mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-10 19:57:17 +03:00
569cc98982
* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
189 lines
6.8 KiB
Python
189 lines
6.8 KiB
Python
from .pipes import Pipe
|
|
from ..gold import Example
|
|
from ..tokens import Doc
|
|
from ..vocab import Vocab
|
|
from ..language import component
|
|
from ..util import link_vectors_to_models, minibatch, registry, eg2doc
|
|
|
|
from thinc.model import Model, set_dropout_rate
|
|
|
|
|
|
@component("tok2vec", assigns=["doc.tensor"])
|
|
class Tok2Vec(Pipe):
|
|
@classmethod
|
|
def from_nlp(cls, nlp, **cfg):
|
|
return cls(nlp.vocab, **cfg)
|
|
|
|
@classmethod
|
|
def Model(cls, architecture, **cfg):
|
|
"""Create a new statistical model for the class.
|
|
|
|
architecture (str): The registered model architecture to use.
|
|
**cfg: Config parameters.
|
|
RETURNS (Model): A `thinc.model.Model` or similar instance.
|
|
"""
|
|
model = registry.architectures.get(architecture)
|
|
return model(**cfg)
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
"""Construct a new statistical model. Weights are not allocated on
|
|
initialisation.
|
|
vocab (Vocab): A `Vocab` instance. The model must share the same `Vocab`
|
|
instance with the `Doc` objects it will process.
|
|
model (Model): A `Model` instance or `True` to allocate one later.
|
|
**cfg: Config parameters.
|
|
"""
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.cfg = dict(cfg)
|
|
self.listeners = []
|
|
|
|
def create_listener(self):
|
|
listener = Tok2VecListener(upstream_name="tok2vec", width=self.model.get_dim("nO"))
|
|
self.listeners.append(listener)
|
|
|
|
def add_listener(self, listener):
|
|
self.listeners.append(listener)
|
|
|
|
def find_listeners(self, model):
|
|
for node in model.walk():
|
|
if isinstance(node, Tok2VecListener) and node.upstream_name == self.name:
|
|
self.add_listener(node)
|
|
|
|
def __call__(self, doc):
|
|
"""Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM
|
|
model. Vectors are set to the `Doc.tensor` attribute.
|
|
docs (Doc or iterable): One or more documents to add vectors to.
|
|
RETURNS (dict or None): Intermediate computations.
|
|
"""
|
|
tokvecses = self.predict([doc])
|
|
self.set_annotations([doc], tokvecses)
|
|
return doc
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1, as_example=False):
|
|
"""Process `Doc` objects as a stream.
|
|
stream (iterator): A sequence of `Doc` objects to process.
|
|
batch_size (int): Number of `Doc` objects to group.
|
|
n_threads (int): Number of threads.
|
|
YIELDS (iterator): A sequence of `Doc` objects, in order of input.
|
|
"""
|
|
for batch in minibatch(stream, batch_size):
|
|
batch = list(batch)
|
|
if as_example:
|
|
docs = [eg2doc(doc) for doc in batch]
|
|
else:
|
|
docs = batch
|
|
tokvecses = self.predict(docs)
|
|
self.set_annotations(docs, tokvecses)
|
|
yield from batch
|
|
|
|
def predict(self, docs):
|
|
"""Return a single tensor for a batch of documents.
|
|
docs (iterable): A sequence of `Doc` objects.
|
|
RETURNS (object): Vector representations for each token in the documents.
|
|
"""
|
|
tokvecs = self.model.predict(docs)
|
|
batch_id = Tok2VecListener.get_batch_id(docs)
|
|
for listener in self.listeners:
|
|
listener.receive(batch_id, tokvecs, None)
|
|
return tokvecs
|
|
|
|
def set_annotations(self, docs, tokvecses):
|
|
"""Set the tensor attribute for a batch of documents.
|
|
docs (iterable): A sequence of `Doc` objects.
|
|
tokvecs (object): Vector representation for each token in the documents.
|
|
"""
|
|
for doc, tokvecs in zip(docs, tokvecses):
|
|
assert tokvecs.shape[0] == len(doc)
|
|
doc.tensor = tokvecs
|
|
|
|
def update(self, examples, drop=0.0, sgd=None, losses=None, set_annotations=False):
|
|
"""Update the model.
|
|
examples (iterable): A batch of examples
|
|
drop (float): The droput rate.
|
|
sgd (callable): An optimizer.
|
|
RETURNS (dict): Results from the update.
|
|
"""
|
|
if losses is None:
|
|
losses = {}
|
|
examples = Example.to_example_objects(examples)
|
|
docs = [eg.doc for eg in examples]
|
|
if isinstance(docs, Doc):
|
|
docs = [docs]
|
|
set_dropout_rate(self.model, drop)
|
|
tokvecs, bp_tokvecs = self.model.begin_update(docs)
|
|
|
|
def capture_losses(d_tokvecs):
|
|
"""Accumulate tok2vec loss before doing backprop."""
|
|
l2_loss = sum((d_t2v**2).sum() for d_t2v in d_tokvecs)
|
|
if self.name in losses:
|
|
losses[self.name] += l2_loss / len(d_tokvecs)
|
|
else:
|
|
losses[self.name] = l2_loss / len(d_tokvecs)
|
|
return bp_tokvecs(d_tokvecs)
|
|
|
|
batch_id = Tok2VecListener.get_batch_id(docs)
|
|
for listener in self.listeners:
|
|
listener.receive(batch_id, tokvecs, capture_losses)
|
|
if sgd is not None:
|
|
self.model.finish_update(sgd)
|
|
if set_annotations:
|
|
self.set_annotations(docs, tokvecs)
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
pass
|
|
|
|
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None, **kwargs):
|
|
"""Allocate models and pre-process training data
|
|
|
|
get_examples (function): Function returning example training data.
|
|
pipeline (list): The pipeline the model is part of.
|
|
"""
|
|
if self.model is True:
|
|
self.model = self.Model(**self.cfg)
|
|
# TODO: use examples instead ?
|
|
docs = [Doc(Vocab(), words=["hello"])]
|
|
self.model.initialize(X=docs)
|
|
link_vectors_to_models(self.vocab)
|
|
|
|
|
|
class Tok2VecListener(Model):
|
|
"""A layer that gets fed its answers from an upstream connection,
|
|
for instance from a component earlier in the pipeline.
|
|
"""
|
|
name = "tok2vec-listener"
|
|
|
|
def __init__(self, upstream_name, width):
|
|
Model.__init__(self, name=self.name, forward=forward, dims={"nO": width})
|
|
self.upstream_name = upstream_name
|
|
self._batch_id = None
|
|
self._outputs = None
|
|
self._backprop = None
|
|
|
|
@classmethod
|
|
def get_batch_id(cls, inputs):
|
|
return sum(sum(token.orth for token in doc) for doc in inputs)
|
|
|
|
def receive(self, batch_id, outputs, backprop):
|
|
self._batch_id = batch_id
|
|
self._outputs = outputs
|
|
self._backprop = backprop
|
|
|
|
def verify_inputs(self, inputs):
|
|
if self._batch_id is None and self._outputs is None:
|
|
raise ValueError
|
|
else:
|
|
batch_id = self.get_batch_id(inputs)
|
|
if batch_id != self._batch_id:
|
|
raise ValueError(f"Mismatched IDs! {batch_id} vs {self._batch_id}")
|
|
else:
|
|
return True
|
|
|
|
|
|
def forward(model: Tok2VecListener, inputs, is_train):
|
|
if is_train:
|
|
model.verify_inputs(inputs)
|
|
return model._outputs, model._backprop
|
|
else:
|
|
return [doc.tensor for doc in inputs], lambda dX: []
|