mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 10:26:35 +03:00
569cc98982
* Add load_from_config function * Add train_from_config script * Merge configs and expose via spacy.config * Fix script * Suggest create_evaluation_callback * Hard-code for NER * Fix errors * Register command * Add TODO * Update train-from-config todos * Fix imports * Allow delayed setting of parser model nr_class * Get train-from-config working * Tidy up and fix scores and printing * Hide traceback if cancelled * Fix weighted score formatting * Fix score formatting * Make output_path optional * Add Tok2Vec component * Tidy up and add tok2vec_tensors * Add option to copy docs in nlp.update * Copy docs in nlp.update * Adjust nlp.update() for set_annotations * Don't shuffle pipes in nlp.update, decruft * Support set_annotations arg in component update * Support set_annotations in parser update * Add get_gradients method * Add get_gradients to parser * Update errors.py * Fix problems caused by merge * Add _link_components method in nlp * Add concept of 'listeners' and ControlledModel * Support optional attributes arg in ControlledModel * Try having tok2vec component in pipeline * Fix tok2vec component * Fix config * Fix tok2vec * Update for Example * Update for Example * Update config * Add eg2doc util * Update and add schemas/types * Update schemas * Fix nlp.update * Fix tagger * Remove hacks from train-from-config * Remove hard-coded config str * Calculate loss in tok2vec component * Tidy up and use function signatures instead of models * Support union types for registry models * Minor cleaning in Language.update * Make ControlledModel specifically Tok2VecListener * Fix train_from_config * Fix tok2vec * Tidy up * Add function for bilstm tok2vec * Fix type * Fix syntax * Fix pytorch optimizer * Add example configs * Update for thinc describe changes * Update for Thinc changes * Update for dropout/sgd changes * Update for dropout/sgd changes * Unhack gradient update * Work on refactoring _ml * Remove _ml.py module * WIP upgrade cli scripts for thinc * Move some _ml stuff to util * Import link_vectors from util * Update train_from_config * Import from util * Import from util * Temporarily add ml.component_models module * Move ml methods * Move typedefs * Update load vectors * Update gitignore * Move imports * Add PrecomputableAffine * Fix imports * Fix imports * Fix imports * Fix missing imports * Update CLI scripts * Update spacy.language * Add stubs for building the models * Update model definition * Update create_default_optimizer * Fix import * Fix comment * Update imports in tests * Update imports in spacy.cli * Fix import * fix obsolete thinc imports * update srsly pin * from thinc to ml_datasets for example data such as imdb * update ml_datasets pin * using STATE.vectors * small fix * fix Sentencizer.pipe * black formatting * rename Affine to Linear as in thinc * set validate explicitely to True * rename with_square_sequences to with_list2padded * rename with_flatten to with_list2array * chaining layernorm * small fixes * revert Optimizer import * build_nel_encoder with new thinc style * fixes using model's get and set methods * Tok2Vec in component models, various fixes * fix up legacy tok2vec code * add model initialize calls * add in build_tagger_model * small fixes * setting model dims * fixes for ParserModel * various small fixes * initialize thinc Models * fixes * consistent naming of window_size * fixes, removing set_dropout * work around Iterable issue * remove legacy tok2vec * util fix * fix forward function of tok2vec listener * more fixes * trying to fix PrecomputableAffine (not succesful yet) * alloc instead of allocate * add morphologizer * rename residual * rename fixes * Fix predict function * Update parser and parser model * fixing few more tests * Fix precomputable affine * Update component model * Update parser model * Move backprop padding to own function, for test * Update test * Fix p. affine * Update NEL * build_bow_text_classifier and extract_ngrams * Fix parser init * Fix test add label * add build_simple_cnn_text_classifier * Fix parser init * Set gpu off by default in example * Fix tok2vec listener * Fix parser model * Small fixes * small fix for PyTorchLSTM parameters * revert my_compounding hack (iterable fixed now) * fix biLSTM * Fix uniqued * PyTorchRNNWrapper fix * small fixes * use helper function to calculate cosine loss * small fixes for build_simple_cnn_text_classifier * putting dropout default at 0.0 to ensure the layer gets built * using thinc util's set_dropout_rate * moving layer normalization inside of maxout definition to optimize dropout * temp debugging in NEL * fixed NEL model by using init defaults ! * fixing after set_dropout_rate refactor * proper fix * fix test_update_doc after refactoring optimizers in thinc * Add CharacterEmbed layer * Construct tagger Model * Add missing import * Remove unused stuff * Work on textcat * fix test (again :)) after optimizer refactor * fixes to allow reading Tagger from_disk without overwriting dimensions * don't build the tok2vec prematuraly * fix CharachterEmbed init * CharacterEmbed fixes * Fix CharacterEmbed architecture * fix imports * renames from latest thinc update * one more rename * add initialize calls where appropriate * fix parser initialization * Update Thinc version * Fix errors, auto-format and tidy up imports * Fix validation * fix if bias is cupy array * revert for now * ensure it's a numpy array before running bp in ParserStepModel * no reason to call require_gpu twice * use CupyOps.to_numpy instead of cupy directly * fix initialize of ParserModel * remove unnecessary import * fixes for CosineDistance * fix device renaming * use refactored loss functions (Thinc PR 251) * overfitting test for tagger * experimental settings for the tagger: avoid zero-init and subword normalization * clean up tagger overfitting test * use previous default value for nP * remove toy config * bringing layernorm back (had a bug - fixed in thinc) * revert setting nP explicitly * remove setting default in constructor * restore values as they used to be * add overfitting test for NER * add overfitting test for dep parser * add overfitting test for textcat * fixing init for linear (previously affine) * larger eps window for textcat * ensure doc is not None * Require newer thinc * Make float check vaguer * Slop the textcat overfit test more * Fix textcat test * Fix exclusive classes for textcat * fix after renaming of alloc methods * fixing renames and mandatory arguments (staticvectors WIP) * upgrade to thinc==8.0.0.dev3 * refer to vocab.vectors directly instead of its name * rename alpha to learn_rate * adding hashembed and staticvectors dropout * upgrade to thinc 8.0.0.dev4 * add name back to avoid warning W020 * thinc dev4 * update srsly * using thinc 8.0.0a0 ! Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> Co-authored-by: Ines Montani <ines@ines.io>
216 lines
7.1 KiB
Python
216 lines
7.1 KiB
Python
"""This script is experimental.
|
|
|
|
Try pre-training the CNN component of the text categorizer using a cheap
|
|
language modelling-like objective. Specifically, we load pretrained vectors
|
|
(from something like word2vec, GloVe, FastText etc), and use the CNN to
|
|
predict the tokens' pretrained vectors. This isn't as easy as it sounds:
|
|
we're not merely doing compression here, because heavy dropout is applied,
|
|
including over the input words. This means the model must often (50% of the time)
|
|
use the context in order to predict the word.
|
|
|
|
To evaluate the technique, we're pre-training with the 50k texts from the IMDB
|
|
corpus, and then training with only 100 labels. Note that it's a bit dirty to
|
|
pre-train with the development data, but also not *so* terrible: we're not using
|
|
the development labels, after all --- only the unlabelled text.
|
|
"""
|
|
import plac
|
|
import tqdm
|
|
import random
|
|
|
|
import ml_datasets
|
|
|
|
import spacy
|
|
from spacy.util import minibatch, use_gpu, compounding
|
|
from spacy.pipeline import TextCategorizer
|
|
from spacy.ml.tok2vec import Tok2Vec
|
|
import numpy
|
|
|
|
|
|
def load_texts(limit=0):
|
|
train, dev = ml_datasets.imdb()
|
|
train_texts, train_labels = zip(*train)
|
|
dev_texts, dev_labels = zip(*train)
|
|
train_texts = list(train_texts)
|
|
dev_texts = list(dev_texts)
|
|
random.shuffle(train_texts)
|
|
random.shuffle(dev_texts)
|
|
if limit >= 1:
|
|
return train_texts[:limit]
|
|
else:
|
|
return list(train_texts) + list(dev_texts)
|
|
|
|
|
|
def load_textcat_data(limit=0):
|
|
"""Load data from the IMDB dataset."""
|
|
# Partition off part of the train data for evaluation
|
|
train_data, eval_data = ml_datasets.imdb()
|
|
random.shuffle(train_data)
|
|
train_data = train_data[-limit:]
|
|
texts, labels = zip(*train_data)
|
|
eval_texts, eval_labels = zip(*eval_data)
|
|
cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in labels]
|
|
eval_cats = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in eval_labels]
|
|
return (texts, cats), (eval_texts, eval_cats)
|
|
|
|
|
|
def prefer_gpu():
|
|
used = spacy.util.use_gpu(0)
|
|
if used is None:
|
|
return False
|
|
else:
|
|
import cupy.random
|
|
|
|
cupy.random.seed(0)
|
|
return True
|
|
|
|
|
|
def build_textcat_model(tok2vec, nr_class, width):
|
|
from thinc.model import Model
|
|
from thinc.layers import Softmax, chain, reduce_mean
|
|
from thinc.layers import list2ragged
|
|
|
|
with Model.define_operators({">>": chain}):
|
|
model = (
|
|
tok2vec
|
|
>> list2ragged()
|
|
>> reduce_mean()
|
|
>> Softmax(nr_class, width)
|
|
)
|
|
model.tok2vec = tok2vec
|
|
return model
|
|
|
|
|
|
def block_gradients(model):
|
|
from thinc.api import wrap # TODO FIX
|
|
|
|
def forward(X, drop=0.0):
|
|
Y, _ = model.begin_update(X, drop=drop)
|
|
return Y, None
|
|
|
|
return wrap(forward, model)
|
|
|
|
|
|
def create_pipeline(width, embed_size, vectors_model):
|
|
print("Load vectors")
|
|
nlp = spacy.load(vectors_model)
|
|
print("Start training")
|
|
textcat = TextCategorizer(
|
|
nlp.vocab,
|
|
labels=["POSITIVE", "NEGATIVE"],
|
|
model=build_textcat_model(
|
|
Tok2Vec(width=width, embed_size=embed_size), 2, width
|
|
),
|
|
)
|
|
|
|
nlp.add_pipe(textcat)
|
|
return nlp
|
|
|
|
|
|
def train_tensorizer(nlp, texts, dropout, n_iter):
|
|
tensorizer = nlp.create_pipe("tensorizer")
|
|
nlp.add_pipe(tensorizer)
|
|
optimizer = nlp.begin_training()
|
|
for i in range(n_iter):
|
|
losses = {}
|
|
for i, batch in enumerate(minibatch(tqdm.tqdm(texts))):
|
|
docs = [nlp.make_doc(text) for text in batch]
|
|
tensorizer.update((docs, None), losses=losses, sgd=optimizer, drop=dropout)
|
|
print(losses)
|
|
return optimizer
|
|
|
|
|
|
def train_textcat(nlp, n_texts, n_iter=10):
|
|
textcat = nlp.get_pipe("textcat")
|
|
tok2vec_weights = textcat.model.tok2vec.to_bytes()
|
|
(train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts)
|
|
print(
|
|
"Using {} examples ({} training, {} evaluation)".format(
|
|
n_texts, len(train_texts), len(dev_texts)
|
|
)
|
|
)
|
|
train_data = list(zip(train_texts, [{"cats": cats} for cats in train_cats]))
|
|
|
|
# get names of other pipes to disable them during training
|
|
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "textcat"]
|
|
with nlp.disable_pipes(*other_pipes): # only train textcat
|
|
optimizer = nlp.begin_training()
|
|
textcat.model.tok2vec.from_bytes(tok2vec_weights)
|
|
print("Training the model...")
|
|
print("{:^5}\t{:^5}\t{:^5}\t{:^5}".format("LOSS", "P", "R", "F"))
|
|
for i in range(n_iter):
|
|
losses = {"textcat": 0.0}
|
|
# batch up the examples using spaCy's minibatch
|
|
batches = minibatch(tqdm.tqdm(train_data), size=2)
|
|
for batch in batches:
|
|
nlp.update(batch, sgd=optimizer, drop=0.2, losses=losses)
|
|
with textcat.model.use_params(optimizer.averages):
|
|
# evaluate on the dev data split off in load_data()
|
|
scores = evaluate_textcat(nlp.tokenizer, textcat, dev_texts, dev_cats)
|
|
print(
|
|
"{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}".format( # print a simple table
|
|
losses["textcat"],
|
|
scores["textcat_p"],
|
|
scores["textcat_r"],
|
|
scores["textcat_f"],
|
|
)
|
|
)
|
|
|
|
|
|
def evaluate_textcat(tokenizer, textcat, texts, cats):
|
|
docs = (tokenizer(text) for text in texts)
|
|
tp = 1e-8
|
|
fp = 1e-8
|
|
tn = 1e-8
|
|
fn = 1e-8
|
|
for i, doc in enumerate(textcat.pipe(docs)):
|
|
gold = cats[i]
|
|
for label, score in doc.cats.items():
|
|
if label not in gold:
|
|
continue
|
|
if score >= 0.5 and gold[label] >= 0.5:
|
|
tp += 1.0
|
|
elif score >= 0.5 and gold[label] < 0.5:
|
|
fp += 1.0
|
|
elif score < 0.5 and gold[label] < 0.5:
|
|
tn += 1
|
|
elif score < 0.5 and gold[label] >= 0.5:
|
|
fn += 1
|
|
precision = tp / (tp + fp)
|
|
recall = tp / (tp + fn)
|
|
f_score = 2 * (precision * recall) / (precision + recall)
|
|
return {"textcat_p": precision, "textcat_r": recall, "textcat_f": f_score}
|
|
|
|
|
|
@plac.annotations(
|
|
width=("Width of CNN layers", "positional", None, int),
|
|
embed_size=("Embedding rows", "positional", None, int),
|
|
pretrain_iters=("Number of iterations to pretrain", "option", "pn", int),
|
|
train_iters=("Number of iterations to pretrain", "option", "tn", int),
|
|
train_examples=("Number of labelled examples", "option", "eg", int),
|
|
vectors_model=("Name or path to vectors model to learn from"),
|
|
)
|
|
def main(
|
|
width,
|
|
embed_size,
|
|
vectors_model,
|
|
pretrain_iters=30,
|
|
train_iters=30,
|
|
train_examples=1000,
|
|
):
|
|
random.seed(0)
|
|
numpy.random.seed(0)
|
|
use_gpu = prefer_gpu()
|
|
print("Using GPU?", use_gpu)
|
|
|
|
nlp = create_pipeline(width, embed_size, vectors_model)
|
|
print("Load data")
|
|
texts = load_texts(limit=0)
|
|
print("Train tensorizer")
|
|
optimizer = train_tensorizer(nlp, texts, dropout=0.2, n_iter=pretrain_iters)
|
|
print("Train textcat")
|
|
train_textcat(nlp, train_examples, n_iter=train_iters)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
plac.call(main)
|