2020-08-07 16:27:13 +03:00
|
|
|
from typing import Optional, List, Dict, Any
|
|
|
|
from thinc.api import Model
|
|
|
|
|
|
|
|
from .pipe import Pipe
|
|
|
|
from ..errors import Errors
|
|
|
|
from ..language import Language
|
|
|
|
from ..lookups import Lookups, load_lookups
|
|
|
|
from ..scorer import Scorer
|
|
|
|
from ..tokens import Doc, Token
|
|
|
|
from ..vocab import Vocab
|
2020-09-09 11:31:03 +03:00
|
|
|
from ..training import validate_examples
|
2020-08-07 16:27:13 +03:00
|
|
|
from .. import util
|
|
|
|
|
|
|
|
|
|
|
|
@Language.factory(
|
|
|
|
"lemmatizer",
|
|
|
|
assigns=["token.lemma"],
|
|
|
|
default_config={
|
|
|
|
"model": None,
|
|
|
|
"mode": "lookup",
|
|
|
|
"lookups": None,
|
|
|
|
"overwrite": False,
|
|
|
|
},
|
|
|
|
scores=["lemma_acc"],
|
|
|
|
default_score_weights={"lemma_acc": 1.0},
|
|
|
|
)
|
|
|
|
def make_lemmatizer(
|
|
|
|
nlp: Language,
|
|
|
|
model: Optional[Model],
|
|
|
|
name: str,
|
|
|
|
mode: str,
|
|
|
|
lookups: Optional[Lookups],
|
|
|
|
overwrite: bool = False,
|
|
|
|
):
|
|
|
|
lookups = Lemmatizer.load_lookups(nlp.lang, mode, lookups)
|
|
|
|
return Lemmatizer(
|
|
|
|
nlp.vocab, model, name, mode=mode, lookups=lookups, overwrite=overwrite
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class Lemmatizer(Pipe):
|
|
|
|
"""
|
|
|
|
The Lemmatizer supports simple part-of-speech-sensitive suffix rules and
|
|
|
|
lookup tables.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/lemmatizer
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_lookups_config(cls, mode: str) -> Dict:
|
|
|
|
"""Returns the lookups configuration settings for a given mode for use
|
|
|
|
in Lemmatizer.load_lookups.
|
|
|
|
|
|
|
|
mode (str): The lemmatizer mode.
|
|
|
|
RETURNS (dict): The lookups configuration settings for this mode.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/lemmatizer#get_lookups_config
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
if mode == "lookup":
|
|
|
|
return {
|
|
|
|
"required_tables": ["lemma_lookup"],
|
|
|
|
}
|
|
|
|
elif mode == "rule":
|
|
|
|
return {
|
|
|
|
"required_tables": ["lemma_rules"],
|
|
|
|
"optional_tables": ["lemma_exc", "lemma_index"],
|
|
|
|
}
|
|
|
|
return {}
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def load_lookups(cls, lang: str, mode: str, lookups: Optional[Lookups],) -> Lookups:
|
|
|
|
"""Load and validate lookups tables. If the provided lookups is None,
|
|
|
|
load the default lookups tables according to the language and mode
|
|
|
|
settings. Confirm that all required tables for the language and mode
|
|
|
|
are present.
|
|
|
|
|
|
|
|
lang (str): The language code.
|
|
|
|
mode (str): The lemmatizer mode.
|
|
|
|
lookups (Lookups): The provided lookups, may be None if the default
|
|
|
|
lookups should be loaded.
|
|
|
|
RETURNS (Lookups): The Lookups object.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/lemmatizer#get_lookups_config
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
config = cls.get_lookups_config(mode)
|
|
|
|
required_tables = config.get("required_tables", [])
|
|
|
|
optional_tables = config.get("optional_tables", [])
|
|
|
|
if lookups is None:
|
|
|
|
lookups = load_lookups(lang=lang, tables=required_tables)
|
|
|
|
optional_lookups = load_lookups(
|
|
|
|
lang=lang, tables=optional_tables, strict=False
|
|
|
|
)
|
|
|
|
for table in optional_lookups.tables:
|
|
|
|
lookups.set_table(table, optional_lookups.get_table(table))
|
|
|
|
for table in required_tables:
|
|
|
|
if table not in lookups:
|
|
|
|
raise ValueError(
|
|
|
|
Errors.E1004.format(
|
|
|
|
mode=mode, tables=required_tables, found=lookups.tables
|
|
|
|
)
|
|
|
|
)
|
|
|
|
return lookups
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
vocab: Vocab,
|
|
|
|
model: Optional[Model],
|
|
|
|
name: str = "lemmatizer",
|
|
|
|
*,
|
|
|
|
mode: str = "lookup",
|
|
|
|
lookups: Optional[Lookups] = None,
|
|
|
|
overwrite: bool = False,
|
|
|
|
) -> None:
|
|
|
|
"""Initialize a Lemmatizer.
|
|
|
|
|
|
|
|
vocab (Vocab): The vocab.
|
|
|
|
model (Model): A model (not yet implemented).
|
|
|
|
name (str): The component name. Defaults to "lemmatizer".
|
|
|
|
mode (str): The lemmatizer mode: "lookup", "rule". Defaults to "lookup".
|
|
|
|
lookups (Lookups): The lookups object containing the (optional) tables
|
|
|
|
such as "lemma_rules", "lemma_index", "lemma_exc" and
|
|
|
|
"lemma_lookup". Defaults to None
|
|
|
|
overwrite (bool): Whether to overwrite existing lemmas. Defaults to
|
|
|
|
`False`.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/lemmatizer#init
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
self.vocab = vocab
|
|
|
|
self.model = model
|
2020-08-12 00:41:58 +03:00
|
|
|
self.name = name
|
2020-08-07 16:27:13 +03:00
|
|
|
self._mode = mode
|
|
|
|
self.lookups = lookups if lookups is not None else Lookups()
|
|
|
|
self.overwrite = overwrite
|
|
|
|
if self.mode == "lookup":
|
|
|
|
self.lemmatize = self.lookup_lemmatize
|
|
|
|
elif self.mode == "rule":
|
|
|
|
self.lemmatize = self.rule_lemmatize
|
|
|
|
else:
|
2020-08-12 00:29:31 +03:00
|
|
|
mode_attr = f"{self.mode}_lemmatize"
|
|
|
|
if not hasattr(self, mode_attr):
|
2020-08-07 16:27:13 +03:00
|
|
|
raise ValueError(Errors.E1003.format(mode=mode))
|
2020-08-12 00:29:31 +03:00
|
|
|
self.lemmatize = getattr(self, mode_attr)
|
2020-08-07 16:27:13 +03:00
|
|
|
self.cache = {}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def mode(self):
|
|
|
|
return self._mode
|
|
|
|
|
|
|
|
def __call__(self, doc: Doc) -> Doc:
|
|
|
|
"""Apply the lemmatizer to one document.
|
|
|
|
|
|
|
|
doc (Doc): The Doc to process.
|
|
|
|
RETURNS (Doc): The processed Doc.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/lemmatizer#call
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
for token in doc:
|
|
|
|
if self.overwrite or token.lemma == 0:
|
|
|
|
token.lemma_ = self.lemmatize(token)[0]
|
|
|
|
return doc
|
|
|
|
|
|
|
|
def pipe(self, stream, *, batch_size=128):
|
|
|
|
"""Apply the pipe to a stream of documents. This usually happens under
|
|
|
|
the hood when the nlp object is called on a text and all components are
|
|
|
|
applied to the Doc.
|
|
|
|
|
|
|
|
stream (Iterable[Doc]): A stream of documents.
|
|
|
|
batch_size (int): The number of documents to buffer.
|
|
|
|
YIELDS (Doc): Processed documents in order.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/lemmatizer#pipe
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
for doc in stream:
|
|
|
|
doc = self(doc)
|
|
|
|
yield doc
|
|
|
|
|
|
|
|
def lookup_lemmatize(self, token: Token) -> List[str]:
|
|
|
|
"""Lemmatize using a lookup-based approach.
|
|
|
|
|
|
|
|
token (Token): The token to lemmatize.
|
|
|
|
RETURNS (list): The available lemmas for the string.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/lemmatizer#lookup_lemmatize
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
lookup_table = self.lookups.get_table("lemma_lookup", {})
|
|
|
|
result = lookup_table.get(token.text, token.text)
|
|
|
|
if isinstance(result, str):
|
|
|
|
result = [result]
|
|
|
|
return result
|
|
|
|
|
|
|
|
def rule_lemmatize(self, token: Token) -> List[str]:
|
|
|
|
"""Lemmatize using a rule-based approach.
|
|
|
|
|
|
|
|
token (Token): The token to lemmatize.
|
|
|
|
RETURNS (list): The available lemmas for the string.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/lemmatizer#rule_lemmatize
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
cache_key = (token.orth, token.pos, token.morph)
|
|
|
|
if cache_key in self.cache:
|
|
|
|
return self.cache[cache_key]
|
|
|
|
string = token.text
|
|
|
|
univ_pos = token.pos_.lower()
|
|
|
|
if univ_pos in ("", "eol", "space"):
|
|
|
|
return [string.lower()]
|
|
|
|
# See Issue #435 for example of where this logic is requied.
|
|
|
|
if self.is_base_form(token):
|
|
|
|
return [string.lower()]
|
|
|
|
index_table = self.lookups.get_table("lemma_index", {})
|
|
|
|
exc_table = self.lookups.get_table("lemma_exc", {})
|
|
|
|
rules_table = self.lookups.get_table("lemma_rules", {})
|
|
|
|
if not any(
|
|
|
|
(
|
|
|
|
index_table.get(univ_pos),
|
|
|
|
exc_table.get(univ_pos),
|
|
|
|
rules_table.get(univ_pos),
|
|
|
|
)
|
|
|
|
):
|
|
|
|
if univ_pos == "propn":
|
|
|
|
return [string]
|
|
|
|
else:
|
|
|
|
return [string.lower()]
|
|
|
|
|
|
|
|
index = index_table.get(univ_pos, {})
|
|
|
|
exceptions = exc_table.get(univ_pos, {})
|
|
|
|
rules = rules_table.get(univ_pos, {})
|
|
|
|
orig = string
|
|
|
|
string = string.lower()
|
|
|
|
forms = []
|
|
|
|
oov_forms = []
|
|
|
|
for old, new in rules:
|
|
|
|
if string.endswith(old):
|
|
|
|
form = string[: len(string) - len(old)] + new
|
|
|
|
if not form:
|
|
|
|
pass
|
|
|
|
elif form in index or not form.isalpha():
|
|
|
|
forms.append(form)
|
|
|
|
else:
|
|
|
|
oov_forms.append(form)
|
|
|
|
# Remove duplicates but preserve the ordering of applied "rules"
|
|
|
|
forms = list(dict.fromkeys(forms))
|
|
|
|
# Put exceptions at the front of the list, so they get priority.
|
|
|
|
# This is a dodgy heuristic -- but it's the best we can do until we get
|
|
|
|
# frequencies on this. We can at least prune out problematic exceptions,
|
|
|
|
# if they shadow more frequent analyses.
|
|
|
|
for form in exceptions.get(string, []):
|
|
|
|
if form not in forms:
|
|
|
|
forms.insert(0, form)
|
|
|
|
if not forms:
|
|
|
|
forms.extend(oov_forms)
|
|
|
|
if not forms:
|
|
|
|
forms.append(orig)
|
|
|
|
self.cache[cache_key] = forms
|
|
|
|
return forms
|
|
|
|
|
|
|
|
def is_base_form(self, token: Token) -> bool:
|
|
|
|
"""Check whether the token is a base form that does not need further
|
|
|
|
analysis for lemmatization.
|
|
|
|
|
|
|
|
token (Token): The token.
|
|
|
|
RETURNS (bool): Whether the token is a base form.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/lemmatizer#is_base_form
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
return False
|
|
|
|
|
|
|
|
def score(self, examples, **kwargs) -> Dict[str, Any]:
|
|
|
|
"""Score a batch of examples.
|
|
|
|
|
|
|
|
examples (Iterable[Example]): The examples to score.
|
|
|
|
RETURNS (Dict[str, Any]): The scores.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/lemmatizer#score
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
2020-08-12 00:29:31 +03:00
|
|
|
validate_examples(examples, "Lemmatizer.score")
|
2020-08-07 16:27:13 +03:00
|
|
|
return Scorer.score_token_attr(examples, "lemma", **kwargs)
|
|
|
|
|
|
|
|
def to_disk(self, path, *, exclude=tuple()):
|
|
|
|
"""Save the current state to a directory.
|
|
|
|
|
|
|
|
path (unicode or Path): A path to a directory, which will be created if
|
|
|
|
it doesn't exist.
|
|
|
|
exclude (list): String names of serialization fields to exclude.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/vocab#to_disk
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
serialize = {}
|
|
|
|
serialize["vocab"] = lambda p: self.vocab.to_disk(p)
|
|
|
|
serialize["lookups"] = lambda p: self.lookups.to_disk(p)
|
|
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
|
|
|
|
def from_disk(self, path, *, exclude=tuple()):
|
|
|
|
"""Loads state from a directory. Modifies the object in place and
|
|
|
|
returns it.
|
|
|
|
|
|
|
|
path (unicode or Path): A path to a directory.
|
|
|
|
exclude (list): String names of serialization fields to exclude.
|
|
|
|
RETURNS (Vocab): The modified `Vocab` object.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/vocab#to_disk
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
deserialize = {}
|
|
|
|
deserialize["vocab"] = lambda p: self.vocab.from_disk(p)
|
|
|
|
deserialize["lookups"] = lambda p: self.lookups.from_disk(p)
|
|
|
|
util.from_disk(path, deserialize, exclude)
|
|
|
|
|
|
|
|
def to_bytes(self, *, exclude=tuple()) -> bytes:
|
|
|
|
"""Serialize the current state to a binary string.
|
|
|
|
|
|
|
|
exclude (list): String names of serialization fields to exclude.
|
|
|
|
RETURNS (bytes): The serialized form of the `Vocab` object.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/vocab#to_bytes
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
serialize = {}
|
|
|
|
serialize["vocab"] = self.vocab.to_bytes
|
|
|
|
serialize["lookups"] = self.lookups.to_bytes
|
|
|
|
return util.to_bytes(serialize, exclude)
|
|
|
|
|
|
|
|
def from_bytes(self, bytes_data: bytes, *, exclude=tuple()):
|
|
|
|
"""Load state from a binary string.
|
|
|
|
|
|
|
|
bytes_data (bytes): The data to load from.
|
|
|
|
exclude (list): String names of serialization fields to exclude.
|
|
|
|
RETURNS (Vocab): The `Vocab` object.
|
|
|
|
|
2020-09-04 13:58:50 +03:00
|
|
|
DOCS: https://nightly.spacy.io/api/vocab#from_bytes
|
2020-08-07 16:27:13 +03:00
|
|
|
"""
|
|
|
|
deserialize = {}
|
|
|
|
deserialize["vocab"] = lambda b: self.vocab.from_bytes(b)
|
|
|
|
deserialize["lookups"] = lambda b: self.lookups.from_bytes(b)
|
|
|
|
util.from_bytes(bytes_data, deserialize, exclude)
|