spaCy/spacy/tests/test_cli_app.py

429 lines
14 KiB
Python
Raw Normal View History

import os
from pathlib import Path
import pytest
import srsly
from typer.testing import CliRunner
from spacy.cli._util import app, get_git_version
from spacy.tokens import Doc, DocBin, Span
from .util import make_tempdir, normalize_whitespace
def has_git():
try:
get_git_version()
return True
except RuntimeError:
return False
def test_convert_auto():
with make_tempdir() as d_in, make_tempdir() as d_out:
for f in ["data1.iob", "data2.iob", "data3.iob"]:
Path(d_in / f).touch()
# ensure that "automatic" suffix detection works
result = CliRunner().invoke(app, ["convert", str(d_in), str(d_out)])
assert "Generated output file" in result.stdout
out_files = os.listdir(d_out)
assert len(out_files) == 3
assert "data1.spacy" in out_files
assert "data2.spacy" in out_files
assert "data3.spacy" in out_files
def test_convert_auto_conflict():
with make_tempdir() as d_in, make_tempdir() as d_out:
for f in ["data1.iob", "data2.iob", "data3.json"]:
Path(d_in / f).touch()
# ensure that "automatic" suffix detection warns when there are different file types
result = CliRunner().invoke(app, ["convert", str(d_in), str(d_out)])
assert "All input files must be same type" in result.stdout
out_files = os.listdir(d_out)
assert len(out_files) == 0
def test_benchmark_accuracy_alias():
# Verify that the `evaluate` alias works correctly.
result_benchmark = CliRunner().invoke(app, ["benchmark", "accuracy", "--help"])
result_evaluate = CliRunner().invoke(app, ["evaluate", "--help"])
assert normalize_whitespace(result_benchmark.stdout) == normalize_whitespace(
result_evaluate.stdout.replace("spacy evaluate", "spacy benchmark accuracy")
)
def test_debug_data_trainable_lemmatizer_cli(en_vocab):
train_docs = [
Doc(en_vocab, words=["I", "like", "cats"], lemmas=["I", "like", "cat"]),
Doc(
en_vocab,
words=["Dogs", "are", "great", "too"],
lemmas=["dog", "be", "great", "too"],
),
]
dev_docs = [
Doc(en_vocab, words=["Cats", "are", "cute"], lemmas=["cat", "be", "cute"]),
Doc(en_vocab, words=["Pets", "are", "great"], lemmas=["pet", "be", "great"]),
]
with make_tempdir() as d_in:
train_bin = DocBin(docs=train_docs)
train_bin.to_disk(d_in / "train.spacy")
dev_bin = DocBin(docs=dev_docs)
dev_bin.to_disk(d_in / "dev.spacy")
# `debug data` requires an input pipeline config
CliRunner().invoke(
app,
[
"init",
"config",
f"{d_in}/config.cfg",
"--lang",
"en",
"--pipeline",
"trainable_lemmatizer",
],
)
result_debug_data = CliRunner().invoke(
app,
[
"debug",
"data",
f"{d_in}/config.cfg",
"--paths.train",
f"{d_in}/train.spacy",
"--paths.dev",
f"{d_in}/dev.spacy",
],
)
# Instead of checking specific wording of the output, which may change,
# we'll check that this section of the debug output is present.
assert "= Trainable Lemmatizer =" in result_debug_data.stdout
# project tests
CFG_FILE = "myconfig.cfg"
SAMPLE_PROJECT = {
"title": "Sample project",
"description": "This is a project for testing",
"assets": [
{
"dest": "assets/spacy-readme.md",
"url": "https://github.com/explosion/spaCy/raw/dec81508d28b47f09a06203c472b37f00db6c869/README.md",
"checksum": "411b2c89ccf34288fae8ed126bf652f7",
},
{
"dest": "assets/citation.cff",
"url": "https://github.com/explosion/spaCy/raw/master/CITATION.cff",
"checksum": "c996bfd80202d480eb2e592369714e5e",
"extra": True,
},
],
"commands": [
{
"name": "ok",
"help": "print ok",
"script": ["python -c \"print('okokok')\""],
},
{
"name": "create",
"help": "make a file",
"script": [f"python -m spacy init config {CFG_FILE}"],
"outputs": [f"{CFG_FILE}"],
},
],
}
SAMPLE_PROJECT_TEXT = srsly.yaml_dumps(SAMPLE_PROJECT)
@pytest.fixture
def project_dir():
with make_tempdir() as pdir:
(pdir / "project.yml").write_text(SAMPLE_PROJECT_TEXT)
yield pdir
def test_project_document(project_dir):
readme_path = project_dir / "README.md"
assert not readme_path.exists(), "README already exists"
result = CliRunner().invoke(
app, ["project", "document", str(project_dir), "-o", str(readme_path)]
)
assert result.exit_code == 0
assert readme_path.is_file()
text = readme_path.read_text("utf-8")
assert SAMPLE_PROJECT["description"] in text
def test_project_assets(project_dir):
asset_dir = project_dir / "assets"
assert not asset_dir.exists(), "Assets dir is already present"
result = CliRunner().invoke(app, ["project", "assets", str(project_dir)])
assert result.exit_code == 0
assert (asset_dir / "spacy-readme.md").is_file(), "Assets not downloaded"
# check that extras work
result = CliRunner().invoke(app, ["project", "assets", "--extra", str(project_dir)])
assert result.exit_code == 0
assert (asset_dir / "citation.cff").is_file(), "Extras not downloaded"
def test_project_run(project_dir):
# make sure dry run works
test_file = project_dir / CFG_FILE
result = CliRunner().invoke(
app, ["project", "run", "--dry", "create", str(project_dir)]
)
assert result.exit_code == 0
assert not test_file.is_file()
result = CliRunner().invoke(app, ["project", "run", "create", str(project_dir)])
assert result.exit_code == 0
assert test_file.is_file()
result = CliRunner().invoke(app, ["project", "run", "ok", str(project_dir)])
assert result.exit_code == 0
assert "okokok" in result.stdout
@pytest.mark.skipif(not has_git(), reason="git not installed")
@pytest.mark.parametrize(
"options",
[
"",
# "--sparse",
"--branch v3",
"--repo https://github.com/explosion/projects --branch v3",
],
)
def test_project_clone(options):
with make_tempdir() as workspace:
out = workspace / "project"
target = "benchmarks/ner_conll03"
if not options:
options = []
else:
options = options.split()
result = CliRunner().invoke(
app, ["project", "clone", target, *options, str(out)]
)
assert result.exit_code == 0
assert (out / "README.md").is_file()
def test_project_push_pull(project_dir):
proj = dict(SAMPLE_PROJECT)
remote = "xyz"
with make_tempdir() as remote_dir:
proj["remotes"] = {remote: str(remote_dir)}
proj_text = srsly.yaml_dumps(proj)
(project_dir / "project.yml").write_text(proj_text)
test_file = project_dir / CFG_FILE
result = CliRunner().invoke(app, ["project", "run", "create", str(project_dir)])
assert result.exit_code == 0
assert test_file.is_file()
result = CliRunner().invoke(app, ["project", "push", remote, str(project_dir)])
assert result.exit_code == 0
test_file.unlink()
assert not test_file.exists()
result = CliRunner().invoke(app, ["project", "pull", remote, str(project_dir)])
assert result.exit_code == 0
assert test_file.is_file()
def test_find_function_valid():
# example of architecture in main code base
function = "spacy.TextCatBOW.v2"
result = CliRunner().invoke(app, ["find-function", function, "-r", "architectures"])
assert f"Found registered function '{function}'" in result.stdout
assert "textcat.py" in result.stdout
result = CliRunner().invoke(app, ["find-function", function])
assert f"Found registered function '{function}'" in result.stdout
assert "textcat.py" in result.stdout
# example of architecture in spacy-legacy
function = "spacy.TextCatBOW.v1"
result = CliRunner().invoke(app, ["find-function", function])
assert f"Found registered function '{function}'" in result.stdout
assert "spacy_legacy" in result.stdout
assert "textcat.py" in result.stdout
def test_find_function_invalid():
# invalid registry
function = "spacy.TextCatBOW.v2"
registry = "foobar"
result = CliRunner().invoke(
app, ["find-function", function, "--registry", registry]
)
assert f"Unknown function registry: '{registry}'" in result.stdout
# invalid function
function = "spacy.TextCatBOW.v666"
result = CliRunner().invoke(app, ["find-function", function])
assert f"Couldn't find registered function: '{function}'" in result.stdout
example_words_1 = ["I", "like", "cats"]
example_words_2 = ["I", "like", "dogs"]
example_lemmas_1 = ["I", "like", "cat"]
example_lemmas_2 = ["I", "like", "dog"]
example_tags = ["PRP", "VBP", "NNS"]
example_morphs = [
"Case=Nom|Number=Sing|Person=1|PronType=Prs",
"Tense=Pres|VerbForm=Fin",
"Number=Plur",
]
example_deps = ["nsubj", "ROOT", "dobj"]
example_pos = ["PRON", "VERB", "NOUN"]
example_ents = ["O", "O", "I-ANIMAL"]
example_spans = [(2, 3, "ANIMAL")]
TRAIN_EXAMPLE_1 = dict(
words=example_words_1,
lemmas=example_lemmas_1,
tags=example_tags,
morphs=example_morphs,
deps=example_deps,
heads=[1, 1, 1],
pos=example_pos,
ents=example_ents,
spans=example_spans,
cats={"CAT": 1.0, "DOG": 0.0},
)
TRAIN_EXAMPLE_2 = dict(
words=example_words_2,
lemmas=example_lemmas_2,
tags=example_tags,
morphs=example_morphs,
deps=example_deps,
heads=[1, 1, 1],
pos=example_pos,
ents=example_ents,
spans=example_spans,
cats={"CAT": 0.0, "DOG": 1.0},
)
@pytest.mark.slow
@pytest.mark.parametrize(
"component,examples",
[
("tagger", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
("morphologizer", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
("trainable_lemmatizer", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
("parser", [TRAIN_EXAMPLE_1] * 30),
("ner", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
("spancat", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
("textcat", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2]),
],
)
def test_init_config_trainable(component, examples, en_vocab):
if component == "textcat":
train_docs = []
for example in examples:
doc = Doc(en_vocab, words=example["words"])
doc.cats = example["cats"]
train_docs.append(doc)
elif component == "spancat":
train_docs = []
for example in examples:
doc = Doc(en_vocab, words=example["words"])
doc.spans["sc"] = [
Span(doc, start, end, label) for start, end, label in example["spans"]
]
train_docs.append(doc)
else:
train_docs = []
for example in examples:
# cats, spans are not valid kwargs for instantiating a Doc
example = {k: v for k, v in example.items() if k not in ("cats", "spans")}
doc = Doc(en_vocab, **example)
train_docs.append(doc)
with make_tempdir() as d_in:
train_bin = DocBin(docs=train_docs)
train_bin.to_disk(d_in / "train.spacy")
dev_bin = DocBin(docs=train_docs)
dev_bin.to_disk(d_in / "dev.spacy")
init_config_result = CliRunner().invoke(
app,
[
"init",
"config",
f"{d_in}/config.cfg",
"--lang",
"en",
"--pipeline",
component,
],
)
assert init_config_result.exit_code == 0
train_result = CliRunner().invoke(
app,
[
"train",
f"{d_in}/config.cfg",
"--paths.train",
f"{d_in}/train.spacy",
"--paths.dev",
f"{d_in}/dev.spacy",
"--output",
f"{d_in}/model",
],
)
assert train_result.exit_code == 0
assert Path(d_in / "model" / "model-last").exists()
@pytest.mark.slow
@pytest.mark.parametrize(
"component,examples",
[("tagger,parser,morphologizer", [TRAIN_EXAMPLE_1, TRAIN_EXAMPLE_2] * 15)],
)
def test_init_config_trainable_multiple(component, examples, en_vocab):
train_docs = []
for example in examples:
example = {k: v for k, v in example.items() if k not in ("cats", "spans")}
doc = Doc(en_vocab, **example)
train_docs.append(doc)
with make_tempdir() as d_in:
train_bin = DocBin(docs=train_docs)
train_bin.to_disk(d_in / "train.spacy")
dev_bin = DocBin(docs=train_docs)
dev_bin.to_disk(d_in / "dev.spacy")
init_config_result = CliRunner().invoke(
app,
[
"init",
"config",
f"{d_in}/config.cfg",
"--lang",
"en",
"--pipeline",
component,
],
)
assert init_config_result.exit_code == 0
train_result = CliRunner().invoke(
app,
[
"train",
f"{d_in}/config.cfg",
"--paths.train",
f"{d_in}/train.spacy",
"--paths.dev",
f"{d_in}/dev.spacy",
"--output",
f"{d_in}/model",
],
)
assert train_result.exit_code == 0
assert Path(d_in / "model" / "model-last").exists()