_width: StrictInt = 64,
|
||||
maxout_pieces: StrictInt = 3,
|
||||
):
|
||||
from thinc.layers import Linear, chain, list2array
|
||||
from spacy.ml._layers import PrecomputableAffine
|
||||
from spacy.syntax._parser_model import ParserModel
|
||||
from thinc.api import use_ops, zero_init
|
||||
|
||||
token_vector_width = tok2vec.get_dim("nO")
|
||||
tok2vec = chain(tok2vec, list2array())
|
||||
tok2vec.set_dim("nO", token_vector_width)
|
||||
|
||||
lower = PrecomputableAffine(
|
||||
hidden_width, nF=nr_feature_tokens, nI=tok2vec.get_dim("nO"), nP=maxout_pieces
|
||||
)
|
||||
lower.set_dim("nP", maxout_pieces)
|
||||
with use_ops("numpy"):
|
||||
# Initialize weights at zero, as it's a classification layer.
|
||||
upper = Linear(init_W=zero_init)
|
||||
return ParserModel(tok2vec, lower, upper)
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
# fmt: off
|
||||
train_path=("Location of JSON-formatted training data", "positional", None, Path),
|
||||
dev_path=("Location of JSON-formatted development data", "positional", None, Path),
|
||||
config_path=("Path to config file", "positional", None, Path),
|
||||
output_path=("Output directory to store model in", "option", "o", Path),
|
||||
meta_path=("Optional path to meta.json to use as base.", "option", "m", Path),
|
||||
raw_text=("Path to jsonl file with unlabelled text documents.", "option", "rt", Path),
|
||||
# fmt: on
|
||||
)
|
||||
def train_from_config_cli(
|
||||
train_path,
|
||||
dev_path,
|
||||
config_path,
|
||||
output_path=None,
|
||||
meta_path=None,
|
||||
raw_text=None,
|
||||
debug=False,
|
||||
verbose=False,
|
||||
):
|
||||
"""
|
||||
Train or update a spaCy model. Requires data to be formatted in spaCy's
|
||||
JSON format. To convert data from other formats, use the `spacy convert`
|
||||
command.
|
||||
"""
|
||||
if not config_path or not config_path.exists():
|
||||
msg.fail("Config file not found", config_path, exits=1)
|
||||
if not train_path or not train_path.exists():
|
||||
msg.fail("Training data not found", train_path, exits=1)
|
||||
if not dev_path or not dev_path.exists():
|
||||
msg.fail("Development data not found", dev_path, exits=1)
|
||||
if meta_path is not None and not meta_path.exists():
|
||||
msg.fail("Can't find model meta.json", meta_path, exits=1)
|
||||
if output_path is not None and not output_path.exists():
|
||||
output_path.mkdir()
|
||||
|
||||
try:
|
||||
train_from_config(
|
||||
config_path,
|
||||
{"train": train_path, "dev": dev_path},
|
||||
output_path=output_path,
|
||||
meta_path=meta_path,
|
||||
raw_text=raw_text,
|
||||
)
|
||||
except KeyboardInterrupt:
|
||||
msg.warn("Cancelled.")
|
||||
|
||||
|
||||
def train_from_config(
|
||||
config_path,
|
||||
data_paths,
|
||||
raw_text=None,
|
||||
meta_path=None,
|
||||
output_path=None,
|
||||
):
|
||||
msg.info("Loading config from: {}".format(config_path))
|
||||
config = util.load_from_config(config_path, create_objects=True)
|
||||
use_gpu = config["training"]["use_gpu"]
|
||||
if use_gpu >= 0:
|
||||
msg.info("Using GPU")
|
||||
else:
|
||||
msg.info("Using CPU")
|
||||
msg.info("Creating nlp from config")
|
||||
nlp = create_nlp_from_config(**config["nlp"])
|
||||
optimizer = config["optimizer"]
|
||||
limit = config["training"]["limit"]
|
||||
msg.info("Loading training corpus")
|
||||
corpus = GoldCorpus(data_paths["train"], data_paths["dev"], limit=limit)
|
||||
msg.info("Initializing the nlp pipeline")
|
||||
nlp.begin_training(
|
||||
lambda: corpus.train_examples, device=use_gpu
|
||||
)
|
||||
|
||||
train_batches = create_train_batches(nlp, corpus, config["training"])
|
||||
evaluate = create_evaluation_callback(nlp, optimizer, corpus, config["training"])
|
||||
|
||||
# Create iterator, which yields out info after each optimization step.
|
||||
msg.info("Start training")
|
||||
training_step_iterator = train_while_improving(
|
||||
nlp,
|
||||
optimizer,
|
||||
train_batches,
|
||||
evaluate,
|
||||
config["training"]["dropout"],
|
||||
config["training"]["patience"],
|
||||
config["training"]["eval_frequency"],
|
||||
)
|
||||
|
||||
msg.info("Training. Initial learn rate: {}".format(optimizer.learn_rate))
|
||||
print_row = setup_printer(config)
|
||||
|
||||
try:
|
||||
progress = tqdm.tqdm(total=config["training"]["eval_frequency"], leave=False)
|
||||
for batch, info, is_best_checkpoint in training_step_iterator:
|
||||
progress.update(1)
|
||||
if is_best_checkpoint is not None:
|
||||
progress.close()
|
||||
print_row(info)
|
||||
if is_best_checkpoint and output_path is not None:
|
||||
nlp.to_disk(output_path)
|
||||
progress = tqdm.tqdm(
|
||||
total=config["training"]["eval_frequency"], leave=False
|
||||
)
|
||||
finally:
|
||||
if output_path is not None:
|
||||
with nlp.use_params(optimizer.averages):
|
||||
final_model_path = output_path / "model-final"
|
||||
nlp.to_disk(final_model_path)
|
||||
msg.good("Saved model to output directory", final_model_path)
|
||||
# with msg.loading("Creating best model..."):
|
||||
# best_model_path = _collate_best_model(meta, output_path, nlp.pipe_names)
|
||||
# msg.good("Created best model", best_model_path)
|
||||
|
||||
|
||||
def create_nlp_from_config(lang, vectors, pipeline):
|
||||
lang_class = spacy.util.get_lang_class(lang)
|
||||
nlp = lang_class()
|
||||
if vectors is not None:
|
||||
spacy.cli.train._load_vectors(nlp, vectors)
|
||||
for name, component_cfg in pipeline.items():
|
||||
factory = component_cfg.pop("factory")
|
||||
component = nlp.create_pipe(factory, config=component_cfg)
|
||||
nlp.add_pipe(component, name=name)
|
||||
return nlp
|
||||
|
||||
|
||||
def create_train_batches(nlp, corpus, cfg):
|
||||
while True:
|
||||
train_examples = corpus.train_dataset(
|
||||
nlp,
|
||||
noise_level=0.0,
|
||||
orth_variant_level=cfg["orth_variant_level"],
|
||||
gold_preproc=cfg["gold_preproc"],
|
||||
max_length=cfg["max_length"],
|
||||
ignore_misaligned=True,
|
||||
)
|
||||
for batch in util.minibatch_by_words(train_examples, size=cfg["batch_size"]):
|
||||
yield batch
|
||||
|
||||
|
||||
def create_evaluation_callback(nlp, optimizer, corpus, cfg):
|
||||
def evaluate():
|
||||
with nlp.use_params(optimizer.averages):
|
||||
dev_examples = list(
|
||||
corpus.dev_dataset(
|
||||
nlp, gold_preproc=cfg["gold_preproc"], ignore_misaligned=True
|
||||
)
|
||||
)
|
||||
scorer = nlp.evaluate(dev_examples)
|
||||
scores = scorer.scores
|
||||
# Calculate a weighted sum based on score_weights for the main score
|
||||
weights = cfg["score_weights"]
|
||||
weighted_score = sum(scores[s] * weights.get(s, 0.0) for s in weights)
|
||||
return weighted_score, scorer.scores
|
||||
|
||||
return evaluate
|
||||
|
||||
|
||||
def train_while_improving(
|
||||
nlp, optimizer, train_data, evaluate, dropout, patience, eval_frequency
|
||||
):
|
||||
"""Train until an evaluation stops improving. Works as a generator,
|
||||
with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
|
||||
where info is a dict, and is_best_checkpoint is in [True, False, None] --
|
||||
None indicating that the iteration was not evaluated as a checkpoint.
|
||||
The evaluation is conducted by calling the evaluate callback, which should
|
||||
|
||||
Positional arguments:
|
||||
nlp: The spaCy pipeline to evaluate.
|
||||
train_data (Iterable[Batch]): A generator of batches, with the training
|
||||
data. Each batch should be a Sized[Tuple[Input, Annot]]. The training
|
||||
data iterable needs to take care of iterating over the epochs and
|
||||
shuffling.
|
||||
evaluate (Callable[[], Tuple[float, Any]]): A callback to perform evaluation.
|
||||
The callback should take no arguments and return a tuple
|
||||
`(main_score, other_scores)`. The main_score should be a float where
|
||||
higher is better. other_scores can be any object.
|
||||
|
||||
Every iteration, the function yields out a tuple with:
|
||||
|
||||
* batch: A zipped sequence of Tuple[Doc, GoldParse] pairs.
|
||||
* info: A dict with various information about the last update (see below).
|
||||
* is_best_checkpoint: A value in None, False, True, indicating whether this
|
||||
was the best evaluation so far. You should use this to save the model
|
||||
checkpoints during training. If None, evaluation was not conducted on
|
||||
that iteration. False means evaluation was conducted, but a previous
|
||||
evaluation was better.
|
||||
|
||||
The info dict provides the following information:
|
||||
|
||||
epoch (int): How many passes over the data have been completed.
|
||||
step (int): How many steps have been completed.
|
||||
score (float): The main score form the last evaluation.
|
||||
other_scores: : The other scores from the last evaluation.
|
||||
loss: The accumulated losses throughout training.
|
||||
checkpoints: A list of previous results, where each result is a
|
||||
(score, step, epoch) tuple.
|
||||
"""
|
||||
if isinstance(dropout, float):
|
||||
dropouts = thinc.schedules.constant(dropout)
|
||||
else:
|
||||
dropouts = dropout
|
||||
results = []
|
||||
losses = {}
|
||||
for step, batch in enumerate(train_data):
|
||||
dropout = next(dropouts)
|
||||
for subbatch in subdivide_batch(batch):
|
||||
nlp.update(subbatch, drop=dropout, losses=losses, sgd=False)
|
||||
for name, proc in nlp.pipeline:
|
||||
if hasattr(proc, "model"):
|
||||
proc.model.finish_update(optimizer)
|
||||
optimizer.step_schedules()
|
||||
if not (step % eval_frequency):
|
||||
score, other_scores = evaluate()
|
||||
results.append((score, step))
|
||||
is_best_checkpoint = score == max(results)[0]
|
||||
else:
|
||||
score, other_scores = (None, None)
|
||||
is_best_checkpoint = None
|
||||
info = {
|
||||
"step": step,
|
||||
"score": score,
|
||||
"other_scores": other_scores,
|
||||
"losses": losses,
|
||||
"checkpoints": results,
|
||||
}
|
||||
yield batch, info, is_best_checkpoint
|
||||
if is_best_checkpoint is not None:
|
||||
losses = {}
|
||||
# Stop if no improvement in `patience` updates
|
||||
best_score, best_step = max(results)
|
||||
if (step - best_step) >= patience:
|
||||
break
|
||||
|
||||
|
||||
def subdivide_batch(batch):
|
||||
return [batch]
|
||||
|
||||
|
||||
def setup_printer(config):
|
||||
score_cols = config["training"]["scores"]
|
||||
score_widths = [max(len(col), 6) for col in score_cols]
|
||||
loss_cols = ["Loss {}".format(pipe) for pipe in config["nlp"]["pipeline"]]
|
||||
loss_widths = [max(len(col), 8) for col in loss_cols]
|
||||
table_header = ["#"] + loss_cols + score_cols + ["Score"]
|
||||
table_header = [col.upper() for col in table_header]
|
||||
table_widths = [6] + loss_widths + score_widths + [6]
|
||||
table_aligns = ["r" for _ in table_widths]
|
||||
|
||||
msg.row(table_header, widths=table_widths)
|
||||
msg.row(["-" * width for width in table_widths])
|
||||
|
||||
def print_row(info):
|
||||
losses = [
|
||||
"{0:.2f}".format(info["losses"].get(col, 0.0))
|
||||
for col in config["nlp"]["pipeline"]
|
||||
]
|
||||
scores = [
|
||||
"{0:.2f}".format(info["other_scores"].get(col, 0.0))
|
||||
for col in config["training"]["scores"]
|
||||
]
|
||||
data = [info["step"]] + losses + scores + ["{0:.2f}".format(info["score"])]
|
||||
msg.row(data, widths=table_widths, aligns=table_aligns)
|
||||
|
||||
return print_row
|
||||
|
||||
|
||||
@registry.architectures.register("tok2vec_tensors.v1")
|
||||
def tok2vec_tensors_v1(width):
|
||||
tok2vec = Tok2VecListener("tok2vec", width=width)
|
||||
return tok2vec
|
|
@ -8,7 +8,7 @@ DOCS: https://spacy.io/api/top-level#compat
|
|||
import os
|
||||
import sys
|
||||
|
||||
from thinc.neural.util import copy_array
|
||||
from thinc.util import copy_array
|
||||
|
||||
try:
|
||||
import cPickle as pickle
|
||||
|
@ -30,10 +30,7 @@ try:
|
|||
except ImportError:
|
||||
cupy = None
|
||||
|
||||
try:
|
||||
from thinc.neural.optimizers import Optimizer # noqa: F401
|
||||
except ImportError:
|
||||
from thinc.neural.optimizers import Adam as Optimizer # noqa: F401
|
||||
from thinc.optimizers import Optimizer # noqa: F401
|
||||
|
||||
pickle = pickle
|
||||
copy_reg = copy_reg
|
||||
|
|
|
@ -4,7 +4,8 @@ import weakref
|
|||
import functools
|
||||
from contextlib import contextmanager
|
||||
from copy import copy, deepcopy
|
||||
from thinc.neural import Model
|
||||
from thinc.model import Model
|
||||
from thinc.backends import get_current_ops
|
||||
import srsly
|
||||
import multiprocessing as mp
|
||||
from itertools import chain, cycle
|
||||
|
@ -16,7 +17,7 @@ from .lookups import Lookups
|
|||
from .analysis import analyze_pipes, analyze_all_pipes, validate_attrs
|
||||
from .gold import Example
|
||||
from .scorer import Scorer
|
||||
from ._ml import link_vectors_to_models, create_default_optimizer
|
||||
from .util import link_vectors_to_models, create_default_optimizer
|
||||
from .attrs import IS_STOP, LANG
|
||||
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
|
||||
from .lang.punctuation import TOKENIZER_INFIXES
|
||||
|
@ -468,30 +469,27 @@ class Language(object):
|
|||
|
||||
if sgd is None:
|
||||
if self._optimizer is None:
|
||||
self._optimizer = create_default_optimizer(Model.ops)
|
||||
self._optimizer = create_default_optimizer()
|
||||
sgd = self._optimizer
|
||||
|
||||
grads = {}
|
||||
|
||||
def get_grads(W, dW, key=None):
|
||||
grads[key] = (W, dW)
|
||||
|
||||
get_grads.alpha = sgd.alpha
|
||||
get_grads.b1 = sgd.b1
|
||||
get_grads.b2 = sgd.b2
|
||||
pipes = list(self.pipeline)
|
||||
random.shuffle(pipes)
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
for name, proc in pipes:
|
||||
# Determine whether component should set annotations. In theory I guess
|
||||
# we should do this by inspecting the meta? Or we could just always
|
||||
# say "yes"
|
||||
for name, proc in self.pipeline:
|
||||
component_cfg.setdefault(name, {})
|
||||
component_cfg[name].setdefault("drop", drop)
|
||||
component_cfg[name].setdefault("set_annotations", False)
|
||||
grads = {}
|
||||
for name, proc in self.pipeline:
|
||||
if not hasattr(proc, "update"):
|
||||
continue
|
||||
grads = {}
|
||||
kwargs = component_cfg.get(name, {})
|
||||
kwargs.setdefault("drop", drop)
|
||||
proc.update(examples, sgd=get_grads, losses=losses, **kwargs)
|
||||
for key, (W, dW) in grads.items():
|
||||
sgd(W, dW, key=key)
|
||||
proc.update(examples, sgd=None, losses=losses, **component_cfg[name])
|
||||
if sgd is not False:
|
||||
for name, proc in self.pipeline:
|
||||
if hasattr(proc, "model"):
|
||||
proc.model.finish_update(sgd)
|
||||
|
||||
def rehearse(self, examples, sgd=None, losses=None, config=None):
|
||||
"""Make a "rehearsal" update to the models in the pipeline, to prevent
|
||||
|
@ -518,7 +516,7 @@ class Language(object):
|
|||
examples = Example.to_example_objects(examples, make_doc=self.make_doc)
|
||||
if sgd is None:
|
||||
if self._optimizer is None:
|
||||
self._optimizer = create_default_optimizer(Model.ops)
|
||||
self._optimizer = create_default_optimizer()
|
||||
sgd = self._optimizer
|
||||
pipes = list(self.pipeline)
|
||||
random.shuffle(pipes)
|
||||
|
@ -529,7 +527,7 @@ class Language(object):
|
|||
def get_grads(W, dW, key=None):
|
||||
grads[key] = (W, dW)
|
||||
|
||||
get_grads.alpha = sgd.alpha
|
||||
get_grads.learn_rate = sgd.learn_rate
|
||||
get_grads.b1 = sgd.b1
|
||||
get_grads.b2 = sgd.b2
|
||||
for name, proc in pipes:
|
||||
|
@ -537,8 +535,8 @@ class Language(object):
|
|||
continue
|
||||
grads = {}
|
||||
proc.rehearse(examples, sgd=get_grads, losses=losses, **config.get(name, {}))
|
||||
for key, (W, dW) in grads.items():
|
||||
sgd(W, dW, key=key)
|
||||
for key, (W, dW) in grads.items():
|
||||
sgd(W, dW, key=key)
|
||||
return losses
|
||||
|
||||
def preprocess_gold(self, examples):
|
||||
|
@ -577,12 +575,13 @@ class Language(object):
|
|||
if cfg.get("device", -1) >= 0:
|
||||
util.use_gpu(cfg["device"])
|
||||
if self.vocab.vectors.data.shape[1] >= 1:
|
||||
self.vocab.vectors.data = Model.ops.asarray(self.vocab.vectors.data)
|
||||
ops = get_current_ops()
|
||||
self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
|
||||
link_vectors_to_models(self.vocab)
|
||||
if self.vocab.vectors.data.shape[1]:
|
||||
cfg["pretrained_vectors"] = self.vocab.vectors.name
|
||||
cfg["pretrained_vectors"] = self.vocab.vectors
|
||||
if sgd is None:
|
||||
sgd = create_default_optimizer(Model.ops)
|
||||
sgd = create_default_optimizer()
|
||||
self._optimizer = sgd
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
|
@ -596,6 +595,7 @@ class Language(object):
|
|||
sgd=self._optimizer,
|
||||
**kwargs
|
||||
)
|
||||
self._link_components()
|
||||
return self._optimizer
|
||||
|
||||
def resume_training(self, sgd=None, **cfg):
|
||||
|
@ -609,13 +609,14 @@ class Language(object):
|
|||
"""
|
||||
if cfg.get("device", -1) >= 0:
|
||||
util.use_gpu(cfg["device"])
|
||||
ops = get_current_ops()
|
||||
if self.vocab.vectors.data.shape[1] >= 1:
|
||||
self.vocab.vectors.data = Model.ops.asarray(self.vocab.vectors.data)
|
||||
self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
|
||||
link_vectors_to_models(self.vocab)
|
||||
if self.vocab.vectors.data.shape[1]:
|
||||
cfg["pretrained_vectors"] = self.vocab.vectors.name
|
||||
cfg["pretrained_vectors"] = self.vocab.vectors
|
||||
if sgd is None:
|
||||
sgd = create_default_optimizer(Model.ops)
|
||||
sgd = create_default_optimizer()
|
||||
self._optimizer = sgd
|
||||
for name, proc in self.pipeline:
|
||||
if hasattr(proc, "_rehearsal_model"):
|
||||
|
@ -736,7 +737,7 @@ class Language(object):
|
|||
disable=disable,
|
||||
n_process=n_process,
|
||||
component_cfg=component_cfg,
|
||||
as_example=False
|
||||
as_example=False # TODO: shouldn't this be as_example=as_example ?
|
||||
)
|
||||
for doc, context in zip(docs, contexts):
|
||||
yield (doc, context)
|
||||
|
@ -838,6 +839,16 @@ class Language(object):
|
|||
for proc in procs:
|
||||
proc.terminate()
|
||||
|
||||
def _link_components(self):
|
||||
"""Register 'listeners' within pipeline components, to allow them to
|
||||
effectively share weights.
|
||||
"""
|
||||
for i, (name1, proc1) in enumerate(self.pipeline):
|
||||
if hasattr(proc1, "find_listeners"):
|
||||
for name2, proc2 in self.pipeline[i:]:
|
||||
if hasattr(proc2, "model"):
|
||||
proc1.find_listeners(proc2.model)
|
||||
|
||||
def to_disk(self, path, exclude=tuple(), disable=None):
|
||||
"""Save the current state to a directory. If a model is loaded, this
|
||||
will include the model.
|
||||
|
@ -906,6 +917,7 @@ class Language(object):
|
|||
exclude = list(exclude) + ["vocab"]
|
||||
util.from_disk(path, deserializers, exclude)
|
||||
self._path = path
|
||||
self._link_components()
|
||||
return self
|
||||
|
||||
def to_bytes(self, exclude=tuple(), disable=None, **kwargs):
|
||||
|
@ -962,6 +974,7 @@ class Language(object):
|
|||
)
|
||||
exclude = util.get_serialization_exclude(deserializers, exclude, kwargs)
|
||||
util.from_bytes(bytes_data, deserializers, exclude)
|
||||
self._link_components()
|
||||
return self
|
||||
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@ cimport numpy as np
|
|||
np.import_array()
|
||||
|
||||
import numpy
|
||||
from thinc.neural.util import get_array_module
|
||||
from thinc.util import get_array_module
|
||||
|
||||
from .typedefs cimport attr_t, flags_t
|
||||
from .attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE
|
||||
|
|
|
@ -1,2 +0,0 @@
|
|||
from .tok2vec import Tok2Vec # noqa: F401
|
||||
from .common import FeedForward, LayerNormalizedMaxout # noqa: F401
|
52
spacy/ml/_character_embed.py
Normal file
52
spacy/ml/_character_embed.py
Normal file
|
@ -0,0 +1,52 @@
|
|||
from thinc.api import Model
|
||||
|
||||
|
||||
def CharacterEmbed(nM, nC):
|
||||
# nM: Number of dimensions per character. nC: Number of characters.
|
||||
nO = nM*nC if (nM is not None and nC is not None) else None
|
||||
return Model(
|
||||
"charembed",
|
||||
forward,
|
||||
init=init,
|
||||
dims={"nM": nM, "nC": nC, "nO": nO, "nV": 256},
|
||||
params={"E": None}
|
||||
).initialize()
|
||||
|
||||
|
||||
def init(model, X=None, Y=None):
|
||||
vectors_table = model.ops.alloc3f(model.get_dim("nC"), model.get_dim("nV"), model.get_dim("nM"))
|
||||
model.set_param("E", vectors_table)
|
||||
|
||||
|
||||
def forward(model, docs, is_train):
|
||||
if not docs:
|
||||
return []
|
||||
ids = []
|
||||
output = []
|
||||
E = model.get_param("E")
|
||||
nC = model.get_dim("nC")
|
||||
nM = model.get_dim("nM")
|
||||
nO = model.get_dim("nO")
|
||||
# This assists in indexing; it's like looping over this dimension.
|
||||
# Still consider this weird witch craft...But thanks to Mark Neumann
|
||||
# for the tip.
|
||||
nCv = model.ops.xp.arange(nC)
|
||||
for doc in docs:
|
||||
doc_ids = doc.to_utf8_array(nr_char=nC)
|
||||
doc_vectors = model.ops.alloc3f(len(doc), nC, nM)
|
||||
# Let's say I have a 2d array of indices, and a 3d table of data. What numpy
|
||||
# incantation do I chant to get
|
||||
# output[i, j, k] == data[j, ids[i, j], k]?
|
||||
doc_vectors[:, nCv] = E[nCv, doc_ids[:, nCv]]
|
||||
output.append(doc_vectors.reshape((len(doc), nO)))
|
||||
ids.append(doc_ids)
|
||||
|
||||
def backprop(d_output):
|
||||
dE = model.ops.alloc(E.shape, dtype=E.dtype)
|
||||
for doc_ids, d_doc_vectors in zip(ids, d_output):
|
||||
d_doc_vectors = d_doc_vectors.reshape((len(doc_ids), nC, nM))
|
||||
dE[nCv, doc_ids[:, nCv]] += d_doc_vectors[:, nCv]
|
||||
model.inc_grad("E", dE)
|
||||
return []
|
||||
|
||||
return output, backprop
|
165
spacy/ml/_layers.py
Normal file
165
spacy/ml/_layers.py
Normal file
|
@ -0,0 +1,165 @@
|
|||
from thinc.model import Model
|
||||
from thinc.api import normal_init
|
||||
|
||||
|
||||
def PrecomputableAffine(nO, nI, nF, nP):
|
||||
model = Model(
|
||||
"precomputable_affine",
|
||||
forward,
|
||||
init=init,
|
||||
dims={"nO": nO, "nI": nI, "nF": nF, "nP": nP},
|
||||
params={"W": None, "b": None, "pad": None},
|
||||
)
|
||||
model.initialize()
|
||||
return model
|
||||
|
||||
|
||||
def forward(model, X, is_train):
|
||||
nF = model.get_dim("nF")
|
||||
nO = model.get_dim("nO")
|
||||
nP = model.get_dim("nP")
|
||||
nI = model.get_dim("nI")
|
||||
W = model.get_param("W")
|
||||
Yf = model.ops.gemm(
|
||||
X, W.reshape((nF * nO * nP, nI)), trans2=True
|
||||
)
|
||||
Yf = Yf.reshape((Yf.shape[0], nF, nO, nP))
|
||||
Yf = model.ops.xp.vstack((model.get_param("pad"), Yf))
|
||||
|
||||
def backward(dY_ids):
|
||||
# This backprop is particularly tricky, because we get back a different
|
||||
# thing from what we put out. We put out an array of shape:
|
||||
# (nB, nF, nO, nP), and get back:
|
||||
# (nB, nO, nP) and ids (nB, nF)
|
||||
# The ids tell us the values of nF, so we would have:
|
||||
#
|
||||
# dYf = zeros((nB, nF, nO, nP))
|
||||
# for b in range(nB):
|
||||
# for f in range(nF):
|
||||
# dYf[b, ids[b, f]] += dY[b]
|
||||
#
|
||||
# However, we avoid building that array for efficiency -- and just pass
|
||||
# in the indices.
|
||||
dY, ids = dY_ids
|
||||
assert dY.ndim == 3
|
||||
assert dY.shape[1] == nO, dY.shape
|
||||
assert dY.shape[2] == nP, dY.shape
|
||||
nB = dY.shape[0]
|
||||
model.inc_grad("pad", _backprop_precomputable_affine_padding(model, dY, ids))
|
||||
Xf = X[ids]
|
||||
Xf = Xf.reshape((Xf.shape[0], nF * nI))
|
||||
|
||||
model.inc_grad("b", dY.sum(axis=0))
|
||||
dY = dY.reshape((dY.shape[0], nO * nP))
|
||||
|
||||
Wopfi = W.transpose((1, 2, 0, 3))
|
||||
Wopfi = model.ops.xp.ascontiguousarray(Wopfi)
|
||||
Wopfi = Wopfi.reshape((nO * nP, nF * nI))
|
||||
dXf = model.ops.gemm(dY.reshape((dY.shape[0], nO * nP)), Wopfi)
|
||||
|
||||
# Reuse the buffer
|
||||
dWopfi = Wopfi
|
||||
dWopfi.fill(0.0)
|
||||
model.ops.gemm(dY, Xf, out=dWopfi, trans1=True)
|
||||
dWopfi = dWopfi.reshape((nO, nP, nF, nI))
|
||||
# (o, p, f, i) --> (f, o, p, i)
|
||||
model.inc_grad("W", dWopfi.transpose((2, 0, 1, 3)))
|
||||
return dXf.reshape((dXf.shape[0], nF, nI))
|
||||
|
||||
return Yf, backward
|
||||
|
||||
|
||||
def _backprop_precomputable_affine_padding(model, dY, ids):
|
||||
nB = dY.shape[0]
|
||||
nF = model.get_dim("nF")
|
||||
nP = model.get_dim("nP")
|
||||
nO = model.get_dim("nO")
|
||||
# Backprop the "padding", used as a filler for missing values.
|
||||
# Values that are missing are set to -1, and each state vector could
|
||||
# have multiple missing values. The padding has different values for
|
||||
# different missing features. The gradient of the padding vector is:
|
||||
#
|
||||
# for b in range(nB):
|
||||
# for f in range(nF):
|
||||
# if ids[b, f] < 0:
|
||||
# d_padding[0, f] += dY[b]
|
||||
#
|
||||
# Which can be rewritten as:
|
||||
#
|
||||
# for b in range(nB):
|
||||
# d_pad[0, ids[b] < 0] += dY[b]
|
||||
#
|
||||
# I don't know how to avoid the loop without building a whole array :(.
|
||||
# Cursed numpy.
|
||||
d_pad = model.ops.alloc((1, nF, nO, nP))
|
||||
for b in range(nB):
|
||||
d_pad[0, ids[b] < 0] += dY[b]
|
||||
return d_pad
|
||||
|
||||
|
||||
def init(model, X=None, Y=None):
|
||||
"""This is like the 'layer sequential unit variance', but instead
|
||||
of taking the actual inputs, we randomly generate whitened data.
|
||||
|
||||
Why's this all so complicated? We have a huge number of inputs,
|
||||
and the maxout unit makes guessing the dynamics tricky. Instead
|
||||
we set the maxout weights to values that empirically result in
|
||||
whitened outputs given whitened inputs.
|
||||
"""
|
||||
if model.has_param("W") and model.get_param("W").any():
|
||||
return
|
||||
|
||||
nF = model.get_dim("nF")
|
||||
nO = model.get_dim("nO")
|
||||
nP = model.get_dim("nP")
|
||||
nI = model.get_dim("nI")
|
||||
W = model.ops.alloc4f(nF, nO, nP, nI)
|
||||
b = model.ops.alloc2f(nO, nP)
|
||||
pad = model.ops.alloc4f(1, nF, nO, nP)
|
||||
|
||||
ops = model.ops
|
||||
W = normal_init(ops, W.shape, fan_in=nF*nI)
|
||||
model.set_param("W", W)
|
||||
model.set_param("b", b)
|
||||
model.set_param("pad", pad)
|
||||
|
||||
ids = ops.alloc((5000, nF), dtype="f")
|
||||
ids += ops.xp.random.uniform(0, 1000, ids.shape)
|
||||
ids = ops.asarray(ids, dtype="i")
|
||||
tokvecs = ops.alloc((5000, nI), dtype="f")
|
||||
tokvecs += ops.xp.random.normal(loc=0.0, scale=1.0, size=tokvecs.size).reshape(
|
||||
tokvecs.shape
|
||||
)
|
||||
|
||||
def predict(ids, tokvecs):
|
||||
# nS ids. nW tokvecs. Exclude the padding array.
|
||||
hiddens = model.predict(tokvecs[:-1]) # (nW, f, o, p)
|
||||
vectors = model.ops.alloc((ids.shape[0], nO * nP), dtype="f")
|
||||
# need nS vectors
|
||||
hiddens = hiddens.reshape((hiddens.shape[0] * nF, nO * nP))
|
||||
model.ops.scatter_add(vectors, ids.flatten(), hiddens)
|
||||
vectors = vectors.reshape((vectors.shape[0], nO, nP))
|
||||
vectors += b
|
||||
vectors = model.ops.asarray(vectors)
|
||||
if nP >= 2:
|
||||
return model.ops.maxout(vectors)[0]
|
||||
else:
|
||||
return vectors * (vectors >= 0)
|
||||
|
||||
tol_var = 0.01
|
||||
tol_mean = 0.01
|
||||
t_max = 10
|
||||
W = model.get_param("W").copy()
|
||||
b = model.get_param("b").copy()
|
||||
for t_i in range(t_max):
|
||||
acts1 = predict(ids, tokvecs)
|
||||
var = model.ops.xp.var(acts1)
|
||||
mean = model.ops.xp.mean(acts1)
|
||||
if abs(var - 1.0) >= tol_var:
|
||||
W /= model.ops.xp.sqrt(var)
|
||||
model.set_param("W", W)
|
||||
elif abs(mean) >= tol_mean:
|
||||
b -= mean
|
||||
model.set_param("b", b)
|
||||
else:
|
||||
break
|
|
@ -1,129 +0,0 @@
|
|||
from thinc.v2v import Model, Maxout
|
||||
from thinc.i2v import HashEmbed, StaticVectors
|
||||
from thinc.t2t import ExtractWindow
|
||||
from thinc.misc import Residual
|
||||
from thinc.misc import LayerNorm as LN
|
||||
from thinc.misc import FeatureExtracter
|
||||
from thinc.api import layerize, chain, clone, concatenate, with_flatten
|
||||
from thinc.api import uniqued, wrap, noop
|
||||
|
||||
from ..attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
|
||||
|
||||
|
||||
def Tok2Vec(width, embed_size, **kwargs):
|
||||
# Circular imports :(
|
||||
from .._ml import CharacterEmbed
|
||||
from .._ml import PyTorchBiLSTM
|
||||
|
||||
pretrained_vectors = kwargs.get("pretrained_vectors", None)
|
||||
cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3)
|
||||
subword_features = kwargs.get("subword_features", True)
|
||||
char_embed = kwargs.get("char_embed", False)
|
||||
if char_embed:
|
||||
subword_features = False
|
||||
conv_depth = kwargs.get("conv_depth", 4)
|
||||
bilstm_depth = kwargs.get("bilstm_depth", 0)
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
||||
norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm")
|
||||
if subword_features:
|
||||
prefix = HashEmbed(
|
||||
width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix"
|
||||
)
|
||||
suffix = HashEmbed(
|
||||
width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix"
|
||||
)
|
||||
shape = HashEmbed(
|
||||
width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape"
|
||||
)
|
||||
else:
|
||||
prefix, suffix, shape = (None, None, None)
|
||||
if pretrained_vectors is not None:
|
||||
glove = StaticVectors(pretrained_vectors, width, column=cols.index(ID))
|
||||
|
||||
if subword_features:
|
||||
embed = uniqued(
|
||||
(glove | norm | prefix | suffix | shape)
|
||||
>> LN(Maxout(width, width * 5, pieces=3)),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
else:
|
||||
embed = uniqued(
|
||||
(glove | norm) >> LN(Maxout(width, width * 2, pieces=3)),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
elif subword_features:
|
||||
embed = uniqued(
|
||||
(norm | prefix | suffix | shape)
|
||||
>> LN(Maxout(width, width * 4, pieces=3)),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
elif char_embed:
|
||||
embed = concatenate_lists(
|
||||
CharacterEmbed(nM=64, nC=8),
|
||||
FeatureExtracter(cols) >> with_flatten(norm),
|
||||
)
|
||||
reduce_dimensions = LN(
|
||||
Maxout(width, 64 * 8 + width, pieces=cnn_maxout_pieces)
|
||||
)
|
||||
else:
|
||||
embed = norm
|
||||
|
||||
convolution = Residual(
|
||||
ExtractWindow(nW=1)
|
||||
>> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces))
|
||||
)
|
||||
if char_embed:
|
||||
tok2vec = embed >> with_flatten(
|
||||
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
|
||||
)
|
||||
else:
|
||||
tok2vec = FeatureExtracter(cols) >> with_flatten(
|
||||
embed >> convolution ** conv_depth, pad=conv_depth
|
||||
)
|
||||
|
||||
if bilstm_depth >= 1:
|
||||
tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth)
|
||||
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
||||
tok2vec.nO = width
|
||||
tok2vec.embed = embed
|
||||
return tok2vec
|
||||
|
||||
|
||||
@layerize
|
||||
def flatten(seqs, drop=0.0):
|
||||
ops = Model.ops
|
||||
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
|
||||
|
||||
def finish_update(d_X, sgd=None):
|
||||
return ops.unflatten(d_X, lengths, pad=0)
|
||||
|
||||
X = ops.flatten(seqs, pad=0)
|
||||
return X, finish_update
|
||||
|
||||
|
||||
def concatenate_lists(*layers, **kwargs): # pragma: no cover
|
||||
"""Compose two or more models `f`, `g`, etc, such that their outputs are
|
||||
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
|
||||
"""
|
||||
if not layers:
|
||||
return noop()
|
||||
drop_factor = kwargs.get("drop_factor", 1.0)
|
||||
ops = layers[0].ops
|
||||
layers = [chain(layer, flatten) for layer in layers]
|
||||
concat = concatenate(*layers)
|
||||
|
||||
def concatenate_lists_fwd(Xs, drop=0.0):
|
||||
if drop is not None:
|
||||
drop *= drop_factor
|
||||
lengths = ops.asarray([len(X) for X in Xs], dtype="i")
|
||||
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
|
||||
ys = ops.unflatten(flat_y, lengths)
|
||||
|
||||
def concatenate_lists_bwd(d_ys, sgd=None):
|
||||
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
|
||||
|
||||
return ys, concatenate_lists_bwd
|
||||
|
||||
model = wrap(concatenate_lists_fwd, concat)
|
||||
return model
|
|
@ -1,41 +0,0 @@
|
|||
from thinc.api import layerize, wrap, noop, chain, concatenate
|
||||
from thinc.v2v import Model
|
||||
|
||||
|
||||
def concatenate_lists(*layers, **kwargs): # pragma: no cover
|
||||
"""Compose two or more models `f`, `g`, etc, such that their outputs are
|
||||
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`
|
||||
"""
|
||||
if not layers:
|
||||
return layerize(noop())
|
||||
drop_factor = kwargs.get("drop_factor", 1.0)
|
||||
ops = layers[0].ops
|
||||
layers = [chain(layer, flatten) for layer in layers]
|
||||
concat = concatenate(*layers)
|
||||
|
||||
def concatenate_lists_fwd(Xs, drop=0.0):
|
||||
if drop is not None:
|
||||
drop *= drop_factor
|
||||
lengths = ops.asarray([len(X) for X in Xs], dtype="i")
|
||||
flat_y, bp_flat_y = concat.begin_update(Xs, drop=drop)
|
||||
ys = ops.unflatten(flat_y, lengths)
|
||||
|
||||
def concatenate_lists_bwd(d_ys, sgd=None):
|
||||
return bp_flat_y(ops.flatten(d_ys), sgd=sgd)
|
||||
|
||||
return ys, concatenate_lists_bwd
|
||||
|
||||
model = wrap(concatenate_lists_fwd, concat)
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def flatten(seqs, drop=0.0):
|
||||
ops = Model.ops
|
||||
lengths = ops.asarray([len(seq) for seq in seqs], dtype="i")
|
||||
|
||||
def finish_update(d_X, sgd=None):
|
||||
return ops.unflatten(d_X, lengths, pad=0)
|
||||
|
||||
X = ops.flatten(seqs, pad=0)
|
||||
return X, finish_update
|
|
@ -1,21 +0,0 @@
|
|||
from thinc.api import chain
|
||||
from thinc.v2v import Maxout
|
||||
from thinc.misc import LayerNorm
|
||||
from ..util import registry, make_layer
|
||||
|
||||
|
||||
@registry.architectures.register("thinc.FeedForward.v1")
|
||||
def FeedForward(config):
|
||||
layers = [make_layer(layer_cfg) for layer_cfg in config["layers"]]
|
||||
model = chain(*layers)
|
||||
model.cfg = config
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.LayerNormalizedMaxout.v1")
|
||||
def LayerNormalizedMaxout(config):
|
||||
width = config["width"]
|
||||
pieces = config["pieces"]
|
||||
layer = LayerNorm(Maxout(width, pieces=pieces))
|
||||
layer.nO = width
|
||||
return layer
|
222
spacy/ml/component_models.py
Normal file
222
spacy/ml/component_models.py
Normal file
|
@ -0,0 +1,222 @@
|
|||
from spacy import util
|
||||
from spacy.ml.extract_ngrams import extract_ngrams
|
||||
|
||||
from ..attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
|
||||
from ..errors import Errors
|
||||
from ._character_embed import CharacterEmbed
|
||||
|
||||
from thinc.api import Model, Maxout, Linear, residual, reduce_mean, list2ragged
|
||||
from thinc.api import PyTorchLSTM, add, MultiSoftmax, HashEmbed, StaticVectors
|
||||
from thinc.api import expand_window, FeatureExtractor, SparseLinear, chain
|
||||
from thinc.api import clone, concatenate, with_array, Softmax, Logistic, uniqued
|
||||
from thinc.api import zero_init, glorot_uniform_init
|
||||
|
||||
|
||||
def build_text_classifier(arch, config):
|
||||
if arch == "cnn":
|
||||
return build_simple_cnn_text_classifier(**config)
|
||||
elif arch == "bow":
|
||||
return build_bow_text_classifier(**config)
|
||||
else:
|
||||
raise ValueError("Unexpected textcat arch")
|
||||
|
||||
|
||||
def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes, **cfg):
|
||||
"""
|
||||
Build a simple CNN text classifier, given a token-to-vector model as inputs.
|
||||
If exclusive_classes=True, a softmax non-linearity is applied, so that the
|
||||
outputs sum to 1. If exclusive_classes=False, a logistic non-linearity
|
||||
is applied instead, so that outputs are in the range [0, 1].
|
||||
"""
|
||||
with Model.define_operators({">>": chain}):
|
||||
if exclusive_classes:
|
||||
output_layer = Softmax(nO=nr_class, nI=tok2vec.get_dim("nO"))
|
||||
else:
|
||||
# TODO: experiment with init_w=zero_init
|
||||
output_layer = (
|
||||
Linear(nO=nr_class, nI=tok2vec.get_dim("nO"))
|
||||
>> Logistic()
|
||||
)
|
||||
model = tok2vec >> list2ragged() >> reduce_mean() >> output_layer
|
||||
model.set_ref("tok2vec", tok2vec)
|
||||
model.set_dim("nO", nr_class)
|
||||
return model
|
||||
|
||||
|
||||
def build_bow_text_classifier(
|
||||
nr_class, exclusive_classes, ngram_size=1, no_output_layer=False, **cfg
|
||||
):
|
||||
with Model.define_operators({">>": chain}):
|
||||
model = extract_ngrams(ngram_size, attr=ORTH) >> SparseLinear(nr_class)
|
||||
model.to_cpu()
|
||||
if not no_output_layer:
|
||||
output_layer = (
|
||||
Softmax(nO=nr_class) if exclusive_classes else Logistic(nO=nr_class)
|
||||
)
|
||||
output_layer.to_cpu()
|
||||
model = model >> output_layer
|
||||
model.set_dim("nO", nr_class)
|
||||
return model
|
||||
|
||||
|
||||
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
|
||||
if "entity_width" not in cfg:
|
||||
raise ValueError(Errors.E144.format(param="entity_width"))
|
||||
|
||||
conv_depth = cfg.get("conv_depth", 2)
|
||||
cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
|
||||
pretrained_vectors = cfg.get("pretrained_vectors", None)
|
||||
context_width = cfg.get("entity_width")
|
||||
|
||||
with Model.define_operators({">>": chain, "**": clone}):
|
||||
nel_tok2vec = Tok2Vec(
|
||||
width=hidden_width,
|
||||
embed_size=embed_width,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
cnn_maxout_pieces=cnn_maxout_pieces,
|
||||
subword_features=True,
|
||||
conv_depth=conv_depth,
|
||||
bilstm_depth=0,
|
||||
)
|
||||
|
||||
model = (
|
||||
nel_tok2vec
|
||||
>> list2ragged()
|
||||
>> reduce_mean()
|
||||
>> residual(Maxout(nO=hidden_width, nI=hidden_width, nP=2, dropout=0.0))
|
||||
>> Linear(nO=context_width, nI=hidden_width)
|
||||
)
|
||||
model.initialize()
|
||||
|
||||
model.set_ref("tok2vec", nel_tok2vec)
|
||||
model.set_dim("nO", context_width)
|
||||
return model
|
||||
|
||||
|
||||
def masked_language_model(*args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def build_tagger_model(nr_class, tok2vec):
|
||||
token_vector_width = tok2vec.get_dim("nO")
|
||||
# TODO: glorot_uniform_init seems to work a bit better than zero_init here?!
|
||||
softmax = with_array(Softmax(nO=nr_class, nI=token_vector_width, init_W=zero_init))
|
||||
model = chain(tok2vec, softmax)
|
||||
model.set_ref("tok2vec", tok2vec)
|
||||
model.set_ref("softmax", softmax)
|
||||
return model
|
||||
|
||||
|
||||
def build_morphologizer_model(class_nums, **cfg):
|
||||
embed_size = util.env_opt("embed_size", 7000)
|
||||
if "token_vector_width" in cfg:
|
||||
token_vector_width = cfg["token_vector_width"]
|
||||
else:
|
||||
token_vector_width = util.env_opt("token_vector_width", 128)
|
||||
pretrained_vectors = cfg.get("pretrained_vectors")
|
||||
char_embed = cfg.get("char_embed", True)
|
||||
with Model.define_operators({">>": chain, "+": add, "**": clone}):
|
||||
if "tok2vec" in cfg:
|
||||
tok2vec = cfg["tok2vec"]
|
||||
else:
|
||||
tok2vec = Tok2Vec(
|
||||
token_vector_width,
|
||||
embed_size,
|
||||
char_embed=char_embed,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
)
|
||||
softmax = with_array(MultiSoftmax(nOs=class_nums, nI=token_vector_width))
|
||||
model = tok2vec >> softmax
|
||||
model.set_ref("tok2vec", tok2vec)
|
||||
model.set_ref("softmax", softmax)
|
||||
return model
|
||||
|
||||
|
||||
def Tok2Vec(
|
||||
width,
|
||||
embed_size,
|
||||
pretrained_vectors=None,
|
||||
window_size=1,
|
||||
cnn_maxout_pieces=3,
|
||||
subword_features=True,
|
||||
char_embed=False,
|
||||
conv_depth=4,
|
||||
bilstm_depth=0,
|
||||
):
|
||||
if char_embed:
|
||||
subword_features = False
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
||||
norm = HashEmbed(nO=width, nV=embed_size, column=cols.index(NORM), dropout=0.0)
|
||||
if subword_features:
|
||||
prefix = HashEmbed(nO=width, nV=embed_size // 2, column=cols.index(PREFIX), dropout=0.0)
|
||||
suffix = HashEmbed(nO=width, nV=embed_size // 2, column=cols.index(SUFFIX), dropout=0.0)
|
||||
shape = HashEmbed(nO=width, nV=embed_size // 2, column=cols.index(SHAPE), dropout=0.0)
|
||||
else:
|
||||
prefix, suffix, shape = (None, None, None)
|
||||
if pretrained_vectors is not None:
|
||||
glove = StaticVectors(vectors=pretrained_vectors, nO=width, column=cols.index(ID), dropout=0.0)
|
||||
|
||||
if subword_features:
|
||||
embed = uniqued(
|
||||
(glove | norm | prefix | suffix | shape)
|
||||
>> Maxout(
|
||||
nO=width, nI=width * 5, nP=3, dropout=0.0, normalize=True
|
||||
),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
else:
|
||||
embed = uniqued(
|
||||
(glove | norm)
|
||||
>> Maxout(
|
||||
nO=width, nI=width * 2, nP=3, dropout=0.0, normalize=True
|
||||
),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
elif subword_features:
|
||||
embed = uniqued(
|
||||
concatenate(norm, prefix, suffix, shape)
|
||||
>> Maxout(nO=width, nI=width * 4, nP=3, dropout=0.0, normalize=True),
|
||||
column=cols.index(ORTH),
|
||||
)
|
||||
elif char_embed:
|
||||
embed = CharacterEmbed(nM=64, nC=8) | FeatureExtractor(cols) >> with_array(
|
||||
norm
|
||||
)
|
||||
reduce_dimensions = Maxout(
|
||||
nO=width,
|
||||
nI=64 * 8 + width,
|
||||
nP=cnn_maxout_pieces,
|
||||
dropout=0.0,
|
||||
normalize=True,
|
||||
)
|
||||
else:
|
||||
embed = norm
|
||||
|
||||
convolution = residual(
|
||||
expand_window(window_size=window_size)
|
||||
>> Maxout(
|
||||
nO=width,
|
||||
nI=width * 3,
|
||||
nP=cnn_maxout_pieces,
|
||||
dropout=0.0,
|
||||
normalize=True,
|
||||
)
|
||||
)
|
||||
if char_embed:
|
||||
tok2vec = embed >> with_array(
|
||||
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
|
||||
)
|
||||
else:
|
||||
tok2vec = FeatureExtractor(cols) >> with_array(
|
||||
embed >> convolution ** conv_depth, pad=conv_depth
|
||||
)
|
||||
|
||||
if bilstm_depth >= 1:
|
||||
tok2vec = tok2vec >> PyTorchLSTM(
|
||||
nO=width, nI=width, depth=bilstm_depth, bi=True
|
||||
)
|
||||
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
||||
tok2vec.set_dim("nO", width)
|
||||
tok2vec.set_ref("embed", embed)
|
||||
return tok2vec
|
39
spacy/ml/extract_ngrams.py
Normal file
39
spacy/ml/extract_ngrams.py
Normal file
|
@ -0,0 +1,39 @@
|
|||
import numpy
|
||||
from thinc.model import Model
|
||||
|
||||
from ..attrs import LOWER
|
||||
|
||||
|
||||
def extract_ngrams(ngram_size, attr=LOWER) -> Model:
|
||||
model = Model("extract_ngrams", forward)
|
||||
model.attrs["ngram_size"] = ngram_size
|
||||
model.attrs["attr"] = attr
|
||||
return model
|
||||
|
||||
|
||||
def forward(self, docs, is_train: bool):
|
||||
batch_keys = []
|
||||
batch_vals = []
|
||||
for doc in docs:
|
||||
unigrams = doc.to_array([self.attrs["attr"]])
|
||||
ngrams = [unigrams]
|
||||
for n in range(2, self.attrs["ngram_size"] + 1):
|
||||
ngrams.append(self.ops.ngrams(n, unigrams))
|
||||
keys = self.ops.xp.concatenate(ngrams)
|
||||
keys, vals = self.ops.xp.unique(keys, return_counts=True)
|
||||
batch_keys.append(keys)
|
||||
batch_vals.append(vals)
|
||||
# The dtype here matches what thinc is expecting -- which differs per
|
||||
# platform (by int definition). This should be fixed once the problem
|
||||
# is fixed on Thinc's side.
|
||||
lengths = self.ops.asarray(
|
||||
[arr.shape[0] for arr in batch_keys], dtype=numpy.int_
|
||||
)
|
||||
batch_keys = self.ops.xp.concatenate(batch_keys)
|
||||
batch_vals = self.ops.asarray(self.ops.xp.concatenate(batch_vals), dtype="f")
|
||||
|
||||
def backprop(dY):
|
||||
return dY
|
||||
|
||||
return (batch_keys, batch_vals, lengths), backprop
|
||||
|
|
@ -1,11 +1,12 @@
|
|||
from thinc.api import chain, layerize, clone, concatenate, with_flatten, uniqued
|
||||
from thinc.api import noop, with_square_sequences
|
||||
from thinc.v2v import Maxout, Model
|
||||
from thinc.i2v import HashEmbed, StaticVectors
|
||||
from thinc.t2t import ExtractWindow
|
||||
from thinc.misc import Residual, LayerNorm, FeatureExtracter
|
||||
from thinc.layers import chain, clone, concatenate, with_array, uniqued
|
||||
from thinc.model import Model
|
||||
from thinc.layers import noop, with_padded
|
||||
from thinc.layers import Maxout, expand_window
|
||||
from thinc.layers import HashEmbed, StaticVectors
|
||||
from thinc.layers import residual, LayerNorm, FeatureExtractor
|
||||
|
||||
from spacy.ml import _character_embed
|
||||
from ..util import make_layer, registry
|
||||
from ._wire import concatenate_lists
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.Tok2Vec.v1")
|
||||
|
@ -13,19 +14,21 @@ def Tok2Vec(config):
|
|||
doc2feats = make_layer(config["@doc2feats"])
|
||||
embed = make_layer(config["@embed"])
|
||||
encode = make_layer(config["@encode"])
|
||||
field_size = getattr(encode, "receptive_field", 0)
|
||||
tok2vec = chain(doc2feats, with_flatten(chain(embed, encode), pad=field_size))
|
||||
tok2vec.cfg = config
|
||||
tok2vec.nO = encode.nO
|
||||
tok2vec.embed = embed
|
||||
tok2vec.encode = encode
|
||||
field_size = 0
|
||||
if encode.has_attr("receptive_field"):
|
||||
field_size = encode.attrs["receptive_field"]
|
||||
tok2vec = chain(doc2feats, with_array(chain(embed, encode), pad=field_size))
|
||||
tok2vec.attrs["cfg"] = config
|
||||
tok2vec.set_dim("nO", encode.get_dim("nO"))
|
||||
tok2vec.set_ref("embed", embed)
|
||||
tok2vec.set_ref("encode", encode)
|
||||
return tok2vec
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.Doc2Feats.v1")
|
||||
def Doc2Feats(config):
|
||||
columns = config["columns"]
|
||||
return FeatureExtracter(columns)
|
||||
return FeatureExtractor(columns)
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
||||
|
@ -40,55 +43,47 @@ def MultiHashEmbed(config):
|
|||
width = config["width"]
|
||||
rows = config["rows"]
|
||||
|
||||
norm = HashEmbed(width, rows, column=cols.index("NORM"), name="embed_norm")
|
||||
norm = HashEmbed(width, rows, column=cols.index("NORM"), dropout=0.0)
|
||||
if config["use_subwords"]:
|
||||
prefix = HashEmbed(
|
||||
width, rows // 2, column=cols.index("PREFIX"), name="embed_prefix"
|
||||
)
|
||||
suffix = HashEmbed(
|
||||
width, rows // 2, column=cols.index("SUFFIX"), name="embed_suffix"
|
||||
)
|
||||
shape = HashEmbed(
|
||||
width, rows // 2, column=cols.index("SHAPE"), name="embed_shape"
|
||||
)
|
||||
prefix = HashEmbed(width, rows // 2, column=cols.index("PREFIX"), dropout=0.0)
|
||||
suffix = HashEmbed(width, rows // 2, column=cols.index("SUFFIX"), dropout=0.0)
|
||||
shape = HashEmbed(width, rows // 2, column=cols.index("SHAPE"), dropout=0.0)
|
||||
if config.get("@pretrained_vectors"):
|
||||
glove = make_layer(config["@pretrained_vectors"])
|
||||
mix = make_layer(config["@mix"])
|
||||
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
if config["use_subwords"] and config["@pretrained_vectors"]:
|
||||
mix._layers[0].nI = width * 5
|
||||
mix._layers[0].set_dim("nI", width * 5)
|
||||
layer = uniqued(
|
||||
(glove | norm | prefix | suffix | shape) >> mix,
|
||||
column=cols.index("ORTH"),
|
||||
)
|
||||
elif config["use_subwords"]:
|
||||
mix._layers[0].nI = width * 4
|
||||
mix._layers[0].set_dim("nI", width * 4)
|
||||
layer = uniqued(
|
||||
(norm | prefix | suffix | shape) >> mix, column=cols.index("ORTH")
|
||||
)
|
||||
elif config["@pretrained_vectors"]:
|
||||
mix._layers[0].nI = width * 2
|
||||
mix._layers[0].set_dim("nI", width * 2)
|
||||
layer = uniqued((glove | norm) >> mix, column=cols.index("ORTH"),)
|
||||
else:
|
||||
layer = norm
|
||||
layer.cfg = config
|
||||
layer.attrs["cfg"] = config
|
||||
return layer
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.CharacterEmbed.v1")
|
||||
def CharacterEmbed(config):
|
||||
from .. import _ml
|
||||
|
||||
width = config["width"]
|
||||
chars = config["chars"]
|
||||
|
||||
chr_embed = _ml.CharacterEmbedModel(nM=width, nC=chars)
|
||||
chr_embed = _character_embed.CharacterEmbed(nM=width, nC=chars)
|
||||
other_tables = make_layer(config["@embed_features"])
|
||||
mix = make_layer(config["@mix"])
|
||||
|
||||
model = chain(concatenate_lists(chr_embed, other_tables), mix)
|
||||
model.cfg = config
|
||||
model = chain(concatenate(chr_embed, other_tables), mix)
|
||||
model.attrs["cfg"] = config
|
||||
return model
|
||||
|
||||
|
||||
|
@ -99,48 +94,49 @@ def MaxoutWindowEncoder(config):
|
|||
nP = config["pieces"]
|
||||
depth = config["depth"]
|
||||
|
||||
cnn = chain(
|
||||
ExtractWindow(nW=nW), LayerNorm(Maxout(nO, nO * ((nW * 2) + 1), pieces=nP))
|
||||
)
|
||||
model = clone(Residual(cnn), depth)
|
||||
model.nO = nO
|
||||
model.receptive_field = nW * depth
|
||||
cnn = expand_window(window_size=nW), Maxout(nO=nO, nI=nO * ((nW * 2) + 1), nP=nP, dropout=0.0, normalize=True)
|
||||
model = clone(residual(cnn), depth)
|
||||
model.set_dim("nO", nO)
|
||||
model.attrs["receptive_field"] = nW * depth
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.MishWindowEncoder.v1")
|
||||
def MishWindowEncoder(config):
|
||||
from thinc.v2v import Mish
|
||||
from thinc.layers import Mish
|
||||
|
||||
nO = config["width"]
|
||||
nW = config["window_size"]
|
||||
depth = config["depth"]
|
||||
|
||||
cnn = chain(ExtractWindow(nW=nW), LayerNorm(Mish(nO, nO * ((nW * 2) + 1))))
|
||||
model = clone(Residual(cnn), depth)
|
||||
model.nO = nO
|
||||
cnn = chain(expand_window(window_size=nW), Mish(nO=nO, nI=nO * ((nW * 2) + 1)), LayerNorm(nO))
|
||||
model = clone(residual(cnn), depth)
|
||||
model.set_dim("nO", nO)
|
||||
return model
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.PretrainedVectors.v1")
|
||||
def PretrainedVectors(config):
|
||||
return StaticVectors(config["vectors_name"], config["width"], config["column"])
|
||||
# TODO: actual vectors instead of name
|
||||
return StaticVectors(vectors=config["vectors_name"], nO=config["width"], column=config["column"], dropout=0.0)
|
||||
|
||||
|
||||
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
|
||||
def TorchBiLSTMEncoder(config):
|
||||
import torch.nn
|
||||
from thinc.extra.wrappers import PyTorchWrapperRNN
|
||||
# TODO FIX
|
||||
from thinc.layers import PyTorchRNNWrapper
|
||||
|
||||
width = config["width"]
|
||||
depth = config["depth"]
|
||||
if depth == 0:
|
||||
return layerize(noop())
|
||||
return with_square_sequences(
|
||||
PyTorchWrapperRNN(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
|
||||
return noop()
|
||||
return with_padded(
|
||||
PyTorchRNNWrapper(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
|
||||
)
|
||||
|
||||
|
||||
# TODO: update
|
||||
_EXAMPLE_CONFIG = {
|
||||
"@doc2feats": {
|
||||
"arch": "Doc2Feats",
|
||||
|
|
|
@ -3,6 +3,7 @@ from .pipes import TextCategorizer, Tensorizer, Pipe, Sentencizer
|
|||
from .pipes import SentenceRecognizer
|
||||
from .morphologizer import Morphologizer
|
||||
from .entityruler import EntityRuler
|
||||
from .tok2vec import Tok2Vec
|
||||
from .hooks import SentenceSegmenter, SimilarityHook
|
||||
from .functions import merge_entities, merge_noun_chunks, merge_subtokens
|
||||
|
||||
|
@ -13,6 +14,7 @@ __all__ = [
|
|||
"EntityLinker",
|
||||
"TextCategorizer",
|
||||
"Tensorizer",
|
||||
"Tok2Vec",
|
||||
"Pipe",
|
||||
"Morphologizer",
|
||||
"EntityRuler",
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
from thinc.t2v import Pooling, max_pool, mean_pool
|
||||
from thinc.neural._classes.difference import Siamese, CauchySimilarity
|
||||
from thinc.layers import concatenate, reduce_max, reduce_mean, siamese, CauchySimilarity
|
||||
|
||||
from .pipes import Pipe
|
||||
from ..language import component
|
||||
from .._ml import link_vectors_to_models
|
||||
from ..util import link_vectors_to_models
|
||||
|
||||
|
||||
@component("sentencizer_hook", assigns=["doc.user_hooks"])
|
||||
|
@ -63,7 +62,10 @@ class SimilarityHook(Pipe):
|
|||
|
||||
@classmethod
|
||||
def Model(cls, length):
|
||||
return Siamese(Pooling(max_pool, mean_pool), CauchySimilarity(length))
|
||||
return siamese(
|
||||
concatenate(reduce_max(), reduce_mean()),
|
||||
CauchySimilarity(length * 2)
|
||||
)
|
||||
|
||||
def __call__(self, doc):
|
||||
"""Install similarity hook"""
|
||||
|
@ -80,7 +82,7 @@ class SimilarityHook(Pipe):
|
|||
|
||||
def update(self, doc1_doc2, golds, sgd=None, drop=0.0):
|
||||
self.require_model()
|
||||
sims, bp_sims = self.model.begin_update(doc1_doc2, drop=drop)
|
||||
sims, bp_sims = self.model.begin_update(doc1_doc2)
|
||||
|
||||
def begin_training(self, _=tuple(), pipeline=None, sgd=None, **kwargs):
|
||||
"""Allocate model, using width from tensorizer in pipeline.
|
||||
|
@ -89,7 +91,7 @@ class SimilarityHook(Pipe):
|
|||
pipeline (list): The pipeline the model is part of.
|
||||
"""
|
||||
if self.model is True:
|
||||
self.model = self.Model(pipeline[0].model.nO)
|
||||
self.model = self.Model(pipeline[0].model.get_dim("nO"))
|
||||
link_vectors_to_models(self.vocab)
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
|
|
|
@ -3,19 +3,20 @@ from collections import defaultdict
|
|||
import numpy
|
||||
cimport numpy as np
|
||||
|
||||
from thinc.api import chain
|
||||
from thinc.neural.util import to_categorical, copy_array, get_array_module
|
||||
from thinc.layers import chain, list2array
|
||||
from thinc.util import to_categorical, copy_array, get_array_module
|
||||
|
||||
from .. import util
|
||||
from .pipes import Pipe
|
||||
from ..language import component
|
||||
from .._ml import Tok2Vec, build_morphologizer_model
|
||||
from .._ml import link_vectors_to_models, zero_init, flatten
|
||||
from .._ml import create_default_optimizer
|
||||
from ..util import link_vectors_to_models, create_default_optimizer
|
||||
from ..errors import Errors, TempErrors
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..vocab cimport Vocab
|
||||
from ..morphology cimport Morphology
|
||||
|
||||
from ..ml.component_models import build_morphologizer_model
|
||||
|
||||
|
||||
@component("morphologizer", assigns=["token.morph", "token.pos"])
|
||||
class Morphologizer(Pipe):
|
||||
|
@ -43,7 +44,7 @@ class Morphologizer(Pipe):
|
|||
if self.model in (None, True, False):
|
||||
return None
|
||||
else:
|
||||
return chain(self.model.tok2vec, flatten)
|
||||
return chain(self.model.get_ref("tok2vec"), list2array())
|
||||
|
||||
def __call__(self, doc):
|
||||
features, tokvecs = self.predict([doc])
|
||||
|
@ -60,9 +61,9 @@ class Morphologizer(Pipe):
|
|||
def predict(self, docs):
|
||||
if not any(len(doc) for doc in docs):
|
||||
# Handle case where there are no tokens in any docs.
|
||||
n_labels = self.model.nO
|
||||
guesses = [self.model.ops.allocate((0, n_labels)) for doc in docs]
|
||||
tokvecs = self.model.ops.allocate((0, self.model.tok2vec.nO))
|
||||
n_labels = self.model.get_dim("nO")
|
||||
guesses = [self.model.ops.alloc((0, n_labels)) for doc in docs]
|
||||
tokvecs = self.model.ops.alloc((0, self.model.get_ref("tok2vec").get_dim("nO")))
|
||||
return guesses, tokvecs
|
||||
tokvecs = self.model.tok2vec(docs)
|
||||
scores = self.model.softmax(tokvecs)
|
||||
|
@ -77,7 +78,7 @@ class Morphologizer(Pipe):
|
|||
for field in self._class_map.fields]
|
||||
for i, doc in enumerate(docs):
|
||||
doc_scores = batch_scores[i]
|
||||
doc_guesses = scores_to_guesses(doc_scores, self.model.softmax.out_sizes)
|
||||
doc_guesses = scores_to_guesses(doc_scores, self.model.get_ref("softmax").attrs["nOs"])
|
||||
# Convert the neuron indices into feature IDs.
|
||||
doc_feat_ids = numpy.zeros((len(doc), len(self._class_map.fields)), dtype='i')
|
||||
for j in range(len(doc)):
|
||||
|
@ -110,7 +111,7 @@ class Morphologizer(Pipe):
|
|||
def get_loss(self, examples, scores):
|
||||
guesses = []
|
||||
for doc_scores in scores:
|
||||
guesses.append(scores_to_guesses(doc_scores, self.model.softmax.out_sizes))
|
||||
guesses.append(scores_to_guesses(doc_scores, self.model.get_ref("softmax").attrs["nOs"]))
|
||||
guesses = self.model.ops.xp.vstack(guesses)
|
||||
scores = self.model.ops.xp.vstack(scores)
|
||||
if not isinstance(scores, numpy.ndarray):
|
||||
|
@ -120,7 +121,7 @@ class Morphologizer(Pipe):
|
|||
cdef int idx = 0
|
||||
# Do this on CPU, as we can't vectorize easily.
|
||||
target = numpy.zeros(scores.shape, dtype='f')
|
||||
field_sizes = self.model.softmax.out_sizes
|
||||
field_sizes = self.model.get_ref("softmax").attrs["nOs"]
|
||||
for example in examples:
|
||||
doc = example.doc
|
||||
gold = example.gold
|
||||
|
|
|
@ -3,11 +3,11 @@
|
|||
import numpy
|
||||
import srsly
|
||||
import random
|
||||
from thinc.api import chain
|
||||
from thinc.v2v import Affine, Maxout, Softmax
|
||||
from thinc.misc import LayerNorm
|
||||
from thinc.neural.util import to_categorical
|
||||
from thinc.neural.util import get_array_module
|
||||
from thinc.layers import chain, Linear, Maxout, Softmax, LayerNorm, list2array
|
||||
from thinc.initializers import zero_init
|
||||
from thinc.loss import CosineDistance
|
||||
from thinc.util import to_categorical, get_array_module
|
||||
from thinc.model import set_dropout_rate
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..syntax.nn_parser cimport Parser
|
||||
|
@ -21,13 +21,14 @@ from ..language import Language, component
|
|||
from ..syntax import nonproj
|
||||
from ..gold import Example
|
||||
from ..attrs import POS, ID
|
||||
from ..util import link_vectors_to_models, create_default_optimizer
|
||||
from ..parts_of_speech import X
|
||||
from ..kb import KnowledgeBase
|
||||
from .._ml import Tok2Vec, build_tagger_model, cosine, get_cossim_loss
|
||||
from .._ml import build_text_classifier, build_simple_cnn_text_classifier
|
||||
from .._ml import build_bow_text_classifier, build_nel_encoder
|
||||
from .._ml import link_vectors_to_models, zero_init, flatten
|
||||
from .._ml import masked_language_model, create_default_optimizer, get_cossim_loss
|
||||
from ..ml.component_models import Tok2Vec, build_tagger_model
|
||||
from ..ml.component_models import build_text_classifier
|
||||
from ..ml.component_models import build_simple_cnn_text_classifier
|
||||
from ..ml.component_models import build_bow_text_classifier, build_nel_encoder
|
||||
from ..ml.component_models import masked_language_model
|
||||
from ..errors import Errors, TempErrors, user_warning, Warnings
|
||||
from .. import util
|
||||
|
||||
|
@ -126,13 +127,15 @@ class Pipe(object):
|
|||
"""Modify a batch of documents, using pre-computed scores."""
|
||||
raise NotImplementedError
|
||||
|
||||
def update(self, examples, drop=0.0, sgd=None, losses=None):
|
||||
def update(self, examples, set_annotations=False, drop=0.0, sgd=None, losses=None):
|
||||
"""Learn from a batch of documents and gold-standard information,
|
||||
updating the pipe's model.
|
||||
|
||||
Delegates to predict() and get_loss().
|
||||
"""
|
||||
pass
|
||||
if set_annotations:
|
||||
docs = (self._get_doc(ex) for ex in examples)
|
||||
docs = list(self.pipe(docs))
|
||||
|
||||
def rehearse(self, examples, sgd=None, losses=None, **config):
|
||||
pass
|
||||
|
@ -152,7 +155,7 @@ class Pipe(object):
|
|||
raise NotImplementedError
|
||||
|
||||
def create_optimizer(self):
|
||||
return create_default_optimizer(self.model.ops, **self.cfg.get("optimizer", {}))
|
||||
return create_default_optimizer()
|
||||
|
||||
def begin_training(
|
||||
self, get_examples=lambda: [], pipeline=None, sgd=None, **kwargs
|
||||
|
@ -163,10 +166,30 @@ class Pipe(object):
|
|||
self.model = self.Model(**self.cfg)
|
||||
if hasattr(self, "vocab"):
|
||||
link_vectors_to_models(self.vocab)
|
||||
self.model.initialize()
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
return sgd
|
||||
|
||||
def get_gradients(self):
|
||||
"""Get non-zero gradients of the model's parameters, as a dictionary
|
||||
keyed by the parameter ID. The values are (weights, gradients) tuples.
|
||||
"""
|
||||
gradients = {}
|
||||
if self.model in (None, True, False):
|
||||
return gradients
|
||||
queue = [self.model]
|
||||
seen = set()
|
||||
for node in queue:
|
||||
if node.id in seen:
|
||||
continue
|
||||
seen.add(node.id)
|
||||
if hasattr(node, "_mem") and node._mem.gradient.any():
|
||||
gradients[node.id] = [node._mem.weights, node._mem.gradient]
|
||||
if hasattr(node, "_layers"):
|
||||
queue.extend(node._layers)
|
||||
return gradients
|
||||
|
||||
def use_params(self, params):
|
||||
"""Modify the pipe's model, to use the given parameter values."""
|
||||
with self.model.use_params(params):
|
||||
|
@ -193,7 +216,7 @@ class Pipe(object):
|
|||
def load_model(b):
|
||||
# TODO: Remove this once we don't have to handle previous models
|
||||
if self.cfg.get("pretrained_dims") and "pretrained_vectors" not in self.cfg:
|
||||
self.cfg["pretrained_vectors"] = self.vocab.vectors.name
|
||||
self.cfg["pretrained_vectors"] = self.vocab.vectors
|
||||
if self.model is True:
|
||||
self.model = self.Model(**self.cfg)
|
||||
try:
|
||||
|
@ -226,7 +249,7 @@ class Pipe(object):
|
|||
def load_model(p):
|
||||
# TODO: Remove this once we don't have to handle previous models
|
||||
if self.cfg.get("pretrained_dims") and "pretrained_vectors" not in self.cfg:
|
||||
self.cfg["pretrained_vectors"] = self.vocab.vectors.name
|
||||
self.cfg["pretrained_vectors"] = self.vocab.vectors
|
||||
if self.model is True:
|
||||
self.model = self.Model(**self.cfg)
|
||||
try:
|
||||
|
@ -254,10 +277,10 @@ class Tensorizer(Pipe):
|
|||
width (int): Output size of the model.
|
||||
embed_size (int): Number of vectors in the embedding table.
|
||||
**cfg: Config parameters.
|
||||
RETURNS (Model): A `thinc.neural.Model` or similar instance.
|
||||
RETURNS (Model): A `thinc.model.Model` or similar instance.
|
||||
"""
|
||||
input_size = util.env_opt("token_vector_width", cfg.get("input_size", 96))
|
||||
return zero_init(Affine(output_size, input_size, drop_factor=0.0))
|
||||
return Linear(output_size, input_size, init_W=zero_init)
|
||||
|
||||
def __init__(self, vocab, model=True, **cfg):
|
||||
"""Construct a new statistical model. Weights are not allocated on
|
||||
|
@ -277,7 +300,6 @@ class Tensorizer(Pipe):
|
|||
self.model = model
|
||||
self.input_models = []
|
||||
self.cfg = dict(cfg)
|
||||
self.cfg.setdefault("cnn_maxout_pieces", 3)
|
||||
|
||||
def __call__(self, example):
|
||||
"""Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM
|
||||
|
@ -337,7 +359,7 @@ class Tensorizer(Pipe):
|
|||
raise ValueError(Errors.E076.format(rows=tensor.shape[0], words=len(doc)))
|
||||
doc.tensor = tensor
|
||||
|
||||
def update(self, examples, state=None, drop=0.0, sgd=None, losses=None):
|
||||
def update(self, examples, state=None, drop=0.0, set_annotations=False, sgd=None, losses=None):
|
||||
"""Update the model.
|
||||
|
||||
docs (iterable): A batch of `Doc` objects.
|
||||
|
@ -350,17 +372,23 @@ class Tensorizer(Pipe):
|
|||
examples = Example.to_example_objects(examples)
|
||||
inputs = []
|
||||
bp_inputs = []
|
||||
set_dropout_rate(self.model, drop)
|
||||
for tok2vec in self.input_models:
|
||||
tensor, bp_tensor = tok2vec.begin_update([ex.doc for ex in examples], drop=drop)
|
||||
set_dropout_rate(tok2vec, drop)
|
||||
tensor, bp_tensor = tok2vec.begin_update([ex.doc for ex in examples])
|
||||
inputs.append(tensor)
|
||||
bp_inputs.append(bp_tensor)
|
||||
inputs = self.model.ops.xp.hstack(inputs)
|
||||
scores, bp_scores = self.model.begin_update(inputs, drop=drop)
|
||||
scores, bp_scores = self.model.begin_update(inputs)
|
||||
loss, d_scores = self.get_loss(examples, scores)
|
||||
d_inputs = bp_scores(d_scores, sgd=sgd)
|
||||
d_inputs = self.model.ops.xp.split(d_inputs, len(self.input_models), axis=1)
|
||||
for d_input, bp_input in zip(d_inputs, bp_inputs):
|
||||
bp_input(d_input, sgd=sgd)
|
||||
bp_input(d_input)
|
||||
if sgd is not None:
|
||||
for tok2vec in self.input_models:
|
||||
tok2vec.finish_update(sgd)
|
||||
self.model.finish_update(sgd)
|
||||
if losses is not None:
|
||||
losses.setdefault(self.name, 0.0)
|
||||
losses[self.name] += loss
|
||||
|
@ -387,6 +415,7 @@ class Tensorizer(Pipe):
|
|||
self.input_models.append(model.tok2vec)
|
||||
if self.model is True:
|
||||
self.model = self.Model(**self.cfg)
|
||||
self.model.initialize()
|
||||
link_vectors_to_models(self.vocab)
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
|
@ -405,7 +434,6 @@ class Tagger(Pipe):
|
|||
self.model = model
|
||||
self._rehearsal_model = None
|
||||
self.cfg = dict(sorted(cfg.items()))
|
||||
self.cfg.setdefault("cnn_maxout_pieces", 2)
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
|
@ -416,12 +444,12 @@ class Tagger(Pipe):
|
|||
if self.model in (None, True, False):
|
||||
return None
|
||||
else:
|
||||
return chain(self.model.tok2vec, flatten)
|
||||
return chain(self.model.get_ref("tok2vec"), list2array())
|
||||
|
||||
def __call__(self, example):
|
||||
doc = self._get_doc(example)
|
||||
tags, tokvecs = self.predict([doc])
|
||||
self.set_annotations([doc], tags, tensors=tokvecs)
|
||||
tags = self.predict([doc])
|
||||
self.set_annotations([doc], tags)
|
||||
if isinstance(example, Example):
|
||||
example.doc = doc
|
||||
return example
|
||||
|
@ -430,8 +458,10 @@ class Tagger(Pipe):
|
|||
def pipe(self, stream, batch_size=128, n_threads=-1, as_example=False):
|
||||
for examples in util.minibatch(stream, size=batch_size):
|
||||
docs = [self._get_doc(ex) for ex in examples]
|
||||
tag_ids, tokvecs = self.predict(docs)
|
||||
self.set_annotations(docs, tag_ids, tensors=tokvecs)
|
||||
tag_ids = self.predict(docs)
|
||||
assert len(docs) == len(examples)
|
||||
assert len(tag_ids) == len(examples)
|
||||
self.set_annotations(docs, tag_ids)
|
||||
|
||||
if as_example:
|
||||
annotated_examples = []
|
||||
|
@ -447,20 +477,25 @@ class Tagger(Pipe):
|
|||
if not any(len(doc) for doc in docs):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
n_labels = len(self.labels)
|
||||
guesses = [self.model.ops.allocate((0, n_labels)) for doc in docs]
|
||||
tokvecs = self.model.ops.allocate((0, self.model.tok2vec.nO))
|
||||
return guesses, tokvecs
|
||||
tokvecs = self.model.tok2vec(docs)
|
||||
scores = self.model.softmax(tokvecs)
|
||||
guesses = [self.model.ops.alloc((0, n_labels)) for doc in docs]
|
||||
assert len(guesses) == len(docs)
|
||||
return guesses
|
||||
scores = self.model.predict(docs)
|
||||
assert len(scores) == len(docs), (len(scores), len(docs))
|
||||
guesses = self._scores2guesses(scores)
|
||||
assert len(guesses) == len(docs)
|
||||
return guesses
|
||||
|
||||
def _scores2guesses(self, scores):
|
||||
guesses = []
|
||||
for doc_scores in scores:
|
||||
doc_guesses = doc_scores.argmax(axis=1)
|
||||
if not isinstance(doc_guesses, numpy.ndarray):
|
||||
doc_guesses = doc_guesses.get()
|
||||
guesses.append(doc_guesses)
|
||||
return guesses, tokvecs
|
||||
return guesses
|
||||
|
||||
def set_annotations(self, docs, batch_tag_ids, tensors=None):
|
||||
def set_annotations(self, docs, batch_tag_ids):
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
cdef Doc doc
|
||||
|
@ -483,15 +518,9 @@ class Tagger(Pipe):
|
|||
else:
|
||||
doc.c[j].tag = self.vocab.strings[self.labels[tag_id]]
|
||||
idx += 1
|
||||
if tensors is not None and len(tensors):
|
||||
if isinstance(doc.tensor, numpy.ndarray) \
|
||||
and not isinstance(tensors[i], numpy.ndarray):
|
||||
doc.extend_tensor(tensors[i].get())
|
||||
else:
|
||||
doc.extend_tensor(tensors[i])
|
||||
doc.is_tagged = True
|
||||
|
||||
def update(self, examples, drop=0., sgd=None, losses=None):
|
||||
def update(self, examples, drop=0., sgd=None, losses=None, set_annotations=False):
|
||||
self.require_model()
|
||||
examples = Example.to_example_objects(examples)
|
||||
if losses is not None and self.name not in losses:
|
||||
|
@ -500,13 +529,18 @@ class Tagger(Pipe):
|
|||
if not any(len(ex.doc) if ex.doc else 0 for ex in examples):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
return
|
||||
|
||||
tag_scores, bp_tag_scores = self.model.begin_update([ex.doc for ex in examples], drop=drop)
|
||||
set_dropout_rate(self.model, drop)
|
||||
tag_scores, bp_tag_scores = self.model.begin_update([ex.doc for ex in examples])
|
||||
loss, d_tag_scores = self.get_loss(examples, tag_scores)
|
||||
bp_tag_scores(d_tag_scores, sgd=sgd)
|
||||
bp_tag_scores(d_tag_scores)
|
||||
if sgd not in (None, False):
|
||||
self.model.finish_update(sgd)
|
||||
|
||||
if losses is not None:
|
||||
losses[self.name] += loss
|
||||
if set_annotations:
|
||||
docs = [ex.doc for ex in examples]
|
||||
self.set_annotations(docs, self._scores2guesses(tag_scores))
|
||||
|
||||
def rehearse(self, examples, drop=0., sgd=None, losses=None):
|
||||
"""Perform a 'rehearsal' update, where we try to match the output of
|
||||
|
@ -519,10 +553,12 @@ class Tagger(Pipe):
|
|||
if not any(len(doc) for doc in docs):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
return
|
||||
guesses, backprop = self.model.begin_update(docs, drop=drop)
|
||||
set_dropout_rate(self.model, drop)
|
||||
guesses, backprop = self.model.begin_update(docs)
|
||||
target = self._rehearsal_model(examples)
|
||||
gradient = guesses - target
|
||||
backprop(gradient, sgd=sgd)
|
||||
backprop(gradient)
|
||||
self.model.finish_update(sgd)
|
||||
if losses is not None:
|
||||
losses.setdefault(self.name, 0.0)
|
||||
losses[self.name] += (gradient**2).sum()
|
||||
|
@ -546,7 +582,7 @@ class Tagger(Pipe):
|
|||
known_labels[idx] = 0.
|
||||
idx += 1
|
||||
correct = self.model.ops.xp.array(correct, dtype="i")
|
||||
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
|
||||
d_scores = scores - to_categorical(correct, n_classes=scores.shape[1])
|
||||
d_scores *= self.model.ops.asarray(known_labels)
|
||||
loss = (d_scores**2).sum()
|
||||
docs = [ex.doc for ex in examples]
|
||||
|
@ -566,6 +602,7 @@ class Tagger(Pipe):
|
|||
new_tag_map[tag] = orig_tag_map[tag]
|
||||
else:
|
||||
new_tag_map[tag] = {POS: X}
|
||||
|
||||
cdef Vocab vocab = self.vocab
|
||||
if new_tag_map:
|
||||
vocab.morphology = Morphology(vocab.strings, new_tag_map,
|
||||
|
@ -577,16 +614,39 @@ class Tagger(Pipe):
|
|||
if hp in kwargs:
|
||||
self.cfg[hp] = kwargs[hp]
|
||||
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
|
||||
# Get batch of example docs, example outputs to call begin_training().
|
||||
# This lets the model infer shapes.
|
||||
n_tags = self.vocab.morphology.n_tags
|
||||
for node in self.model.walk():
|
||||
# TODO: softmax hack ?
|
||||
if node.name == "softmax" and node.has_dim("nO") is None:
|
||||
node.set_dim("nO", n_tags)
|
||||
link_vectors_to_models(self.vocab)
|
||||
self.model.initialize()
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
return sgd
|
||||
|
||||
@classmethod
|
||||
def Model(cls, n_tags, **cfg):
|
||||
def Model(cls, n_tags=None, **cfg):
|
||||
if cfg.get("pretrained_dims") and not cfg.get("pretrained_vectors"):
|
||||
raise ValueError(TempErrors.T008)
|
||||
return build_tagger_model(n_tags, **cfg)
|
||||
if "tok2vec" in cfg:
|
||||
tok2vec = cfg["tok2vec"]
|
||||
else:
|
||||
config = {
|
||||
"width": cfg.get("token_vector_width", 96),
|
||||
"embed_size": cfg.get("embed_size", 2000),
|
||||
"pretrained_vectors": cfg.get("pretrained_vectors", None),
|
||||
"window_size": cfg.get("window_size", 1),
|
||||
"cnn_maxout_pieces": cfg.get("cnn_maxout_pieces", 3),
|
||||
"subword_features": cfg.get("subword_features", True),
|
||||
"char_embed": cfg.get("char_embed", False),
|
||||
"conv_depth": cfg.get("conv_depth", 4),
|
||||
"bilstm_depth": cfg.get("bilstm_depth", 0),
|
||||
}
|
||||
tok2vec = Tok2Vec(**config)
|
||||
return build_tagger_model(n_tags, tok2vec)
|
||||
|
||||
def add_label(self, label, values=None):
|
||||
if not isinstance(label, str):
|
||||
|
@ -633,12 +693,12 @@ class Tagger(Pipe):
|
|||
def load_model(b):
|
||||
# TODO: Remove this once we don't have to handle previous models
|
||||
if self.cfg.get("pretrained_dims") and "pretrained_vectors" not in self.cfg:
|
||||
self.cfg["pretrained_vectors"] = self.vocab.vectors.name
|
||||
self.cfg["pretrained_vectors"] = self.vocab.vectors
|
||||
if self.model is True:
|
||||
token_vector_width = util.env_opt(
|
||||
"token_vector_width",
|
||||
self.cfg.get("token_vector_width", 96))
|
||||
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
|
||||
self.model = self.Model(**self.cfg)
|
||||
try:
|
||||
self.model.from_bytes(b)
|
||||
except AttributeError:
|
||||
|
@ -676,9 +736,9 @@ class Tagger(Pipe):
|
|||
def load_model(p):
|
||||
# TODO: Remove this once we don't have to handle previous models
|
||||
if self.cfg.get("pretrained_dims") and "pretrained_vectors" not in self.cfg:
|
||||
self.cfg["pretrained_vectors"] = self.vocab.vectors.name
|
||||
self.cfg["pretrained_vectors"] = self.vocab.vectors
|
||||
if self.model is True:
|
||||
self.model = self.Model(self.vocab.morphology.n_tags, **self.cfg)
|
||||
self.model = self.Model(**self.cfg)
|
||||
with p.open("rb") as file_:
|
||||
try:
|
||||
self.model.from_bytes(file_.read())
|
||||
|
@ -753,10 +813,12 @@ class SentenceRecognizer(Tagger):
|
|||
if not any(len(ex.doc) if ex.doc else 0 for ex in examples):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
return
|
||||
|
||||
tag_scores, bp_tag_scores = self.model.begin_update([ex.doc for ex in examples], drop=drop)
|
||||
set_dropout_rate(self.model, drop)
|
||||
tag_scores, bp_tag_scores = self.model.begin_update([ex.doc for ex in examples])
|
||||
loss, d_tag_scores = self.get_loss(examples, tag_scores)
|
||||
bp_tag_scores(d_tag_scores, sgd=sgd)
|
||||
bp_tag_scores(d_tag_scores)
|
||||
if sgd is not None:
|
||||
self.model.finish_update(sgd)
|
||||
|
||||
if losses is not None:
|
||||
losses[self.name] += loss
|
||||
|
@ -780,7 +842,7 @@ class SentenceRecognizer(Tagger):
|
|||
known_labels[idx] = 0.
|
||||
idx += 1
|
||||
correct = self.model.ops.xp.array(correct, dtype="i")
|
||||
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
|
||||
d_scores = scores - to_categorical(correct, n_classes=scores.shape[1])
|
||||
d_scores *= self.model.ops.asarray(known_labels)
|
||||
loss = (d_scores**2).sum()
|
||||
docs = [ex.doc for ex in examples]
|
||||
|
@ -797,6 +859,7 @@ class SentenceRecognizer(Tagger):
|
|||
self.model = self.Model(len(self.labels), **self.cfg)
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
self.model.initialize()
|
||||
return sgd
|
||||
|
||||
@classmethod
|
||||
|
@ -918,6 +981,7 @@ class MultitaskObjective(Tagger):
|
|||
token_vector_width = util.env_opt("token_vector_width")
|
||||
self.model = self.Model(len(self.labels), tok2vec=tok2vec)
|
||||
link_vectors_to_models(self.vocab)
|
||||
self.model.initialize()
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
return sgd
|
||||
|
@ -925,14 +989,12 @@ class MultitaskObjective(Tagger):
|
|||
@classmethod
|
||||
def Model(cls, n_tags, tok2vec=None, **cfg):
|
||||
token_vector_width = util.env_opt("token_vector_width", 96)
|
||||
softmax = Softmax(n_tags, token_vector_width*2)
|
||||
model = chain(
|
||||
tok2vec,
|
||||
LayerNorm(Maxout(token_vector_width*2, token_vector_width, pieces=3)),
|
||||
softmax
|
||||
Maxout(nO=token_vector_width*2, nI=token_vector_width, nP=3, dropout=0.0),
|
||||
LayerNorm(token_vector_width*2),
|
||||
Softmax(nO=n_tags, nI=token_vector_width*2)
|
||||
)
|
||||
model.tok2vec = tok2vec
|
||||
model.softmax = softmax
|
||||
return model
|
||||
|
||||
def predict(self, docs):
|
||||
|
@ -958,7 +1020,7 @@ class MultitaskObjective(Tagger):
|
|||
correct[idx] = self.labels[label]
|
||||
idx += 1
|
||||
correct = self.model.ops.xp.array(correct, dtype="i")
|
||||
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
|
||||
d_scores = scores - to_categorical(correct, n_classes=scores.shape[1])
|
||||
loss = (d_scores**2).sum()
|
||||
return float(loss), d_scores
|
||||
|
||||
|
@ -1047,19 +1109,18 @@ class ClozeMultitask(Pipe):
|
|||
def Model(cls, vocab, tok2vec, **cfg):
|
||||
output_size = vocab.vectors.data.shape[1]
|
||||
output_layer = chain(
|
||||
LayerNorm(Maxout(output_size, tok2vec.nO, pieces=3)),
|
||||
zero_init(Affine(output_size, output_size, drop_factor=0.0))
|
||||
Maxout(nO=output_size, nI=tok2vec.get_dim("nO"), nP=3, normalize=True, dropout=0.0),
|
||||
Linear(nO=output_size, nI=output_size, init_W=zero_init)
|
||||
)
|
||||
model = chain(tok2vec, output_layer)
|
||||
model = masked_language_model(vocab, model)
|
||||
model.tok2vec = tok2vec
|
||||
model.output_layer = output_layer
|
||||
return model
|
||||
|
||||
def __init__(self, vocab, model=True, **cfg):
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
self.cfg = cfg
|
||||
self.distance = CosineDistance(ignore_zeros=True, normalize=False)
|
||||
|
||||
def set_annotations(self, docs, dep_ids, tensors=None):
|
||||
pass
|
||||
|
@ -1069,7 +1130,8 @@ class ClozeMultitask(Pipe):
|
|||
link_vectors_to_models(self.vocab)
|
||||
if self.model is True:
|
||||
self.model = self.Model(self.vocab, tok2vec)
|
||||
X = self.model.ops.allocate((5, self.model.tok2vec.nO))
|
||||
X = self.model.ops.alloc((5, self.model.get_ref("tok2vec").get_dim("nO")))
|
||||
self.model.initialize()
|
||||
self.model.output_layer.begin_training(X)
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
|
@ -1088,10 +1150,11 @@ class ClozeMultitask(Pipe):
|
|||
# and look them up all at once. This prevents data copying.
|
||||
ids = self.model.ops.flatten([ex.doc.to_array(ID).ravel() for ex in examples])
|
||||
target = vectors[ids]
|
||||
loss, gradient = get_cossim_loss(prediction, target, ignore_zeros=True)
|
||||
return float(loss), gradient
|
||||
gradient = self.distance.get_grad(prediction, target)
|
||||
loss = self.distance.get_loss(prediction, target)
|
||||
return loss, gradient
|
||||
|
||||
def update(self, examples, drop=0., sgd=None, losses=None):
|
||||
def update(self, examples, drop=0., set_annotations=False, sgd=None, losses=None):
|
||||
pass
|
||||
|
||||
def rehearse(self, examples, drop=0., sgd=None, losses=None):
|
||||
|
@ -1099,9 +1162,12 @@ class ClozeMultitask(Pipe):
|
|||
examples = Example.to_example_objects(examples)
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
predictions, bp_predictions = self.model.begin_update([ex.doc for ex in examples], drop=drop)
|
||||
set_dropout_rate(self.model, drop)
|
||||
predictions, bp_predictions = self.model.begin_update([ex.doc for ex in examples])
|
||||
loss, d_predictions = self.get_loss(examples, self.vocab.vectors.data, predictions)
|
||||
bp_predictions(d_predictions, sgd=sgd)
|
||||
bp_predictions(d_predictions)
|
||||
if sgd is not None:
|
||||
self.model.finish_update(sgd)
|
||||
|
||||
if losses is not None:
|
||||
losses[self.name] += loss
|
||||
|
@ -1115,19 +1181,45 @@ class TextCategorizer(Pipe):
|
|||
"""
|
||||
|
||||
@classmethod
|
||||
def Model(cls, nr_class=1, **cfg):
|
||||
embed_size = util.env_opt("embed_size", 2000)
|
||||
if "token_vector_width" in cfg:
|
||||
token_vector_width = cfg["token_vector_width"]
|
||||
def Model(cls, nr_class=1, exclusive_classes=None, **cfg):
|
||||
if nr_class == 1:
|
||||
exclusive_classes = False
|
||||
if exclusive_classes is None:
|
||||
raise ValueError(
|
||||
"TextCategorizer Model must specify 'exclusive_classes'. "
|
||||
"This setting determines whether the model will output "
|
||||
"scores that sum to 1 for each example. If only one class "
|
||||
"is true for each example, you should set exclusive_classes=True. "
|
||||
"For 'multi_label' classification, set exclusive_classes=False."
|
||||
)
|
||||
if "embed_size" not in cfg:
|
||||
cfg["embed_size"] = util.env_opt("embed_size", 2000)
|
||||
if "token_vector_width" not in cfg:
|
||||
cfg["token_vector_width"] = util.env_opt("token_vector_width", 96)
|
||||
if cfg.get("architecture") == "bow":
|
||||
return build_bow_text_classifier(nr_class, exclusive_classes, **cfg)
|
||||
else:
|
||||
token_vector_width = util.env_opt("token_vector_width", 96)
|
||||
if cfg.get("architecture") == "simple_cnn":
|
||||
tok2vec = Tok2Vec(token_vector_width, embed_size, **cfg)
|
||||
return build_simple_cnn_text_classifier(tok2vec, nr_class, **cfg)
|
||||
elif cfg.get("architecture") == "bow":
|
||||
return build_bow_text_classifier(nr_class, **cfg)
|
||||
else:
|
||||
return build_text_classifier(nr_class, **cfg)
|
||||
if "tok2vec" in cfg:
|
||||
tok2vec = cfg["tok2vec"]
|
||||
else:
|
||||
config = {
|
||||
"width": cfg.get("token_vector_width", 96),
|
||||
"embed_size": cfg.get("embed_size", 2000),
|
||||
"pretrained_vectors": cfg.get("pretrained_vectors", None),
|
||||
"window_size": cfg.get("window_size", 1),
|
||||
"cnn_maxout_pieces": cfg.get("cnn_maxout_pieces", 3),
|
||||
"subword_features": cfg.get("subword_features", True),
|
||||
"char_embed": cfg.get("char_embed", False),
|
||||
"conv_depth": cfg.get("conv_depth", 4),
|
||||
"bilstm_depth": cfg.get("bilstm_depth", 0),
|
||||
}
|
||||
tok2vec = Tok2Vec(**config)
|
||||
return build_simple_cnn_text_classifier(
|
||||
tok2vec,
|
||||
nr_class,
|
||||
exclusive_classes,
|
||||
**cfg
|
||||
)
|
||||
|
||||
@property
|
||||
def tok2vec(self):
|
||||
|
@ -1141,6 +1233,8 @@ class TextCategorizer(Pipe):
|
|||
self.model = model
|
||||
self._rehearsal_model = None
|
||||
self.cfg = dict(cfg)
|
||||
if "exclusive_classes" not in cfg:
|
||||
self.cfg["exclusive_classes"] = True
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
|
@ -1180,7 +1274,7 @@ class TextCategorizer(Pipe):
|
|||
scores = xp.zeros((len(docs), len(self.labels)))
|
||||
return scores, tensors
|
||||
|
||||
scores = self.model(docs)
|
||||
scores = self.model.predict(docs)
|
||||
scores = self.model.ops.asarray(scores)
|
||||
return scores, tensors
|
||||
|
||||
|
@ -1189,18 +1283,24 @@ class TextCategorizer(Pipe):
|
|||
for j, label in enumerate(self.labels):
|
||||
doc.cats[label] = float(scores[i, j])
|
||||
|
||||
def update(self, examples, state=None, drop=0., sgd=None, losses=None):
|
||||
def update(self, examples, state=None, drop=0., set_annotations=False, sgd=None, losses=None):
|
||||
self.require_model()
|
||||
examples = Example.to_example_objects(examples)
|
||||
if not any(len(ex.doc) if ex.doc else 0 for ex in examples):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
return
|
||||
scores, bp_scores = self.model.begin_update([ex.doc for ex in examples], drop=drop)
|
||||
set_dropout_rate(self.model, drop)
|
||||
scores, bp_scores = self.model.begin_update([ex.doc for ex in examples])
|
||||
loss, d_scores = self.get_loss(examples, scores)
|
||||
bp_scores(d_scores, sgd=sgd)
|
||||
bp_scores(d_scores)
|
||||
if sgd is not None:
|
||||
self.model.finish_update(sgd)
|
||||
if losses is not None:
|
||||
losses.setdefault(self.name, 0.0)
|
||||
losses[self.name] += loss
|
||||
if set_annotations:
|
||||
docs = [ex.doc for ex in examples]
|
||||
self.set_annotations(docs, scores=scores)
|
||||
|
||||
def rehearse(self, examples, drop=0., sgd=None, losses=None):
|
||||
if self._rehearsal_model is None:
|
||||
|
@ -1210,10 +1310,13 @@ class TextCategorizer(Pipe):
|
|||
if not any(len(doc) for doc in docs):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
return
|
||||
scores, bp_scores = self.model.begin_update(docs, drop=drop)
|
||||
set_dropout_rate(self.model, drop)
|
||||
scores, bp_scores = self.model.begin_update(docs)
|
||||
target = self._rehearsal_model(examples)
|
||||
gradient = scores - target
|
||||
bp_scores(gradient, sgd=sgd)
|
||||
bp_scores(gradient)
|
||||
if sgd is not None:
|
||||
self.model.finish_update(sgd)
|
||||
if losses is not None:
|
||||
losses.setdefault(self.name, 0.0)
|
||||
losses[self.name] += (gradient**2).sum()
|
||||
|
@ -1247,7 +1350,7 @@ class TextCategorizer(Pipe):
|
|||
# - a huge problem.
|
||||
raise ValueError(Errors.E116)
|
||||
# smaller = self.model._layers[-1]
|
||||
# larger = Affine(len(self.labels)+1, smaller.nI)
|
||||
# larger = Linear(len(self.labels)+1, smaller.nI)
|
||||
# copy_array(larger.W[:smaller.nO], smaller.W)
|
||||
# copy_array(larger.b[:smaller.nO], smaller.b)
|
||||
# self.model._layers[-1] = larger
|
||||
|
@ -1259,12 +1362,15 @@ class TextCategorizer(Pipe):
|
|||
for cat in example.doc_annotation.cats:
|
||||
self.add_label(cat)
|
||||
if self.model is True:
|
||||
self.cfg["pretrained_vectors"] = kwargs.get("pretrained_vectors")
|
||||
self.cfg.update(kwargs)
|
||||
self.require_labels()
|
||||
self.model = self.Model(len(self.labels), **self.cfg)
|
||||
link_vectors_to_models(self.vocab)
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
# TODO: use get_examples instead
|
||||
docs = [Doc(Vocab(), words=["hello"])]
|
||||
self.model.initialize(X=docs)
|
||||
return sgd
|
||||
|
||||
|
||||
|
@ -1382,6 +1488,7 @@ class EntityLinker(Pipe):
|
|||
self.model = True
|
||||
self.kb = None
|
||||
self.cfg = dict(cfg)
|
||||
self.distance = CosineDistance(normalize=False)
|
||||
|
||||
def set_kb(self, kb):
|
||||
self.kb = kb
|
||||
|
@ -1399,16 +1506,14 @@ class EntityLinker(Pipe):
|
|||
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None, **kwargs):
|
||||
self.require_kb()
|
||||
self.cfg["entity_width"] = self.kb.entity_vector_length
|
||||
|
||||
if self.model is True:
|
||||
self.model = self.Model(**self.cfg)
|
||||
|
||||
self.model.initialize()
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
|
||||
return sgd
|
||||
|
||||
def update(self, examples, state=None, drop=0.0, sgd=None, losses=None):
|
||||
def update(self, examples, state=None, set_annotations=False, drop=0.0, sgd=None, losses=None):
|
||||
self.require_model()
|
||||
self.require_kb()
|
||||
if losses is not None:
|
||||
|
@ -1416,9 +1521,12 @@ class EntityLinker(Pipe):
|
|||
if not examples:
|
||||
return 0
|
||||
examples = Example.to_example_objects(examples)
|
||||
|
||||
sentence_docs = []
|
||||
docs = [ex.doc for ex in examples]
|
||||
if set_annotations:
|
||||
# This seems simpler than other ways to get that exact output -- but
|
||||
# it does run the model twice :(
|
||||
predictions = self.model.predict(docs)
|
||||
golds = [ex.gold for ex in examples]
|
||||
|
||||
for doc, gold in zip(docs, golds):
|
||||
|
@ -1443,13 +1551,17 @@ class EntityLinker(Pipe):
|
|||
except AttributeError:
|
||||
# Catch the exception when ent.sent is None and provide a user-friendly warning
|
||||
raise RuntimeError(Errors.E030)
|
||||
|
||||
sentence_encodings, bp_context = self.model.begin_update(sentence_docs, drop=drop)
|
||||
set_dropout_rate(self.model, drop)
|
||||
sentence_encodings, bp_context = self.model.begin_update(sentence_docs)
|
||||
loss, d_scores = self.get_similarity_loss(scores=sentence_encodings, golds=golds)
|
||||
bp_context(d_scores, sgd=sgd)
|
||||
bp_context(d_scores)
|
||||
if sgd is not None:
|
||||
self.model.finish_update(sgd)
|
||||
|
||||
if losses is not None:
|
||||
losses[self.name] += loss
|
||||
if set_annotations:
|
||||
self.set_annotations(docs, predictions)
|
||||
return loss
|
||||
|
||||
def get_similarity_loss(self, golds, scores):
|
||||
|
@ -1467,7 +1579,8 @@ class EntityLinker(Pipe):
|
|||
if scores.shape != entity_encodings.shape:
|
||||
raise RuntimeError(Errors.E147.format(method="get_similarity_loss", msg="gold entities do not match up"))
|
||||
|
||||
loss, gradients = get_cossim_loss(yh=scores, y=entity_encodings)
|
||||
gradients = self.distance.get_grad(scores, entity_encodings)
|
||||
loss = self.distance.get_loss(scores, entity_encodings)
|
||||
loss = loss / len(entity_encodings)
|
||||
return loss, gradients
|
||||
|
||||
|
@ -1533,7 +1646,7 @@ class EntityLinker(Pipe):
|
|||
for sent in doc.sents:
|
||||
sent_doc = sent.as_doc()
|
||||
# currently, the context is the same for each entity in a sentence (should be refined)
|
||||
sentence_encoding = self.model([sent_doc])[0]
|
||||
sentence_encoding = self.model.predict([sent_doc])[0]
|
||||
xp = get_array_module(sentence_encoding)
|
||||
sentence_encoding_t = sentence_encoding.T
|
||||
sentence_norm = xp.linalg.norm(sentence_encoding_t)
|
||||
|
@ -1720,7 +1833,6 @@ class Sentencizer(Pipe):
|
|||
self.set_annotations(docs, scores, tensors=tensors)
|
||||
else:
|
||||
self.set_annotations(docs, predictions)
|
||||
|
||||
if as_example:
|
||||
annotated_examples = []
|
||||
for ex, doc in zip(examples, docs):
|
||||
|
@ -1729,7 +1841,7 @@ class Sentencizer(Pipe):
|
|||
yield from annotated_examples
|
||||
else:
|
||||
yield from docs
|
||||
|
||||
|
||||
def predict(self, docs):
|
||||
"""Apply the pipeline's model to a batch of docs, without
|
||||
modifying them.
|
||||
|
|
188
spacy/pipeline/tok2vec.py
Normal file
188
spacy/pipeline/tok2vec.py
Normal file
|
@ -0,0 +1,188 @@
|
|||
from .pipes import Pipe
|
||||
from ..gold import Example
|
||||
from ..tokens import Doc
|
||||
from ..vocab import Vocab
|
||||
from ..language import component
|
||||
from ..util import link_vectors_to_models, minibatch, registry, eg2doc
|
||||
|
||||
from thinc.model import Model, set_dropout_rate
|
||||
|
||||
|
||||
@component("tok2vec", assigns=["doc.tensor"])
|
||||
class Tok2Vec(Pipe):
|
||||
@classmethod
|
||||
def from_nlp(cls, nlp, **cfg):
|
||||
return cls(nlp.vocab, **cfg)
|
||||
|
||||
@classmethod
|
||||
def Model(cls, architecture, **cfg):
|
||||
"""Create a new statistical model for the class.
|
||||
|
||||
architecture (str): The registered model architecture to use.
|
||||
**cfg: Config parameters.
|
||||
RETURNS (Model): A `thinc.model.Model` or similar instance.
|
||||
"""
|
||||
model = registry.architectures.get(architecture)
|
||||
return model(**cfg)
|
||||
|
||||
def __init__(self, vocab, model=True, **cfg):
|
||||
"""Construct a new statistical model. Weights are not allocated on
|
||||
initialisation.
|
||||
vocab (Vocab): A `Vocab` instance. The model must share the same `Vocab`
|
||||
instance with the `Doc` objects it will process.
|
||||
model (Model): A `Model` instance or `True` to allocate one later.
|
||||
**cfg: Config parameters.
|
||||
"""
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
self.cfg = dict(cfg)
|
||||
self.listeners = []
|
||||
|
||||
def create_listener(self):
|
||||
listener = Tok2VecListener(upstream_name="tok2vec", width=self.model.get_dim("nO"))
|
||||
self.listeners.append(listener)
|
||||
|
||||
def add_listener(self, listener):
|
||||
self.listeners.append(listener)
|
||||
|
||||
def find_listeners(self, model):
|
||||
for node in model.walk():
|
||||
if isinstance(node, Tok2VecListener) and node.upstream_name == self.name:
|
||||
self.add_listener(node)
|
||||
|
||||
def __call__(self, doc):
|
||||
"""Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM
|
||||
model. Vectors are set to the `Doc.tensor` attribute.
|
||||
docs (Doc or iterable): One or more documents to add vectors to.
|
||||
RETURNS (dict or None): Intermediate computations.
|
||||
"""
|
||||
tokvecses = self.predict([doc])
|
||||
self.set_annotations([doc], tokvecses)
|
||||
return doc
|
||||
|
||||
def pipe(self, stream, batch_size=128, n_threads=-1, as_example=False):
|
||||
"""Process `Doc` objects as a stream.
|
||||
stream (iterator): A sequence of `Doc` objects to process.
|
||||
batch_size (int): Number of `Doc` objects to group.
|
||||
n_threads (int): Number of threads.
|
||||
YIELDS (iterator): A sequence of `Doc` objects, in order of input.
|
||||
"""
|
||||
for batch in minibatch(stream, batch_size):
|
||||
batch = list(batch)
|
||||
if as_example:
|
||||
docs = [eg2doc(doc) for doc in batch]
|
||||
else:
|
||||
docs = batch
|
||||
tokvecses = self.predict(docs)
|
||||
self.set_annotations(docs, tokvecses)
|
||||
yield from batch
|
||||
|
||||
def predict(self, docs):
|
||||
"""Return a single tensor for a batch of documents.
|
||||
docs (iterable): A sequence of `Doc` objects.
|
||||
RETURNS (object): Vector representations for each token in the documents.
|
||||
"""
|
||||
tokvecs = self.model.predict(docs)
|
||||
batch_id = Tok2VecListener.get_batch_id(docs)
|
||||
for listener in self.listeners:
|
||||
listener.receive(batch_id, tokvecs, None)
|
||||
return tokvecs
|
||||
|
||||
def set_annotations(self, docs, tokvecses):
|
||||
"""Set the tensor attribute for a batch of documents.
|
||||
docs (iterable): A sequence of `Doc` objects.
|
||||
tokvecs (object): Vector representation for each token in the documents.
|
||||
"""
|
||||
for doc, tokvecs in zip(docs, tokvecses):
|
||||
assert tokvecs.shape[0] == len(doc)
|
||||
doc.tensor = tokvecs
|
||||
|
||||
def update(self, examples, drop=0.0, sgd=None, losses=None, set_annotations=False):
|
||||
"""Update the model.
|
||||
examples (iterable): A batch of examples
|
||||
drop (float): The droput rate.
|
||||
sgd (callable): An optimizer.
|
||||
RETURNS (dict): Results from the update.
|
||||
"""
|
||||
if losses is None:
|
||||
losses = {}
|
||||
examples = Example.to_example_objects(examples)
|
||||
docs = [eg.doc for eg in examples]
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
set_dropout_rate(self.model, drop)
|
||||
tokvecs, bp_tokvecs = self.model.begin_update(docs)
|
||||
|
||||
def capture_losses(d_tokvecs):
|
||||
"""Accumulate tok2vec loss before doing backprop."""
|
||||
l2_loss = sum((d_t2v**2).sum() for d_t2v in d_tokvecs)
|
||||
if self.name in losses:
|
||||
losses[self.name] += l2_loss / len(d_tokvecs)
|
||||
else:
|
||||
losses[self.name] = l2_loss / len(d_tokvecs)
|
||||
return bp_tokvecs(d_tokvecs)
|
||||
|
||||
batch_id = Tok2VecListener.get_batch_id(docs)
|
||||
for listener in self.listeners:
|
||||
listener.receive(batch_id, tokvecs, capture_losses)
|
||||
if sgd is not None:
|
||||
self.model.finish_update(sgd)
|
||||
if set_annotations:
|
||||
self.set_annotations(docs, tokvecs)
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
pass
|
||||
|
||||
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None, **kwargs):
|
||||
"""Allocate models and pre-process training data
|
||||
|
||||
get_examples (function): Function returning example training data.
|
||||
pipeline (list): The pipeline the model is part of.
|
||||
"""
|
||||
if self.model is True:
|
||||
self.model = self.Model(**self.cfg)
|
||||
# TODO: use examples instead ?
|
||||
docs = [Doc(Vocab(), words=["hello"])]
|
||||
self.model.initialize(X=docs)
|
||||
link_vectors_to_models(self.vocab)
|
||||
|
||||
|
||||
class Tok2VecListener(Model):
|
||||
"""A layer that gets fed its answers from an upstream connection,
|
||||
for instance from a component earlier in the pipeline.
|
||||
"""
|
||||
name = "tok2vec-listener"
|
||||
|
||||
def __init__(self, upstream_name, width):
|
||||
Model.__init__(self, name=self.name, forward=forward, dims={"nO": width})
|
||||
self.upstream_name = upstream_name
|
||||
self._batch_id = None
|
||||
self._outputs = None
|
||||
self._backprop = None
|
||||
|
||||
@classmethod
|
||||
def get_batch_id(cls, inputs):
|
||||
return sum(sum(token.orth for token in doc) for doc in inputs)
|
||||
|
||||
def receive(self, batch_id, outputs, backprop):
|
||||
self._batch_id = batch_id
|
||||
self._outputs = outputs
|
||||
self._backprop = backprop
|
||||
|
||||
def verify_inputs(self, inputs):
|
||||
if self._batch_id is None and self._outputs is None:
|
||||
raise ValueError
|
||||
else:
|
||||
batch_id = self.get_batch_id(inputs)
|
||||
if batch_id != self._batch_id:
|
||||
raise ValueError(f"Mismatched IDs! {batch_id} vs {self._batch_id}")
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def forward(model: Tok2VecListener, inputs, is_train):
|
||||
if is_train:
|
||||
model.verify_inputs(inputs)
|
||||
return model._outputs, model._backprop
|
||||
else:
|
||||
return [doc.tensor for doc in inputs], lambda dX: []
|
|
@ -1,4 +1,4 @@
|
|||
from thinc.typedefs cimport class_t, hash_t
|
||||
from ..typedefs cimport hash_t, class_t
|
||||
|
||||
# These are passed as callbacks to thinc.search.Beam
|
||||
cdef int transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1
|
||||
|
|
|
@ -5,9 +5,9 @@ import numpy
|
|||
from cpython.ref cimport PyObject, Py_XDECREF
|
||||
from thinc.extra.search cimport Beam
|
||||
from thinc.extra.search import MaxViolation
|
||||
from thinc.typedefs cimport hash_t, class_t
|
||||
from thinc.extra.search cimport MaxViolation
|
||||
|
||||
from ..typedefs cimport hash_t, class_t
|
||||
from .transition_system cimport TransitionSystem, Transition
|
||||
from ..gold cimport GoldParse
|
||||
from ..errors import Errors
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from libc.string cimport memset, memcpy
|
||||
from libc.stdlib cimport calloc, free, realloc
|
||||
from thinc.typedefs cimport weight_t, class_t, hash_t
|
||||
from ..typedefs cimport weight_t, class_t, hash_t
|
||||
|
||||
from ._state cimport StateC
|
||||
|
||||
|
|
|
@ -10,18 +10,14 @@ from libcpp.vector cimport vector
|
|||
from libc.string cimport memset, memcpy
|
||||
from libc.stdlib cimport calloc, free, realloc
|
||||
from cymem.cymem cimport Pool
|
||||
from thinc.typedefs cimport weight_t, class_t, hash_t
|
||||
from thinc.extra.search cimport Beam
|
||||
from thinc.api import chain, clone
|
||||
from thinc.v2v import Model, Maxout, Affine
|
||||
from thinc.misc import LayerNorm
|
||||
from thinc.neural.ops import CupyOps, NumpyOps
|
||||
from thinc.neural.util import get_array_module
|
||||
from thinc.linalg cimport Vec, VecVec
|
||||
from thinc.layers import Linear
|
||||
from thinc.model import Model
|
||||
from thinc.backends import CupyOps, NumpyOps, use_ops
|
||||
from thinc.backends.linalg cimport Vec, VecVec
|
||||
cimport blis.cy
|
||||
|
||||
from .._ml import zero_init, PrecomputableAffine, Tok2Vec, flatten
|
||||
from .._ml import link_vectors_to_models, create_default_optimizer
|
||||
from ..typedefs cimport weight_t, class_t, hash_t
|
||||
from ..compat import copy_array
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..gold cimport GoldParse
|
||||
|
@ -31,6 +27,7 @@ from .stateclass cimport StateClass
|
|||
from .transition_system cimport Transition
|
||||
from . import _beam_utils
|
||||
from . import nonproj
|
||||
from ..util import link_vectors_to_models, create_default_optimizer
|
||||
|
||||
|
||||
cdef WeightsC get_c_weights(model) except *:
|
||||
|
@ -44,8 +41,8 @@ cdef WeightsC get_c_weights(model) except *:
|
|||
output.hidden_weights = NULL
|
||||
output.hidden_bias = NULL
|
||||
else:
|
||||
vec2scores_W = model.vec2scores.W
|
||||
vec2scores_b = model.vec2scores.b
|
||||
vec2scores_W = model.vec2scores.get_param("W")
|
||||
vec2scores_b = model.vec2scores.get_param("b")
|
||||
output.hidden_weights = <const float*>vec2scores_W.data
|
||||
output.hidden_bias = <const float*>vec2scores_b.data
|
||||
cdef np.ndarray class_mask = model._class_mask
|
||||
|
@ -57,12 +54,12 @@ cdef SizesC get_c_sizes(model, int batch_size) except *:
|
|||
cdef SizesC output
|
||||
output.states = batch_size
|
||||
if model.vec2scores is None:
|
||||
output.classes = model.state2vec.nO
|
||||
output.classes = model.state2vec.get_dim("nO")
|
||||
else:
|
||||
output.classes = model.vec2scores.nO
|
||||
output.hiddens = model.state2vec.nO
|
||||
output.pieces = model.state2vec.nP
|
||||
output.feats = model.state2vec.nF
|
||||
output.classes = model.vec2scores.get_dim("nO")
|
||||
output.hiddens = model.state2vec.get_dim("nO")
|
||||
output.pieces = model.state2vec.get_dim("nP")
|
||||
output.feats = model.state2vec.get_dim("nF")
|
||||
output.embed_width = model.tokvecs.shape[1]
|
||||
return output
|
||||
|
||||
|
@ -226,7 +223,7 @@ cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) no
|
|||
|
||||
class ParserModel(Model):
|
||||
def __init__(self, tok2vec, lower_model, upper_model, unseen_classes=None):
|
||||
Model.__init__(self)
|
||||
Model.__init__(self, name="parser_model", forward=forward)
|
||||
self._layers = [tok2vec, lower_model]
|
||||
if upper_model is not None:
|
||||
self._layers.append(upper_model)
|
||||
|
@ -235,41 +232,47 @@ class ParserModel(Model):
|
|||
for class_ in unseen_classes:
|
||||
self.unseen_classes.add(class_)
|
||||
|
||||
def begin_update(self, docs, drop=0.):
|
||||
step_model = ParserStepModel(docs, self._layers, drop=drop,
|
||||
unseen_classes=self.unseen_classes)
|
||||
def finish_parser_update(golds, sgd=None):
|
||||
step_model.make_updates(sgd)
|
||||
return None
|
||||
return step_model, finish_parser_update
|
||||
def predict(self, docs):
|
||||
step_model = ParserStepModel(docs, self._layers,
|
||||
unseen_classes=self.unseen_classes, train=False)
|
||||
return step_model
|
||||
|
||||
def resize_output(self, new_output):
|
||||
def resize_output(self, new_nO):
|
||||
if len(self._layers) == 2:
|
||||
return
|
||||
if new_output == self.upper.nO:
|
||||
if new_nO == self.upper.get_dim("nO"):
|
||||
return
|
||||
smaller = self.upper
|
||||
|
||||
with Model.use_device('cpu'):
|
||||
larger = Affine(new_output, smaller.nI)
|
||||
larger.W.fill(0.0)
|
||||
larger.b.fill(0.0)
|
||||
# It seems very unhappy if I pass these as smaller.W?
|
||||
# Seems to segfault. Maybe it's a descriptor protocol thing?
|
||||
smaller_W = smaller.W
|
||||
larger_W = larger.W
|
||||
smaller_b = smaller.b
|
||||
larger_b = larger.b
|
||||
nI = smaller.get_dim("nI")
|
||||
with use_ops('numpy'):
|
||||
larger = Linear(new_nO, nI)
|
||||
larger_W = larger.ops.alloc2f(new_nO, nI)
|
||||
larger_b = larger.ops.alloc1f(new_nO)
|
||||
smaller_W = smaller.get_param("W")
|
||||
smaller_b = smaller.get_param("b")
|
||||
# Weights are stored in (nr_out, nr_in) format, so we're basically
|
||||
# just adding rows here.
|
||||
larger_W[:smaller.nO] = smaller_W
|
||||
larger_b[:smaller.nO] = smaller_b
|
||||
larger_W[:smaller.get_dim("nO")] = smaller_W
|
||||
larger_b[:smaller.get_dim("nO")] = smaller_b
|
||||
larger.set_param("W", larger_W)
|
||||
larger.set_param("b", larger_b)
|
||||
self._layers[-1] = larger
|
||||
for i in range(smaller.nO, new_output):
|
||||
for i in range(smaller.get_dim("nO"), new_nO):
|
||||
self.unseen_classes.add(i)
|
||||
|
||||
def begin_training(self, X, y=None):
|
||||
self.lower.begin_training(X, y=y)
|
||||
def initialize(self, X=None, Y=None):
|
||||
self.tok2vec.initialize()
|
||||
self.lower.initialize(X=X, Y=Y)
|
||||
if self.upper is not None:
|
||||
# In case we need to trigger the callbacks
|
||||
statevecs = self.ops.alloc((2, self.lower.get_dim("nO")))
|
||||
self.upper.initialize(X=statevecs)
|
||||
|
||||
def finish_update(self, optimizer):
|
||||
self.tok2vec.finish_update(optimizer)
|
||||
self.lower.finish_update(optimizer)
|
||||
if self.upper is not None:
|
||||
self.upper.finish_update(optimizer)
|
||||
|
||||
@property
|
||||
def tok2vec(self):
|
||||
|
@ -284,17 +287,25 @@ class ParserModel(Model):
|
|||
return self._layers[2]
|
||||
|
||||
|
||||
def forward(model:ParserModel, X, is_train):
|
||||
step_model = ParserStepModel(X, model._layers, unseen_classes=model.unseen_classes,
|
||||
train=is_train)
|
||||
|
||||
return step_model, step_model.finish_steps
|
||||
|
||||
|
||||
class ParserStepModel(Model):
|
||||
def __init__(self, docs, layers, unseen_classes=None, drop=0.):
|
||||
self.tokvecs, self.bp_tokvecs = layers[0].begin_update(docs, drop=drop)
|
||||
if layers[1].nP >= 2:
|
||||
def __init__(self, docs, layers, unseen_classes=None, train=True):
|
||||
Model.__init__(self, name="parser_step_model", forward=step_forward)
|
||||
self.tokvecs, self.bp_tokvecs = layers[0](docs, is_train=train)
|
||||
if layers[1].get_dim("nP") >= 2:
|
||||
activation = "maxout"
|
||||
elif len(layers) == 2:
|
||||
activation = None
|
||||
else:
|
||||
activation = "relu"
|
||||
self.state2vec = precompute_hiddens(len(docs), self.tokvecs, layers[1],
|
||||
activation=activation, drop=drop)
|
||||
activation=activation, train=train)
|
||||
if len(layers) == 3:
|
||||
self.vec2scores = layers[-1]
|
||||
else:
|
||||
|
@ -304,7 +315,7 @@ class ParserStepModel(Model):
|
|||
if self.vec2scores is None:
|
||||
self._class_mask = numpy.zeros((self.state2vec.nO,), dtype='f')
|
||||
else:
|
||||
self._class_mask = numpy.zeros((self.vec2scores.nO,), dtype='f')
|
||||
self._class_mask = numpy.zeros((self.vec2scores.get_dim("nO"),), dtype='f')
|
||||
self._class_mask.fill(1)
|
||||
if unseen_classes is not None:
|
||||
for class_ in unseen_classes:
|
||||
|
@ -323,40 +334,6 @@ class ParserStepModel(Model):
|
|||
def mark_class_seen(self, class_):
|
||||
self._class_mask[class_] = 1
|
||||
|
||||
def begin_update(self, states, drop=0.):
|
||||
token_ids = self.get_token_ids(states)
|
||||
vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0)
|
||||
if self.vec2scores is not None:
|
||||
mask = self.vec2scores.ops.get_dropout_mask(vector.shape, drop)
|
||||
if mask is not None:
|
||||
vector *= mask
|
||||
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
|
||||
else:
|
||||
scores = NumpyOps().asarray(vector)
|
||||
get_d_vector = lambda d_scores, sgd=None: d_scores
|
||||
mask = None
|
||||
# If the class is unseen, make sure its score is minimum
|
||||
scores[:, self._class_mask == 0] = numpy.nanmin(scores)
|
||||
|
||||
def backprop_parser_step(d_scores, sgd=None):
|
||||
# Zero vectors for unseen classes
|
||||
d_scores *= self._class_mask
|
||||
d_vector = get_d_vector(d_scores, sgd=sgd)
|
||||
if mask is not None:
|
||||
d_vector *= mask
|
||||
if isinstance(self.state2vec.ops, CupyOps) \
|
||||
and not isinstance(token_ids, self.state2vec.ops.xp.ndarray):
|
||||
# Move token_ids and d_vector to GPU, asynchronously
|
||||
self.backprops.append((
|
||||
util.get_async(self.cuda_stream, token_ids),
|
||||
util.get_async(self.cuda_stream, d_vector),
|
||||
get_d_tokvecs
|
||||
))
|
||||
else:
|
||||
self.backprops.append((token_ids, d_vector, get_d_tokvecs))
|
||||
return None
|
||||
return scores, backprop_parser_step
|
||||
|
||||
def get_token_ids(self, batch):
|
||||
states = _beam_utils.collect_states(batch)
|
||||
cdef StateClass state
|
||||
|
@ -370,25 +347,56 @@ class ParserStepModel(Model):
|
|||
c_ids += ids.shape[1]
|
||||
return ids
|
||||
|
||||
def make_updates(self, sgd):
|
||||
def finish_steps(self, golds):
|
||||
# Add a padding vector to the d_tokvecs gradient, so that missing
|
||||
# values don't affect the real gradient.
|
||||
d_tokvecs = self.ops.allocate((self.tokvecs.shape[0]+1, self.tokvecs.shape[1]))
|
||||
d_tokvecs = self.ops.alloc((self.tokvecs.shape[0]+1, self.tokvecs.shape[1]))
|
||||
# Tells CUDA to block, so our async copies complete.
|
||||
if self.cuda_stream is not None:
|
||||
self.cuda_stream.synchronize()
|
||||
for ids, d_vector, bp_vector in self.backprops:
|
||||
d_state_features = bp_vector((d_vector, ids), sgd=sgd)
|
||||
d_state_features = bp_vector((d_vector, ids))
|
||||
ids = ids.flatten()
|
||||
d_state_features = d_state_features.reshape(
|
||||
(ids.size, d_state_features.shape[2]))
|
||||
self.ops.scatter_add(d_tokvecs, ids,
|
||||
d_state_features)
|
||||
# Padded -- see update()
|
||||
self.bp_tokvecs(d_tokvecs[:-1], sgd=sgd)
|
||||
if isinstance(self.ops, CupyOps):
|
||||
d_tokvecs = self.ops.to_numpy(d_tokvecs)
|
||||
self.bp_tokvecs(d_tokvecs[:-1])
|
||||
return d_tokvecs
|
||||
|
||||
|
||||
def step_forward(model: ParserStepModel, states, is_train):
|
||||
token_ids = model.get_token_ids(states)
|
||||
vector, get_d_tokvecs = model.state2vec(token_ids, is_train)
|
||||
if model.vec2scores is not None:
|
||||
scores, get_d_vector = model.vec2scores(vector, is_train)
|
||||
else:
|
||||
scores = NumpyOps().asarray(vector)
|
||||
get_d_vector = lambda d_scores: d_scores
|
||||
# If the class is unseen, make sure its score is minimum
|
||||
scores[:, model._class_mask == 0] = numpy.nanmin(scores)
|
||||
|
||||
def backprop_parser_step(d_scores):
|
||||
# Zero vectors for unseen classes
|
||||
d_scores *= model._class_mask
|
||||
d_vector = get_d_vector(d_scores)
|
||||
if isinstance(model.state2vec.ops, CupyOps) \
|
||||
and not isinstance(token_ids, model.state2vec.ops.xp.ndarray):
|
||||
# Move token_ids and d_vector to GPU, asynchronously
|
||||
model.backprops.append((
|
||||
util.get_async(model.cuda_stream, token_ids),
|
||||
util.get_async(model.cuda_stream, d_vector),
|
||||
get_d_tokvecs
|
||||
))
|
||||
else:
|
||||
model.backprops.append((token_ids, d_vector, get_d_tokvecs))
|
||||
return None
|
||||
return scores, backprop_parser_step
|
||||
|
||||
|
||||
cdef class precompute_hiddens:
|
||||
"""Allow a model to be "primed" by pre-computing input features in bulk.
|
||||
|
||||
|
@ -406,7 +414,7 @@ cdef class precompute_hiddens:
|
|||
we can do all our hard maths up front, packed into large multiplications,
|
||||
and do the hard-to-program parsing on the CPU.
|
||||
"""
|
||||
cdef readonly int nF, nO, nP
|
||||
cdef readonly int nF, nO, nP # TODO: make these more like the dimensions in thinc
|
||||
cdef bint _is_synchronized
|
||||
cdef public object ops
|
||||
cdef np.ndarray _features
|
||||
|
@ -417,8 +425,8 @@ cdef class precompute_hiddens:
|
|||
cdef object activation
|
||||
|
||||
def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None,
|
||||
activation="maxout", drop=0.):
|
||||
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
|
||||
activation="maxout", train=False):
|
||||
gpu_cached, bp_features = lower_model(tokvecs, train)
|
||||
cdef np.ndarray cached
|
||||
if not isinstance(gpu_cached, numpy.ndarray):
|
||||
# Note the passing of cuda_stream here: it lets
|
||||
|
@ -427,12 +435,16 @@ cdef class precompute_hiddens:
|
|||
cached = gpu_cached.get(stream=cuda_stream)
|
||||
else:
|
||||
cached = gpu_cached
|
||||
if not isinstance(lower_model.b, numpy.ndarray):
|
||||
self.bias = lower_model.b.get()
|
||||
if not isinstance(lower_model.get_param("b"), numpy.ndarray):
|
||||
# self.bias = lower_model.get_param("b").get(stream=cuda_stream) ???
|
||||
self.bias = lower_model.get_param("b")
|
||||
else:
|
||||
self.bias = lower_model.b
|
||||
self.bias = lower_model.get_param("b")
|
||||
self.nF = cached.shape[1]
|
||||
self.nP = getattr(lower_model, 'nP', 1)
|
||||
if lower_model.has_dim("nP"):
|
||||
self.nP = lower_model.get_dim("nP")
|
||||
else:
|
||||
self.nP = 1
|
||||
self.nO = cached.shape[2]
|
||||
self.ops = lower_model.ops
|
||||
assert activation in (None, "relu", "maxout")
|
||||
|
@ -448,10 +460,26 @@ cdef class precompute_hiddens:
|
|||
self._is_synchronized = True
|
||||
return <float*>self._cached.data
|
||||
|
||||
def __call__(self, X):
|
||||
return self.begin_update(X, drop=None)[0]
|
||||
def get_dim(self, name):
|
||||
if name == "nF":
|
||||
return self.nF
|
||||
elif name == "nP":
|
||||
return self.nP
|
||||
elif name == "nO":
|
||||
return self.nO
|
||||
else:
|
||||
raise ValueError(f"Dimension {name} invalid -- only nO, nF, nP")
|
||||
|
||||
def begin_update(self, token_ids, drop=0.):
|
||||
def __call__(self, X, bint is_train):
|
||||
if is_train:
|
||||
return self.begin_update(X)
|
||||
else:
|
||||
return self.predict(X), lambda X: X
|
||||
|
||||
def predict(self, X):
|
||||
return self.begin_update(X)[0]
|
||||
|
||||
def begin_update(self, token_ids):
|
||||
cdef np.ndarray state_vector = numpy.zeros(
|
||||
(token_ids.shape[0], self.nO, self.nP), dtype='f')
|
||||
# This is tricky, but (assuming GPU available);
|
||||
|
@ -466,13 +494,13 @@ cdef class precompute_hiddens:
|
|||
sum_state_features(<float*>state_vector.data,
|
||||
feat_weights, &ids[0,0],
|
||||
token_ids.shape[0], self.nF, self.nO*self.nP)
|
||||
state_vector += self.bias
|
||||
state_vector = state_vector + self.bias
|
||||
state_vector, bp_nonlinearity = self._nonlinearity(state_vector)
|
||||
|
||||
def backward(d_state_vector_ids, sgd=None):
|
||||
def backward(d_state_vector_ids):
|
||||
d_state_vector, token_ids = d_state_vector_ids
|
||||
d_state_vector = bp_nonlinearity(d_state_vector, sgd)
|
||||
d_tokens = bp_hiddens((d_state_vector, token_ids), sgd)
|
||||
d_state_vector = bp_nonlinearity(d_state_vector)
|
||||
d_tokens = bp_hiddens((d_state_vector, token_ids))
|
||||
return d_tokens
|
||||
return state_vector, backward
|
||||
|
||||
|
@ -492,7 +520,7 @@ cdef class precompute_hiddens:
|
|||
else:
|
||||
mask = None
|
||||
|
||||
def backprop_nonlinearity(d_best, sgd=None):
|
||||
def backprop_nonlinearity(d_best):
|
||||
if isinstance(d_best, numpy.ndarray):
|
||||
ops = NumpyOps()
|
||||
else:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from cymem.cymem cimport Pool
|
||||
|
||||
from thinc.typedefs cimport weight_t
|
||||
from ..typedefs cimport weight_t
|
||||
|
||||
from .stateclass cimport StateClass
|
||||
from ..typedefs cimport attr_t
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from thinc.typedefs cimport weight_t
|
||||
from thinc.extra.search cimport Beam
|
||||
from collections import Counter
|
||||
|
||||
from ..typedefs cimport weight_t
|
||||
from .stateclass cimport StateClass
|
||||
from ._state cimport StateC
|
||||
from .transition_system cimport Transition
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
from thinc.typedefs cimport atom_t
|
||||
|
||||
from .stateclass cimport StateClass
|
||||
from .arc_eager cimport TransitionSystem
|
||||
from ..vocab cimport Vocab
|
||||
|
|
|
@ -13,24 +13,23 @@ from libcpp.vector cimport vector
|
|||
from libc.string cimport memset, memcpy
|
||||
from libc.stdlib cimport calloc, free
|
||||
from cymem.cymem cimport Pool
|
||||
from thinc.typedefs cimport weight_t, class_t, hash_t
|
||||
from thinc.extra.search cimport Beam
|
||||
from thinc.api import chain, clone
|
||||
from thinc.v2v import Model, Maxout, Affine
|
||||
from thinc.misc import LayerNorm
|
||||
from thinc.neural.ops import NumpyOps, CupyOps
|
||||
from thinc.neural.util import get_array_module
|
||||
from thinc.linalg cimport Vec, VecVec
|
||||
from thinc.layers import chain, clone, Linear, list2array
|
||||
from thinc.backends import NumpyOps, CupyOps, use_ops
|
||||
from thinc.util import get_array_module
|
||||
from thinc.backends.linalg cimport Vec, VecVec
|
||||
from thinc.initializers import zero_init
|
||||
from thinc.model import set_dropout_rate
|
||||
import srsly
|
||||
|
||||
from spacy.gold import Example
|
||||
from ..typedefs cimport weight_t, class_t, hash_t
|
||||
from ._parser_model cimport alloc_activations, free_activations
|
||||
from ._parser_model cimport predict_states, arg_max_if_valid
|
||||
from ._parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss
|
||||
from ._parser_model cimport get_c_weights, get_c_sizes
|
||||
from ._parser_model import ParserModel
|
||||
from .._ml import zero_init, PrecomputableAffine, Tok2Vec, flatten
|
||||
from .._ml import link_vectors_to_models, create_default_optimizer
|
||||
from ..util import link_vectors_to_models, create_default_optimizer
|
||||
from ..compat import copy_array
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..gold cimport GoldParse
|
||||
|
@ -44,6 +43,10 @@ from . import _beam_utils
|
|||
from . import nonproj
|
||||
|
||||
|
||||
from ..ml._layers import PrecomputableAffine
|
||||
from ..ml.component_models import Tok2Vec
|
||||
|
||||
|
||||
cdef class Parser:
|
||||
"""
|
||||
Base class of the DependencyParser and EntityRecognizer.
|
||||
|
@ -54,7 +57,7 @@ cdef class Parser:
|
|||
subword_features = util.env_opt('subword_features',
|
||||
cfg.get('subword_features', True))
|
||||
conv_depth = util.env_opt('conv_depth', cfg.get('conv_depth', 4))
|
||||
conv_window = util.env_opt('conv_window', cfg.get('conv_depth', 1))
|
||||
window_size = util.env_opt('window_size', cfg.get('window_size', 1))
|
||||
t2v_pieces = util.env_opt('cnn_maxout_pieces', cfg.get('cnn_maxout_pieces', 3))
|
||||
bilstm_depth = util.env_opt('bilstm_depth', cfg.get('bilstm_depth', 0))
|
||||
self_attn_depth = util.env_opt('self_attn_depth', cfg.get('self_attn_depth', 0))
|
||||
|
@ -71,23 +74,23 @@ cdef class Parser:
|
|||
parser_maxout_pieces = 1
|
||||
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 2000))
|
||||
pretrained_vectors = cfg.get('pretrained_vectors', None)
|
||||
tok2vec = Tok2Vec(token_vector_width, embed_size,
|
||||
tok2vec = Tok2Vec(width=token_vector_width,
|
||||
embed_size=embed_size,
|
||||
conv_depth=conv_depth,
|
||||
conv_window=conv_window,
|
||||
window_size=window_size,
|
||||
cnn_maxout_pieces=t2v_pieces,
|
||||
subword_features=subword_features,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
bilstm_depth=bilstm_depth)
|
||||
tok2vec = chain(tok2vec, flatten)
|
||||
tok2vec.nO = token_vector_width
|
||||
tok2vec = chain(tok2vec, list2array())
|
||||
tok2vec.set_dim("nO", token_vector_width)
|
||||
lower = PrecomputableAffine(hidden_width,
|
||||
nF=nr_feature_tokens, nI=token_vector_width,
|
||||
nP=parser_maxout_pieces)
|
||||
lower.nP = parser_maxout_pieces
|
||||
lower.set_dim("nP", parser_maxout_pieces)
|
||||
if depth == 1:
|
||||
with Model.use_device('cpu'):
|
||||
upper = Affine(nr_class, hidden_width, drop_factor=0.0)
|
||||
upper.W *= 0
|
||||
with use_ops('numpy'):
|
||||
upper = Linear(nr_class, hidden_width, init_W=zero_init)
|
||||
else:
|
||||
upper = None
|
||||
|
||||
|
@ -102,11 +105,13 @@ cdef class Parser:
|
|||
'bilstm_depth': bilstm_depth,
|
||||
'self_attn_depth': self_attn_depth,
|
||||
'conv_depth': conv_depth,
|
||||
'conv_window': conv_window,
|
||||
'window_size': window_size,
|
||||
'embed_size': embed_size,
|
||||
'cnn_maxout_pieces': t2v_pieces
|
||||
}
|
||||
return ParserModel(tok2vec, lower, upper), cfg
|
||||
model = ParserModel(tok2vec, lower, upper)
|
||||
model.initialize()
|
||||
return model, cfg
|
||||
|
||||
name = 'base_parser'
|
||||
|
||||
|
@ -283,12 +288,13 @@ cdef class Parser:
|
|||
def greedy_parse(self, docs, drop=0.):
|
||||
cdef vector[StateC*] states
|
||||
cdef StateClass state
|
||||
set_dropout_rate(self.model, drop)
|
||||
batch = self.moves.init_batch(docs)
|
||||
# This is pretty dirty, but the NER can resize itself in init_batch,
|
||||
# if labels are missing. We therefore have to check whether we need to
|
||||
# expand our model output.
|
||||
self._resize()
|
||||
model = self.model(docs)
|
||||
model = self.model.predict(docs)
|
||||
weights = get_c_weights(model)
|
||||
for state in batch:
|
||||
if not state.is_final():
|
||||
|
@ -303,18 +309,19 @@ cdef class Parser:
|
|||
cdef Beam beam
|
||||
cdef Doc doc
|
||||
cdef np.ndarray token_ids
|
||||
set_dropout_rate(self.model, drop)
|
||||
beams = self.moves.init_beams(docs, beam_width, beam_density=beam_density)
|
||||
# This is pretty dirty, but the NER can resize itself in init_batch,
|
||||
# if labels are missing. We therefore have to check whether we need to
|
||||
# expand our model output.
|
||||
self._resize()
|
||||
model = self.model(docs)
|
||||
model = self.model.predict(docs)
|
||||
token_ids = numpy.zeros((len(docs) * beam_width, self.nr_feature),
|
||||
dtype='i', order='C')
|
||||
cdef int* c_ids
|
||||
cdef int nr_feature = self.cfg["nr_feature_tokens"]
|
||||
cdef int n_states
|
||||
model = self.model(docs)
|
||||
model = self.model.predict(docs)
|
||||
todo = [beam for beam in beams if not beam.is_done]
|
||||
while todo:
|
||||
token_ids.fill(-1)
|
||||
|
@ -331,8 +338,8 @@ cdef class Parser:
|
|||
n_states += 1
|
||||
if n_states == 0:
|
||||
break
|
||||
vectors = model.state2vec(token_ids[:n_states])
|
||||
scores = model.vec2scores(vectors)
|
||||
vectors = model.state2vec.predict(token_ids[:n_states])
|
||||
scores = model.vec2scores.predict(vectors)
|
||||
todo = self.transition_beams(todo, scores)
|
||||
return beams
|
||||
|
||||
|
@ -424,7 +431,7 @@ cdef class Parser:
|
|||
beam.check_done(_beam_utils.check_final_state, NULL)
|
||||
return [b for b in beams if not b.is_done]
|
||||
|
||||
def update(self, examples, drop=0., sgd=None, losses=None):
|
||||
def update(self, examples, drop=0., set_annotations=False, sgd=None, losses=None):
|
||||
self.require_model()
|
||||
examples = Example.to_example_objects(examples)
|
||||
|
||||
|
@ -438,8 +445,10 @@ cdef class Parser:
|
|||
beam_update_prob = self.cfg.get('beam_update_prob', 0.5)
|
||||
if self.cfg.get('beam_width', 1) >= 2 and numpy.random.random() < beam_update_prob:
|
||||
return self.update_beam(examples, self.cfg.get('beam_width', 1),
|
||||
drop=drop, sgd=sgd, losses=losses,
|
||||
drop=drop, sgd=sgd, losses=losses, set_annotations=set_annotations,
|
||||
beam_density=self.cfg.get('beam_density', 0.001))
|
||||
|
||||
set_dropout_rate(self.model, drop)
|
||||
# Chop sequences into lengths of this many transitions, to make the
|
||||
# batch uniform length.
|
||||
cut_gold = numpy.random.choice(range(20, 100))
|
||||
|
@ -448,19 +457,24 @@ cdef class Parser:
|
|||
if not s.is_final() and g is not None]
|
||||
|
||||
# Prepare the stepwise model, and get the callback for finishing the batch
|
||||
model, finish_update = self.model.begin_update([ex.doc for ex in examples], drop=drop)
|
||||
model, backprop_tok2vec = self.model.begin_update([ex.doc for ex in examples])
|
||||
all_states = list(states)
|
||||
for _ in range(max_steps):
|
||||
if not states_golds:
|
||||
break
|
||||
states, golds = zip(*states_golds)
|
||||
scores, backprop = model.begin_update(states, drop=drop)
|
||||
scores, backprop = model.begin_update(states)
|
||||
d_scores = self.get_batch_loss(states, golds, scores, losses)
|
||||
backprop(d_scores, sgd=sgd)
|
||||
backprop(d_scores)
|
||||
# Follow the predicted action
|
||||
self.transition_states(states, scores)
|
||||
states_golds = [eg for eg in states_golds if not eg[0].is_final()]
|
||||
# Do the backprop
|
||||
finish_update(golds, sgd=sgd)
|
||||
backprop_tok2vec(golds)
|
||||
if sgd is not None:
|
||||
self.model.finish_update(sgd)
|
||||
if set_annotations:
|
||||
docs = [ex.doc for ex in examples]
|
||||
self.set_annotations(docs, all_states)
|
||||
return losses
|
||||
|
||||
def rehearse(self, examples, sgd=None, losses=None, **cfg):
|
||||
|
@ -482,13 +496,15 @@ cdef class Parser:
|
|||
# expand our model output.
|
||||
self._resize()
|
||||
# Prepare the stepwise model, and get the callback for finishing the batch
|
||||
tutor, _ = self._rehearsal_model.begin_update(docs, drop=0.0)
|
||||
model, finish_update = self.model.begin_update(docs, drop=0.0)
|
||||
set_dropout_rate(self._rehearsal_model, 0.0)
|
||||
set_dropout_rate(self.model, 0.0)
|
||||
tutor, _ = self._rehearsal_model.begin_update(docs)
|
||||
model, finish_update = self.model.begin_update(docs)
|
||||
n_scores = 0.
|
||||
loss = 0.
|
||||
while states:
|
||||
targets, _ = tutor.begin_update(states, drop=0.)
|
||||
guesses, backprop = model.begin_update(states, drop=0.)
|
||||
targets, _ = tutor.begin_update(states)
|
||||
guesses, backprop = model.begin_update(states)
|
||||
d_scores = (guesses - targets) / targets.shape[0]
|
||||
# If all weights for an output are 0 in the original model, don't
|
||||
# supervise that output. This allows us to add classes.
|
||||
|
@ -499,12 +515,14 @@ cdef class Parser:
|
|||
states = [state for state in states if not state.is_final()]
|
||||
n_scores += d_scores.size
|
||||
# Do the backprop
|
||||
finish_update(docs, sgd=sgd)
|
||||
finish_update(docs)
|
||||
if sgd is not None:
|
||||
self.model.finish_update(sgd)
|
||||
losses[self.name] += loss / n_scores
|
||||
return losses
|
||||
|
||||
def update_beam(self, examples, width, drop=0., sgd=None, losses=None,
|
||||
beam_density=0.0):
|
||||
set_annotations=False, beam_density=0.0):
|
||||
examples = Example.to_example_objects(examples)
|
||||
docs = [ex.doc for ex in examples]
|
||||
golds = [ex.gold for ex in examples]
|
||||
|
@ -514,15 +532,16 @@ cdef class Parser:
|
|||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
new_golds.append(gold)
|
||||
model, finish_update = self.model.begin_update(docs, drop=drop)
|
||||
set_dropout_rate(self.model, drop)
|
||||
model, backprop_tok2vec = self.model.begin_update(docs)
|
||||
states_d_scores, backprops, beams = _beam_utils.update_beam(
|
||||
self.moves, self.cfg["nr_feature_tokens"], 10000, states, golds, model.state2vec,
|
||||
model.vec2scores, width, drop=drop, losses=losses,
|
||||
self.moves, self.cfg["nr_feature_tokens"], 10000, states, golds,
|
||||
model.state2vec, model.vec2scores, width, losses=losses,
|
||||
beam_density=beam_density)
|
||||
for i, d_scores in enumerate(states_d_scores):
|
||||
losses[self.name] += (d_scores**2).mean()
|
||||
ids, bp_vectors, bp_scores = backprops[i]
|
||||
d_vector = bp_scores(d_scores, sgd=sgd)
|
||||
d_vector = bp_scores(d_scores)
|
||||
if isinstance(model.ops, CupyOps) \
|
||||
and not isinstance(ids, model.state2vec.ops.xp.ndarray):
|
||||
model.backprops.append((
|
||||
|
@ -531,11 +550,34 @@ cdef class Parser:
|
|||
bp_vectors))
|
||||
else:
|
||||
model.backprops.append((ids, d_vector, bp_vectors))
|
||||
model.make_updates(sgd)
|
||||
backprop_tok2vec(golds)
|
||||
if sgd is not None:
|
||||
self.model.finish_update(sgd)
|
||||
if set_annotations:
|
||||
self.set_annotations(docs, beams)
|
||||
cdef Beam beam
|
||||
for beam in beams:
|
||||
_beam_utils.cleanup_beam(beam)
|
||||
|
||||
def get_gradients(self):
|
||||
"""Get non-zero gradients of the model's parameters, as a dictionary
|
||||
keyed by the parameter ID. The values are (weights, gradients) tuples.
|
||||
"""
|
||||
gradients = {}
|
||||
if self.model in (None, True, False):
|
||||
return gradients
|
||||
queue = [self.model]
|
||||
seen = set()
|
||||
for node in queue:
|
||||
if node.id in seen:
|
||||
continue
|
||||
seen.add(node.id)
|
||||
if hasattr(node, "_mem") and node._mem.gradient.any():
|
||||
gradients[node.id] = [node._mem.weights, node._mem.gradient]
|
||||
if hasattr(node, "_layers"):
|
||||
queue.extend(node._layers)
|
||||
return gradients
|
||||
|
||||
def _init_gold_batch(self, whole_examples, min_length=5, max_length=500):
|
||||
"""Make a square batch, of length equal to the shortest doc. A long
|
||||
doc will get multiple states. Let's say we have a doc of length 2*N,
|
||||
|
@ -605,8 +647,7 @@ cdef class Parser:
|
|||
return d_scores
|
||||
|
||||
def create_optimizer(self):
|
||||
return create_default_optimizer(self.model.ops,
|
||||
**self.cfg.get('optimizer', {}))
|
||||
return create_default_optimizer()
|
||||
|
||||
def begin_training(self, get_examples, pipeline=None, sgd=None, **cfg):
|
||||
if 'model' in cfg:
|
||||
|
@ -636,14 +677,16 @@ cdef class Parser:
|
|||
for doc, gold in parses:
|
||||
doc_sample.append(doc)
|
||||
gold_sample.append(gold)
|
||||
self.model.begin_training(doc_sample, gold_sample)
|
||||
self.model.initialize(doc_sample, gold_sample)
|
||||
if pipeline is not None:
|
||||
self.init_multitask_objectives(get_examples, pipeline, sgd=sgd, **cfg)
|
||||
link_vectors_to_models(self.vocab)
|
||||
else:
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
self.model.begin_training([])
|
||||
if self.model.upper.has_dim("nO") is None:
|
||||
self.model.upper.set_dim("nO", self.moves.n_moves)
|
||||
self.model.initialize()
|
||||
self.cfg.update(cfg)
|
||||
return sgd
|
||||
|
||||
|
@ -709,7 +752,7 @@ cdef class Parser:
|
|||
if 'model' not in exclude:
|
||||
# TODO: Remove this once we don't have to handle previous models
|
||||
if self.cfg.get('pretrained_dims') and 'pretrained_vectors' not in self.cfg:
|
||||
self.cfg['pretrained_vectors'] = self.vocab.vectors.name
|
||||
self.cfg['pretrained_vectors'] = self.vocab.vectors
|
||||
if self.model is True:
|
||||
self.model, cfg = self.Model(**self.cfg)
|
||||
else:
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
from cymem.cymem cimport Pool
|
||||
from thinc.typedefs cimport weight_t
|
||||
|
||||
from ..typedefs cimport attr_t
|
||||
from ..typedefs cimport attr_t, weight_t
|
||||
from ..structs cimport TokenC
|
||||
from ..gold cimport GoldParse
|
||||
from ..gold cimport GoldParseC
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# cython: infer_types=True
|
||||
from cpython.ref cimport Py_INCREF
|
||||
from cymem.cymem cimport Pool
|
||||
from thinc.typedefs cimport weight_t
|
||||
from ..typedefs cimport weight_t
|
||||
from thinc.extra.search cimport Beam
|
||||
from collections import Counter
|
||||
import srsly
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import pytest
|
||||
from thinc.neural.optimizers import Adam
|
||||
from thinc.neural.ops import NumpyOps
|
||||
from thinc.optimizers import Adam
|
||||
from thinc.backends import NumpyOps
|
||||
from spacy.attrs import NORM
|
||||
from spacy.gold import GoldParse
|
||||
from spacy.vocab import Vocab
|
||||
|
@ -28,7 +28,7 @@ def _train_parser(parser):
|
|||
fix_random_seed(1)
|
||||
parser.add_label("left")
|
||||
parser.begin_training([], **parser.cfg)
|
||||
sgd = Adam(NumpyOps(), 0.001)
|
||||
sgd = Adam(0.001, ops=NumpyOps())
|
||||
|
||||
for i in range(5):
|
||||
losses = {}
|
||||
|
@ -41,8 +41,8 @@ def _train_parser(parser):
|
|||
def test_add_label(parser):
|
||||
parser = _train_parser(parser)
|
||||
parser.add_label("right")
|
||||
sgd = Adam(NumpyOps(), 0.001)
|
||||
for i in range(10):
|
||||
sgd = Adam(0.001, ops=NumpyOps())
|
||||
for i in range(100):
|
||||
losses = {}
|
||||
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
||||
gold = GoldParse(
|
||||
|
|
|
@ -7,6 +7,11 @@ from spacy.syntax.ner import BiluoPushDown
|
|||
from spacy.gold import GoldParse
|
||||
from spacy.tokens import Doc
|
||||
|
||||
TRAIN_DATA = [
|
||||
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
|
||||
("I like London and Berlin.", {"entities": [(7, 13, "LOC"), (18, 24, "LOC")]}),
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vocab():
|
||||
|
@ -263,7 +268,7 @@ def test_change_number_features():
|
|||
nlp.add_pipe(ner)
|
||||
ner.add_label("PERSON")
|
||||
nlp.begin_training()
|
||||
assert ner.model.lower.nF == ner.nr_feature
|
||||
assert ner.model.lower.get_dim("nF") == ner.nr_feature
|
||||
# Test we can change it
|
||||
nlp = English()
|
||||
ner = nlp.create_pipe("ner")
|
||||
|
@ -272,11 +277,36 @@ def test_change_number_features():
|
|||
nlp.begin_training(
|
||||
component_cfg={"ner": {"nr_feature_tokens": 3, "token_vector_width": 128}}
|
||||
)
|
||||
assert ner.model.lower.nF == 3
|
||||
assert ner.model.lower.get_dim("nF") == 3
|
||||
# Test the model runs
|
||||
nlp("hello world")
|
||||
|
||||
|
||||
def test_overfitting():
|
||||
# Simple test to try and quickly overfit the NER component - ensuring the ML models work correctly
|
||||
nlp = English()
|
||||
ner = nlp.create_pipe("ner")
|
||||
for _, annotations in TRAIN_DATA:
|
||||
for ent in annotations.get("entities"):
|
||||
ner.add_label(ent[2])
|
||||
nlp.add_pipe(ner)
|
||||
optimizer = nlp.begin_training()
|
||||
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
|
||||
assert losses["ner"] < 0.00001
|
||||
|
||||
# test the trained model
|
||||
test_text = "I like London."
|
||||
doc = nlp(test_text)
|
||||
ents = doc.ents
|
||||
|
||||
assert len(ents) == 1
|
||||
assert ents[0].text == "London"
|
||||
assert ents[0].label_ == "LOC"
|
||||
|
||||
|
||||
class BlockerComponent1(object):
|
||||
name = "my_blocker"
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import pytest
|
||||
from spacy._ml import Tok2Vec
|
||||
from spacy.ml.component_models import Tok2Vec
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.syntax.arc_eager import ArcEager
|
||||
from spacy.syntax.nn_parser import Parser
|
||||
|
@ -20,7 +20,9 @@ def arc_eager(vocab):
|
|||
|
||||
@pytest.fixture
|
||||
def tok2vec():
|
||||
return Tok2Vec(8, 100)
|
||||
tok2vec = Tok2Vec(8, 100)
|
||||
tok2vec.initialize()
|
||||
return tok2vec
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -30,7 +32,7 @@ def parser(vocab, arc_eager):
|
|||
|
||||
@pytest.fixture
|
||||
def model(arc_eager, tok2vec):
|
||||
return Parser.Model(arc_eager.n_moves, token_vector_width=tok2vec.nO)[0]
|
||||
return Parser.Model(arc_eager.n_moves, token_vector_width=tok2vec.get_dim("nO"))[0]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -53,7 +55,7 @@ def test_build_model(parser):
|
|||
|
||||
|
||||
def test_predict_doc(parser, tok2vec, model, doc):
|
||||
doc.tensor = tok2vec([doc])[0]
|
||||
doc.tensor = tok2vec.predict([doc])[0]
|
||||
parser.model = model
|
||||
parser(doc)
|
||||
|
||||
|
@ -61,8 +63,9 @@ def test_predict_doc(parser, tok2vec, model, doc):
|
|||
def test_update_doc(parser, model, doc, gold):
|
||||
parser.model = model
|
||||
|
||||
def optimize(weights, gradient, key=None):
|
||||
def optimize(key, weights, gradient):
|
||||
weights -= 0.001 * gradient
|
||||
return weights, gradient
|
||||
|
||||
parser.update((doc, gold), sgd=optimize)
|
||||
|
||||
|
|
|
@ -1,7 +1,25 @@
|
|||
import pytest
|
||||
|
||||
from spacy.lang.en import English
|
||||
from ..util import get_doc, apply_transition_sequence
|
||||
|
||||
TRAIN_DATA = [
|
||||
(
|
||||
"They trade mortgage-backed securities.",
|
||||
{
|
||||
"heads": [1, 1, 4, 4, 5, 1, 1],
|
||||
"deps": ["nsubj", "ROOT", "compound", "punct", "nmod", "dobj", "punct"],
|
||||
},
|
||||
),
|
||||
(
|
||||
"I like London and Berlin.",
|
||||
{
|
||||
"heads": [1, 1, 1, 2, 2, 1],
|
||||
"deps": ["nsubj", "ROOT", "dobj", "cc", "conj", "punct"],
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def test_parser_root(en_tokenizer):
|
||||
text = "i don't have other assistance"
|
||||
|
@ -162,3 +180,27 @@ def test_parser_set_sent_starts(en_vocab):
|
|||
for sent in doc.sents:
|
||||
for token in sent:
|
||||
assert token.head in sent
|
||||
|
||||
|
||||
def test_overfitting():
|
||||
# Simple test to try and quickly overfit the dependency parser - ensuring the ML models work correctly
|
||||
nlp = English()
|
||||
parser = nlp.create_pipe("parser")
|
||||
for _, annotations in TRAIN_DATA:
|
||||
for dep in annotations.get("deps", []):
|
||||
parser.add_label(dep)
|
||||
nlp.add_pipe(parser)
|
||||
optimizer = nlp.begin_training()
|
||||
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
|
||||
assert losses["parser"] < 0.00001
|
||||
|
||||
# test the trained model
|
||||
test_text = "I like securities."
|
||||
doc = nlp(test_text)
|
||||
|
||||
assert doc[0].dep_ is "nsubj"
|
||||
assert doc[2].dep_ is "dobj"
|
||||
assert doc[3].dep_ is "punct"
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import pytest
|
||||
from thinc.neural.optimizers import Adam
|
||||
from thinc.neural.ops import NumpyOps
|
||||
from thinc.optimizers import Adam
|
||||
from thinc.backends import NumpyOps
|
||||
from spacy.attrs import NORM
|
||||
from spacy.gold import GoldParse
|
||||
from spacy.vocab import Vocab
|
||||
|
@ -21,7 +21,7 @@ def parser(vocab):
|
|||
# parser.add_label('right')
|
||||
parser.add_label("left")
|
||||
parser.begin_training([], **parser.cfg)
|
||||
sgd = Adam(NumpyOps(), 0.001)
|
||||
sgd = Adam(0.001)
|
||||
|
||||
for i in range(10):
|
||||
losses = {}
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import pytest
|
||||
import srsly
|
||||
from spacy.language import Language
|
||||
|
||||
|
||||
|
@ -8,3 +9,35 @@ def test_label_types():
|
|||
nlp.get_pipe("tagger").add_label("A")
|
||||
with pytest.raises(ValueError):
|
||||
nlp.get_pipe("tagger").add_label(9)
|
||||
|
||||
|
||||
TAG_MAP = {"N": {"pos": "NOUN"}, "V": {"pos": "VERB"}, "J": {"pos": "ADJ"}}
|
||||
|
||||
TRAIN_DATA = [
|
||||
("I like green eggs", {"tags": ["N", "V", "J", "N"]}),
|
||||
("Eat blue ham", {"tags": ["V", "J", "N"]}),
|
||||
]
|
||||
|
||||
|
||||
def test_overfitting():
|
||||
# Simple test to try and quickly overfit the tagger - ensuring the ML models work correctly
|
||||
nlp = Language()
|
||||
tagger = nlp.create_pipe("tagger")
|
||||
for tag, values in TAG_MAP.items():
|
||||
tagger.add_label(tag, values)
|
||||
nlp.add_pipe(tagger)
|
||||
optimizer = nlp.begin_training()
|
||||
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
|
||||
assert losses["tagger"] < 0.00001
|
||||
|
||||
# test the trained model
|
||||
test_text = "I like blue eggs"
|
||||
doc = nlp(test_text)
|
||||
|
||||
assert doc[0].tag_ is "N"
|
||||
assert doc[1].tag_ is "V"
|
||||
assert doc[2].tag_ is "J"
|
||||
assert doc[3].tag_ is "N"
|
||||
|
|
|
@ -6,6 +6,11 @@ from spacy.pipeline import TextCategorizer
|
|||
from spacy.tokens import Doc
|
||||
from spacy.gold import GoldParse
|
||||
|
||||
TRAIN_DATA = [
|
||||
("I'm so happy.", {"cats": {"POSITIVE": 1.0, "NEGATIVE": 0.0}}),
|
||||
("I'm so angry", {"cats": {"POSITIVE": 0.0, "NEGATIVE": 1.0}}),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Test is flakey when run with others")
|
||||
def test_simple_train():
|
||||
|
@ -67,3 +72,26 @@ def test_label_types():
|
|||
nlp.get_pipe("textcat").add_label("answer")
|
||||
with pytest.raises(ValueError):
|
||||
nlp.get_pipe("textcat").add_label(9)
|
||||
|
||||
|
||||
def test_overfitting():
|
||||
# Simple test to try and quickly overfit the textcat component - ensuring the ML models work correctly
|
||||
nlp = Language()
|
||||
textcat = nlp.create_pipe("textcat")
|
||||
for _, annotations in TRAIN_DATA:
|
||||
for label, value in annotations.get("cats").items():
|
||||
textcat.add_label(label)
|
||||
nlp.add_pipe(textcat)
|
||||
optimizer = nlp.begin_training()
|
||||
|
||||
for i in range(50):
|
||||
losses = {}
|
||||
nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
|
||||
assert losses["textcat"] < 0.00001
|
||||
|
||||
# test the trained model
|
||||
test_text = "I am happy."
|
||||
doc = nlp(test_text)
|
||||
cats = doc.cats
|
||||
assert cats["POSITIVE"] > 0.9
|
||||
assert cats["POSITIVE"] + cats["NEGATIVE"] == pytest.approx(1.0, 0.001)
|
||||
|
|
|
@ -8,7 +8,7 @@ from spacy.matcher import Matcher
|
|||
from spacy.tokens import Doc, Span
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.compat import pickle
|
||||
from spacy._ml import link_vectors_to_models
|
||||
from spacy.util import link_vectors_to_models
|
||||
import numpy
|
||||
import random
|
||||
|
||||
|
|
|
@ -32,7 +32,7 @@ def test_issue3611():
|
|||
|
||||
# training the network
|
||||
with nlp.disable_pipes([p for p in nlp.pipe_names if p != "textcat"]):
|
||||
optimizer = nlp.begin_training()
|
||||
optimizer = nlp.begin_training(X=x_train, Y=y_train)
|
||||
for i in range(3):
|
||||
losses = {}
|
||||
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
import pytest
|
||||
from spacy import registry
|
||||
from thinc.v2v import Affine
|
||||
from thinc.layers import Linear
|
||||
from catalogue import RegistryError
|
||||
|
||||
|
||||
@registry.architectures.register("my_test_function")
|
||||
def create_model(nr_in, nr_out):
|
||||
return Affine(nr_in, nr_out)
|
||||
return Linear(nr_in, nr_out)
|
||||
|
||||
|
||||
def test_get_architecture():
|
||||
|
|
|
@ -5,7 +5,8 @@ from pathlib import Path
|
|||
from spacy import util
|
||||
from spacy import prefer_gpu, require_gpu
|
||||
from spacy.compat import symlink_to, symlink_remove, is_windows
|
||||
from spacy._ml import PrecomputableAffine
|
||||
from spacy.ml._layers import PrecomputableAffine
|
||||
from spacy.ml._layers import _backprop_precomputable_affine_padding
|
||||
from subprocess import CalledProcessError
|
||||
|
||||
|
||||
|
@ -67,28 +68,30 @@ def test_util_get_package_path(package):
|
|||
|
||||
def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
|
||||
model = PrecomputableAffine(nO=nO, nI=nI, nF=nF, nP=nP)
|
||||
assert model.W.shape == (nF, nO, nP, nI)
|
||||
tensor = model.ops.allocate((10, nI))
|
||||
assert model.get_param("W").shape == (nF, nO, nP, nI)
|
||||
tensor = model.ops.alloc((10, nI))
|
||||
Y, get_dX = model.begin_update(tensor)
|
||||
assert Y.shape == (tensor.shape[0] + 1, nF, nO, nP)
|
||||
assert model.d_pad.shape == (1, nF, nO, nP)
|
||||
dY = model.ops.allocate((15, nO, nP))
|
||||
ids = model.ops.allocate((15, nF))
|
||||
dY = model.ops.alloc((15, nO, nP))
|
||||
ids = model.ops.alloc((15, nF))
|
||||
ids[1, 2] = -1
|
||||
dY[1] = 1
|
||||
assert model.d_pad[0, 2, 0, 0] == 0.0
|
||||
model._backprop_padding(dY, ids)
|
||||
assert model.d_pad[0, 2, 0, 0] == 1.0
|
||||
model.d_pad.fill(0.0)
|
||||
assert not model.has_grad("pad")
|
||||
d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
|
||||
assert d_pad[0, 2, 0, 0] == 1.0
|
||||
ids.fill(0.0)
|
||||
dY.fill(0.0)
|
||||
ids[1, 2] = -1
|
||||
dY[0] = 0
|
||||
ids[1, 2] = 0
|
||||
ids[1, 1] = -1
|
||||
ids[1, 0] = -1
|
||||
dY[1] = 1
|
||||
assert model.d_pad[0, 2, 0, 0] == 0.0
|
||||
model._backprop_padding(dY, ids)
|
||||
assert model.d_pad[0, 2, 0, 0] == 3.0
|
||||
ids[2, 0] = -1
|
||||
dY[2] = 5
|
||||
d_pad = _backprop_precomputable_affine_padding(model, dY, ids)
|
||||
assert d_pad[0, 0, 0, 0] == 6
|
||||
assert d_pad[0, 1, 0, 0] == 1
|
||||
assert d_pad[0, 2, 0, 0] == 0
|
||||
|
||||
|
||||
def test_prefer_gpu():
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import pytest
|
||||
|
||||
from spacy._ml import Tok2Vec
|
||||
from spacy.ml.component_models import Tok2Vec
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.tokens import Doc
|
||||
|
||||
|
@ -10,7 +10,7 @@ def get_batch(batch_size):
|
|||
docs = []
|
||||
start = 0
|
||||
for size in range(1, batch_size + 1):
|
||||
# Make the words numbers, so that they're distnct
|
||||
# Make the words numbers, so that they're distinct
|
||||
# across the batch, and easy to track.
|
||||
numbers = [str(i) for i in range(start, start + size)]
|
||||
docs.append(Doc(vocab, words=numbers))
|
||||
|
@ -37,6 +37,7 @@ def test_empty_doc():
|
|||
def test_tok2vec_batch_sizes(batch_size, width, embed_size):
|
||||
batch = get_batch(batch_size)
|
||||
tok2vec = Tok2Vec(width, embed_size)
|
||||
tok2vec.initialize()
|
||||
vectors, backprop = tok2vec.begin_update(batch)
|
||||
assert len(vectors) == len(batch)
|
||||
for doc_vec, doc in zip(vectors, batch):
|
||||
|
@ -56,6 +57,7 @@ def test_tok2vec_batch_sizes(batch_size, width, embed_size):
|
|||
def test_tok2vec_configs(tok2vec_config):
|
||||
docs = get_batch(3)
|
||||
tok2vec = Tok2Vec(**tok2vec_config)
|
||||
tok2vec.initialize()
|
||||
vectors, backprop = tok2vec.begin_update(docs)
|
||||
assert len(vectors) == len(docs)
|
||||
assert vectors[0].shape == (len(docs[0]), tok2vec_config["width"])
|
||||
|
|
|
@ -1,14 +1,13 @@
|
|||
import pytest
|
||||
import numpy
|
||||
from numpy.testing import assert_allclose
|
||||
from spacy._ml import cosine
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.vectors import Vectors
|
||||
from spacy.tokenizer import Tokenizer
|
||||
from spacy.strings import hash_string
|
||||
from spacy.tokens import Doc
|
||||
|
||||
from ..util import add_vecs_to_vocab
|
||||
from ..util import add_vecs_to_vocab, get_cosine
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -311,4 +310,4 @@ def test_vocab_prune_vectors():
|
|||
assert list(remap.keys()) == ["kitten"]
|
||||
neighbour, similarity = list(remap.values())[0]
|
||||
assert neighbour == "cat", remap
|
||||
assert_allclose(similarity, cosine(data[0], data[2]), atol=1e-4, rtol=1e-3)
|
||||
assert_allclose(similarity, get_cosine(data[0], data[2]), atol=1e-4, rtol=1e-3)
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
from libc.string cimport memcpy, memset
|
||||
from libc.stdlib cimport malloc, free
|
||||
from cymem.cymem cimport Pool
|
||||
from thinc.neural.util import get_array_module
|
||||
from thinc.util import get_array_module
|
||||
|
||||
import numpy
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import numpy
|
||||
import zlib
|
||||
import srsly
|
||||
from thinc.neural.ops import NumpyOps
|
||||
from thinc.backends import NumpyOps
|
||||
|
||||
from ..compat import copy_reg
|
||||
from ..tokens import Doc
|
||||
|
|
|
@ -11,7 +11,7 @@ import numpy
|
|||
import numpy.linalg
|
||||
import struct
|
||||
import srsly
|
||||
from thinc.neural.util import get_array_module, copy_array
|
||||
from thinc.util import get_array_module, copy_array
|
||||
|
||||
from .span cimport Span
|
||||
from .token cimport Token
|
||||
|
|
|
@ -3,7 +3,7 @@ from libc.math cimport sqrt
|
|||
|
||||
import numpy
|
||||
import numpy.linalg
|
||||
from thinc.neural.util import get_array_module
|
||||
from thinc.util import get_array_module
|
||||
from collections import defaultdict
|
||||
|
||||
from .doc cimport token_by_start, token_by_end, get_token_attr, _get_lca_matrix
|
||||
|
|
|
@ -7,7 +7,7 @@ cimport numpy as np
|
|||
np.import_array()
|
||||
|
||||
import numpy
|
||||
from thinc.neural.util import get_array_module
|
||||
from thinc.util import get_array_module
|
||||
|
||||
from ..typedefs cimport hash_t
|
||||
from ..lexeme cimport Lexeme
|
||||
|
|
|
@ -2,7 +2,9 @@ from libc.stdint cimport uint16_t, uint32_t, uint64_t, uintptr_t, int32_t
|
|||
from libc.stdint cimport uint8_t
|
||||
|
||||
|
||||
ctypedef float weight_t
|
||||
ctypedef uint64_t hash_t
|
||||
ctypedef uint64_t class_t
|
||||
ctypedef char* utf8_t
|
||||
ctypedef uint64_t attr_t
|
||||
ctypedef uint64_t flags_t
|
||||
|
|
|
@ -4,8 +4,14 @@ import importlib.util
|
|||
import re
|
||||
from pathlib import Path
|
||||
import random
|
||||
from thinc.neural._classes.model import Model
|
||||
from thinc.neural.ops import NumpyOps
|
||||
from typing import List
|
||||
|
||||
import thinc
|
||||
import thinc.config
|
||||
from thinc.backends import NumpyOps, get_current_ops
|
||||
from thinc.optimizers import Adam
|
||||
from thinc.util import require_gpu
|
||||
|
||||
import functools
|
||||
import itertools
|
||||
import numpy.random
|
||||
|
@ -13,6 +19,7 @@ import srsly
|
|||
import catalogue
|
||||
import sys
|
||||
|
||||
|
||||
try:
|
||||
import cupy.random
|
||||
except ImportError:
|
||||
|
@ -20,14 +27,13 @@ except ImportError:
|
|||
|
||||
from .symbols import ORTH
|
||||
from .compat import cupy, CudaStream
|
||||
from .errors import Errors, Warnings, deprecation_warning
|
||||
|
||||
from .errors import Errors, Warnings, deprecation_warning, user_warning
|
||||
|
||||
_data_path = Path(__file__).parent / "data"
|
||||
_PRINT_ENV = False
|
||||
|
||||
|
||||
class registry(object):
|
||||
class registry(thinc.registry):
|
||||
languages = catalogue.create("spacy", "languages", entry_points=True)
|
||||
architectures = catalogue.create("spacy", "architectures", entry_points=True)
|
||||
lookups = catalogue.create("spacy", "lookups", entry_points=True)
|
||||
|
@ -219,6 +225,23 @@ def load_model_from_init_py(init_file, **overrides):
|
|||
return load_model_from_path(data_path, meta, **overrides)
|
||||
|
||||
|
||||
def load_from_config(path, create_objects=False):
|
||||
"""Load a Thinc-formatted config file, optionally filling in objects where
|
||||
the config references registry entries. See "Thinc config files" for details.
|
||||
|
||||
path (unicode or Path): Path to the config file
|
||||
create_objects (bool): Whether to automatically create objects when the config
|
||||
references registry entries. Defaults to False.
|
||||
|
||||
RETURNS (dict): The objects from the config file.
|
||||
"""
|
||||
config = thinc.config.Config().from_disk(path)
|
||||
if create_objects:
|
||||
return registry.make_from_config(config, validate=True)
|
||||
else:
|
||||
return config
|
||||
|
||||
|
||||
def get_model_meta(path):
|
||||
"""Get model meta.json from a directory path and validate its contents.
|
||||
|
||||
|
@ -293,9 +316,10 @@ def get_component_name(component):
|
|||
|
||||
|
||||
def get_cuda_stream(require=False, non_blocking=True):
|
||||
ops = get_current_ops()
|
||||
if CudaStream is None:
|
||||
return None
|
||||
elif isinstance(Model.ops, NumpyOps):
|
||||
elif isinstance(ops, NumpyOps):
|
||||
return None
|
||||
else:
|
||||
return CudaStream(non_blocking=non_blocking)
|
||||
|
@ -310,6 +334,14 @@ def get_async(stream, numpy_array):
|
|||
return array
|
||||
|
||||
|
||||
def eg2doc(example):
|
||||
"""Get a Doc object from an Example (or if it's a Doc, use it directly)"""
|
||||
# Put the import here to avoid circular import problems
|
||||
from .tokens.doc import Doc
|
||||
|
||||
return example if isinstance(example, Doc) else example.doc
|
||||
|
||||
|
||||
def env_opt(name, default=None):
|
||||
if type(default) is float:
|
||||
type_convert = float
|
||||
|
@ -532,6 +564,8 @@ def minibatch_by_words(examples, size, tuples=True, count_words=len):
|
|||
"""Create minibatches of a given number of words."""
|
||||
if isinstance(size, int):
|
||||
size_ = itertools.repeat(size)
|
||||
if isinstance(size, List):
|
||||
size_ = iter(size)
|
||||
else:
|
||||
size_ = size
|
||||
examples = iter(examples)
|
||||
|
@ -680,17 +714,7 @@ def escape_html(text):
|
|||
|
||||
|
||||
def use_gpu(gpu_id):
|
||||
try:
|
||||
import cupy.cuda.device
|
||||
except ImportError:
|
||||
return None
|
||||
from thinc.neural.ops import CupyOps
|
||||
|
||||
device = cupy.cuda.device.Device(gpu_id)
|
||||
device.use()
|
||||
Model.ops = CupyOps()
|
||||
Model.Ops = CupyOps
|
||||
return device
|
||||
return require_gpu(gpu_id)
|
||||
|
||||
|
||||
def fix_random_seed(seed=0):
|
||||
|
@ -747,3 +771,33 @@ class DummyTokenizer(object):
|
|||
|
||||
def from_disk(self, _path, **kwargs):
|
||||
return self
|
||||
|
||||
|
||||
def link_vectors_to_models(vocab):
|
||||
vectors = vocab.vectors
|
||||
if vectors.name is None:
|
||||
vectors.name = VECTORS_KEY
|
||||
if vectors.data.size != 0:
|
||||
user_warning(Warnings.W020.format(shape=vectors.data.shape))
|
||||
for word in vocab:
|
||||
if word.orth in vectors.key2row:
|
||||
word.rank = vectors.key2row[word.orth]
|
||||
else:
|
||||
word.rank = 0
|
||||
|
||||
|
||||
VECTORS_KEY = "spacy_pretrained_vectors"
|
||||
|
||||
|
||||
def create_default_optimizer():
|
||||
ops = get_current_ops()
|
||||
learn_rate = env_opt("learn_rate", 0.001)
|
||||
beta1 = env_opt("optimizer_B1", 0.9)
|
||||
beta2 = env_opt("optimizer_B2", 0.999)
|
||||
eps = env_opt("optimizer_eps", 1e-8)
|
||||
L2 = env_opt("L2_penalty", 1e-6)
|
||||
max_grad_norm = env_opt("grad_norm_clip", 1.0)
|
||||
optimizer = Adam(learn_rate, L2=L2, beta1=beta1, beta2=beta2, eps=eps, ops=ops)
|
||||
optimizer.max_grad_norm = max_grad_norm
|
||||
optimizer.device = ops.device_type
|
||||
return optimizer
|
||||
|
|
|
@ -5,8 +5,8 @@ from libcpp.set cimport set as cppset
|
|||
import functools
|
||||
import numpy
|
||||
import srsly
|
||||
from thinc.neural.util import get_array_module
|
||||
from thinc.neural._classes.model import Model
|
||||
from thinc.util import get_array_module
|
||||
from thinc.backends import get_current_ops
|
||||
|
||||
from .strings cimport StringStore
|
||||
|
||||
|
@ -426,9 +426,9 @@ cdef class Vectors:
|
|||
self.add(key, row=i)
|
||||
|
||||
def load_vectors(path):
|
||||
xp = Model.ops.xp
|
||||
ops = get_current_ops()
|
||||
if path.exists():
|
||||
self.data = xp.load(str(path))
|
||||
self.data = ops.xp.load(str(path))
|
||||
|
||||
serializers = {
|
||||
"key2row": load_key2row,
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
from libc.string cimport memcpy
|
||||
|
||||
import srsly
|
||||
from thinc.neural.util import get_array_module
|
||||
from thinc.util import get_array_module
|
||||
|
||||
from .lexeme cimport EMPTY_LEXEME
|
||||
from .lexeme cimport Lexeme
|
||||
|
@ -16,7 +16,7 @@ from .errors import Errors
|
|||
from .lemmatizer import Lemmatizer
|
||||
from .attrs import intify_attrs, NORM
|
||||
from .vectors import Vectors
|
||||
from ._ml import link_vectors_to_models
|
||||
from .util import link_vectors_to_models
|
||||
from .lookups import Lookups
|
||||
from . import util
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user