2018-07-25 00:38:44 +03:00
|
|
|
import pytest
|
2020-06-26 20:34:12 +03:00
|
|
|
|
2020-07-22 14:42:59 +03:00
|
|
|
from spacy import registry
|
2020-06-26 20:34:12 +03:00
|
|
|
from spacy.gold import Example
|
2018-07-25 00:38:44 +03:00
|
|
|
from spacy.vocab import Vocab
|
|
|
|
from spacy.syntax.arc_eager import ArcEager
|
|
|
|
from spacy.syntax.nn_parser import Parser
|
|
|
|
from spacy.tokens.doc import Doc
|
2020-05-18 23:23:33 +03:00
|
|
|
from thinc.api import Model
|
2020-07-22 14:42:59 +03:00
|
|
|
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
|
|
|
|
from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
|
2017-05-15 22:46:08 +03:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def vocab():
|
|
|
|
return Vocab()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def arc_eager(vocab):
|
2018-11-27 03:09:36 +03:00
|
|
|
actions = ArcEager.get_actions(left_labels=["L"], right_labels=["R"])
|
2017-05-15 22:46:08 +03:00
|
|
|
return ArcEager(vocab.strings, actions)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def tok2vec():
|
2020-07-22 14:42:59 +03:00
|
|
|
tok2vec = registry.make_from_config({"model": DEFAULT_TOK2VEC_MODEL}, validate=True)["model"]
|
2020-01-29 19:06:46 +03:00
|
|
|
tok2vec.initialize()
|
|
|
|
return tok2vec
|
2017-05-15 22:46:08 +03:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def parser(vocab, arc_eager):
|
2020-06-20 15:15:04 +03:00
|
|
|
config = {
|
|
|
|
"learn_tokens": False,
|
|
|
|
"min_action_freq": 30,
|
2020-07-22 14:42:59 +03:00
|
|
|
"update_with_oracle_cut_size": 100,
|
2020-06-20 15:15:04 +03:00
|
|
|
}
|
2020-07-22 14:42:59 +03:00
|
|
|
model = registry.make_from_config({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"]
|
|
|
|
return Parser(vocab, model, moves=arc_eager, **config)
|
2017-05-15 22:46:08 +03:00
|
|
|
|
2018-11-27 03:09:36 +03:00
|
|
|
|
2017-05-15 22:46:08 +03:00
|
|
|
@pytest.fixture
|
2020-02-27 20:42:27 +03:00
|
|
|
def model(arc_eager, tok2vec, vocab):
|
2020-07-22 14:42:59 +03:00
|
|
|
model = registry.make_from_config({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"]
|
2020-05-18 23:23:33 +03:00
|
|
|
model.attrs["resize_output"](model, arc_eager.n_moves)
|
2020-02-27 20:42:27 +03:00
|
|
|
model.initialize()
|
|
|
|
return model
|
2017-05-15 22:46:08 +03:00
|
|
|
|
2018-07-25 00:38:44 +03:00
|
|
|
|
2017-05-15 22:46:08 +03:00
|
|
|
@pytest.fixture
|
|
|
|
def doc(vocab):
|
2018-11-27 03:09:36 +03:00
|
|
|
return Doc(vocab, words=["a", "b", "c"])
|
2017-05-15 22:46:08 +03:00
|
|
|
|
2018-07-25 00:38:44 +03:00
|
|
|
|
2017-05-15 22:46:08 +03:00
|
|
|
@pytest.fixture
|
|
|
|
def gold(doc):
|
2020-06-26 20:34:12 +03:00
|
|
|
return {"heads": [1, 1, 1], "deps": ["L", "ROOT", "R"]}
|
2017-07-20 01:16:52 +03:00
|
|
|
|
|
|
|
|
2017-05-15 22:46:08 +03:00
|
|
|
def test_can_init_nn_parser(parser):
|
2020-05-18 23:23:33 +03:00
|
|
|
assert isinstance(parser.model, Model)
|
2017-05-15 22:46:08 +03:00
|
|
|
|
|
|
|
|
2020-02-27 20:42:27 +03:00
|
|
|
def test_build_model(parser, vocab):
|
2020-07-22 14:42:59 +03:00
|
|
|
config = {
|
|
|
|
"learn_tokens": False,
|
|
|
|
"min_action_freq": 0,
|
|
|
|
"update_with_oracle_cut_size": 100,
|
|
|
|
}
|
|
|
|
model = registry.make_from_config({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"]
|
|
|
|
parser.model = Parser(vocab, model=model, moves=parser.moves, **config).model
|
2017-05-15 22:46:08 +03:00
|
|
|
assert parser.model is not None
|
|
|
|
|
|
|
|
|
2017-05-16 17:17:30 +03:00
|
|
|
def test_predict_doc(parser, tok2vec, model, doc):
|
2020-01-29 19:06:46 +03:00
|
|
|
doc.tensor = tok2vec.predict([doc])[0]
|
2017-05-15 22:46:08 +03:00
|
|
|
parser.model = model
|
2017-05-20 02:11:29 +03:00
|
|
|
parser(doc)
|
2017-05-15 22:46:08 +03:00
|
|
|
|
|
|
|
|
2017-09-21 15:59:48 +03:00
|
|
|
def test_update_doc(parser, model, doc, gold):
|
2017-05-15 22:46:08 +03:00
|
|
|
parser.model = model
|
2018-11-27 03:09:36 +03:00
|
|
|
|
2020-01-29 19:06:46 +03:00
|
|
|
def optimize(key, weights, gradient):
|
2017-05-15 22:46:08 +03:00
|
|
|
weights -= 0.001 * gradient
|
2020-01-29 19:06:46 +03:00
|
|
|
return weights, gradient
|
2018-11-27 03:09:36 +03:00
|
|
|
|
2020-06-26 20:34:12 +03:00
|
|
|
example = Example.from_dict(doc, gold)
|
|
|
|
parser.update([example], sgd=optimize)
|
2017-07-20 16:03:10 +03:00
|
|
|
|
|
|
|
|
2020-07-20 15:49:54 +03:00
|
|
|
@pytest.mark.skip(reason="No longer supported")
|
2017-09-21 15:59:48 +03:00
|
|
|
def test_predict_doc_beam(parser, model, doc):
|
2017-07-20 16:03:10 +03:00
|
|
|
parser.model = model
|
|
|
|
parser(doc, beam_width=32, beam_density=0.001)
|
2017-08-18 23:27:42 +03:00
|
|
|
|
|
|
|
|
2020-07-20 15:49:54 +03:00
|
|
|
@pytest.mark.skip(reason="No longer supported")
|
2017-09-21 15:59:48 +03:00
|
|
|
def test_update_doc_beam(parser, model, doc, gold):
|
2017-08-18 23:27:42 +03:00
|
|
|
parser.model = model
|
2018-11-27 03:09:36 +03:00
|
|
|
|
2017-08-18 23:27:42 +03:00
|
|
|
def optimize(weights, gradient, key=None):
|
|
|
|
weights -= 0.001 * gradient
|
2018-11-27 03:09:36 +03:00
|
|
|
|
2019-11-11 19:35:27 +03:00
|
|
|
parser.update_beam((doc, gold), sgd=optimize)
|