spaCy/spacy/pipeline/edit_tree_lemmatizer.py

465 lines
17 KiB
Python
Raw Normal View History

from typing import cast, Any, Callable, Dict, Iterable, List, Optional, Union
from typing import Tuple
from collections import Counter
from itertools import islice
import numpy as np
import srsly
from thinc.api import Config, Model, SequenceCategoricalCrossentropy, NumpyOps
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
from thinc.types import ArrayXd, Floats2d, Ints1d
from thinc.legacy import LegacySequenceCategoricalCrossentropy
from ._edit_tree_internals.edit_trees import EditTrees
from ._edit_tree_internals.schemas import validate_edit_tree
from .lemmatizer import lemmatizer_score
from .trainable_pipe import TrainablePipe
from ..errors import Errors
from ..language import Language
from ..tokens import Doc
from ..training import Example, validate_examples, validate_get_examples
from ..vocab import Vocab
from .. import util
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
ActivationsT = Dict[str, Union[List[Floats2d], List[Ints1d]]]
# The cutoff value of *top_k* above which an alternative method is used to process guesses.
TOP_K_GUARDRAIL = 20
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
default_model_config = """
[model]
@architectures = "spacy.Tagger.v2"
[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v2"
pretrained_vectors = null
width = 96
depth = 4
embed_size = 2000
window_size = 1
maxout_pieces = 3
subword_features = true
"""
DEFAULT_EDIT_TREE_LEMMATIZER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"trainable_lemmatizer",
assigns=["token.lemma"],
requires=[],
default_config={
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
"backoff": "orth",
"min_tree_freq": 3,
"overwrite": False,
"top_k": 1,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
"save_activations": False,
},
default_score_weights={"lemma_acc": 1.0},
)
def make_edit_tree_lemmatizer(
nlp: Language,
name: str,
model: Model,
backoff: Optional[str],
min_tree_freq: int,
overwrite: bool,
top_k: int,
scorer: Optional[Callable],
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
save_activations: bool,
):
"""Construct an EditTreeLemmatizer component."""
return EditTreeLemmatizer(
nlp.vocab,
model,
name,
backoff=backoff,
min_tree_freq=min_tree_freq,
overwrite=overwrite,
top_k=top_k,
scorer=scorer,
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
save_activations=save_activations,
)
class EditTreeLemmatizer(TrainablePipe):
"""
Lemmatizer that lemmatizes each word using a predicted edit tree.
"""
def __init__(
self,
vocab: Vocab,
model: Model,
name: str = "trainable_lemmatizer",
*,
backoff: Optional[str] = "orth",
min_tree_freq: int = 3,
overwrite: bool = False,
top_k: int = 1,
scorer: Optional[Callable] = lemmatizer_score,
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
save_activations: bool = False,
):
"""
Construct an edit tree lemmatizer.
backoff (Optional[str]): backoff to use when the predicted edit trees
are not applicable. Must be an attribute of Token or None (leave the
lemma unset).
min_tree_freq (int): prune trees that are applied less than this
frequency in the training data.
overwrite (bool): overwrite existing lemma annotations.
top_k (int): try to apply at most the k most probable edit trees.
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
save_activations (bool): save model activations in Doc when annotating.
"""
self.vocab = vocab
self.model = model
self.name = name
self.backoff = backoff
self.min_tree_freq = min_tree_freq
self.overwrite = overwrite
self.top_k = top_k
self.trees = EditTrees(self.vocab.strings)
self.tree2label: Dict[int, int] = {}
self.cfg: Dict[str, Any] = {"labels": []}
self.scorer = scorer
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
self.save_activations = save_activations
self.numpy_ops = NumpyOps()
def get_loss(
self, examples: Iterable[Example], scores: List[Floats2d]
) -> Tuple[float, List[Floats2d]]:
validate_examples(examples, "EditTreeLemmatizer.get_loss")
loss_func = LegacySequenceCategoricalCrossentropy(
normalize=False, missing_value=-1
)
truths = []
for eg in examples:
eg_truths = []
for (predicted, gold_lemma) in zip(
eg.predicted, eg.get_aligned("LEMMA", as_string=True)
):
if gold_lemma is None or gold_lemma == "":
label = -1
else:
tree_id = self.trees.add(predicted.text, gold_lemma)
label = self.tree2label.get(tree_id, 0)
eg_truths.append(label)
truths.append(eg_truths)
d_scores, loss = loss_func(scores, truths)
if self.model.ops.xp.isnan(loss):
raise ValueError(Errors.E910.format(name=self.name))
return float(loss), d_scores
def get_teacher_student_loss(
self, teacher_scores: List[Floats2d], student_scores: List[Floats2d]
) -> Tuple[float, List[Floats2d]]:
"""Calculate the loss and its gradient for a batch of student
scores, relative to teacher scores.
teacher_scores: Scores representing the teacher model's predictions.
student_scores: Scores representing the student model's predictions.
RETURNS (Tuple[float, float]): The loss and the gradient.
2023-01-27 10:29:46 +03:00
DOCS: https://spacy.io/api/edittreelemmatizer#get_teacher_student_loss
"""
loss_func = LegacySequenceCategoricalCrossentropy(normalize=False)
d_scores, loss = loss_func(student_scores, teacher_scores)
if self.model.ops.xp.isnan(loss):
raise ValueError(Errors.E910.format(name=self.name))
return float(loss), d_scores
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
def predict(self, docs: Iterable[Doc]) -> ActivationsT:
if self.top_k == 1:
scores2guesses = self._scores2guesses_top_k_equals_1
elif self.top_k <= TOP_K_GUARDRAIL:
scores2guesses = self._scores2guesses_top_k_greater_1
else:
scores2guesses = self._scores2guesses_top_k_guardrail
# The behaviour of *_scores2guesses_top_k_greater_1()* is efficient for values
# of *top_k>1* that are likely to be useful when the edit tree lemmatizer is used
# for its principal purpose of lemmatizing tokens. However, the code could also
# be used for other purposes, and with very large values of *top_k* the method
# becomes inefficient. In such cases, *_scores2guesses_top_k_guardrail()* is used
# instead.
n_docs = len(list(docs))
if not any(len(doc) for doc in docs):
# Handle cases where there are no tokens in any docs.
n_labels = len(self.cfg["labels"])
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
guesses: List[Ints1d] = [
self.model.ops.alloc((0,), dtype="i") for doc in docs
]
scores: List[Floats2d] = [
self.model.ops.alloc((0, n_labels), dtype="i") for doc in docs
]
assert len(guesses) == n_docs
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
return {"probabilities": scores, "tree_ids": guesses}
scores = self.model.predict(docs)
assert len(scores) == n_docs
guesses = scores2guesses(docs, scores)
assert len(guesses) == n_docs
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
return {"probabilities": scores, "tree_ids": guesses}
def _scores2guesses_top_k_equals_1(self, docs, scores):
guesses = []
for doc, doc_scores in zip(docs, scores):
doc_guesses = doc_scores.argmax(axis=1)
doc_guesses = self.numpy_ops.asarray(doc_guesses)
doc_compat_guesses = []
for i, token in enumerate(doc):
tree_id = self.cfg["labels"][doc_guesses[i]]
if self.trees.apply(tree_id, token.text) is not None:
doc_compat_guesses.append(tree_id)
else:
doc_compat_guesses.append(-1)
guesses.append(np.array(doc_compat_guesses))
return guesses
def _scores2guesses_top_k_greater_1(self, docs, scores):
guesses = []
top_k = min(self.top_k, len(self.labels))
for doc, doc_scores in zip(docs, scores):
doc_scores = self.numpy_ops.asarray(doc_scores)
doc_compat_guesses = []
for i, token in enumerate(doc):
for _ in range(top_k):
candidate = int(doc_scores[i].argmax())
candidate_tree_id = self.cfg["labels"][candidate]
if self.trees.apply(candidate_tree_id, token.text) is not None:
doc_compat_guesses.append(candidate_tree_id)
break
doc_scores[i, candidate] = np.finfo(np.float32).min
else:
doc_compat_guesses.append(-1)
guesses.append(np.array(doc_compat_guesses))
return guesses
def _scores2guesses_top_k_guardrail(self, docs, scores):
guesses = []
for doc, doc_scores in zip(docs, scores):
doc_guesses = np.argsort(doc_scores)[..., : -self.top_k - 1 : -1]
doc_guesses = self.numpy_ops.asarray(doc_guesses)
doc_compat_guesses = []
for token, candidates in zip(doc, doc_guesses):
tree_id = -1
for candidate in candidates:
candidate_tree_id = self.cfg["labels"][candidate]
if self.trees.apply(candidate_tree_id, token.text) is not None:
tree_id = candidate_tree_id
break
doc_compat_guesses.append(tree_id)
guesses.append(np.array(doc_compat_guesses))
return guesses
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
def set_annotations(self, docs: Iterable[Doc], activations: ActivationsT):
batch_tree_ids = activations["tree_ids"]
for i, doc in enumerate(docs):
Store activations in `Doc`s when `save_activations` is enabled (#11002) * Store activations in Doc when `store_activations` is enabled This change adds the new `activations` attribute to `Doc`. This attribute can be used by trainable pipes to store their activations, probabilities, and guesses for downstream users. As an example, this change modifies the `tagger` and `senter` pipes to add an `store_activations` option. When this option is enabled, the probabilities and guesses are stored in `set_annotations`. * Change type of `store_activations` to `Union[bool, List[str]]` When the value is: - A bool: all activations are stored when set to `True`. - A List[str]: the activations named in the list are stored * Formatting fixes in Tagger * Support store_activations in spancat and morphologizer * Make Doc.activations type visible to MyPy * textcat/textcat_multilabel: add store_activations option * trainable_lemmatizer/entity_linker: add store_activations option * parser/ner: do not currently support returning activations * Extend tagger and senter tests So that they, like the other tests, also check that we get no activations if no activations were requested. * Document `Doc.activations` and `store_activations` in the relevant pipes * Start errors/warnings at higher numbers to avoid merge conflicts Between the master and v4 branches. * Add `store_activations` to docstrings. * Replace store_activations setter by set_store_activations method Setters that take a different type than what the getter returns are still problematic for MyPy. Replace the setter by a method, so that type inference works everywhere. * Use dict comprehension suggested by @svlandeg * Revert "Use dict comprehension suggested by @svlandeg" This reverts commit 6e7b958f7060397965176c69649e5414f1f24988. * EntityLinker: add type annotations to _add_activations * _store_activations: make kwarg-only, remove doc_scores_lens arg * set_annotations: add type annotations * Apply suggestions from code review Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * TextCat.predict: return dict * Make the `TrainablePipe.store_activations` property a bool This means that we can also bring back `store_activations` setter. * Remove `TrainablePipe.activations` We do not need to enumerate the activations anymore since `store_activations` is `bool`. * Add type annotations for activations in predict/set_annotations * Rename `TrainablePipe.store_activations` to `save_activations` * Error E1400 is not used anymore This error was used when activations were still `Union[bool, List[str]]`. * Change wording in API docs after store -> save change * docs: tag (save_)activations as new in spaCy 4.0 * Fix copied line in morphologizer activations test * Don't train in any test_save_activations test * Rename activations - "probs" -> "probabilities" - "guesses" -> "label_ids", except in the edit tree lemmatizer, where "guesses" -> "tree_ids". * Remove unused W400 warning. This warning was used when we still allowed the user to specify which activations to save. * Formatting fixes Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Replace "kb_ids" by a constant * spancat: replace a cast by an assertion * Fix EOF spacing * Fix comments in test_save_activations tests * Do not set RNG seed in activation saving tests * Revert "spancat: replace a cast by an assertion" This reverts commit 0bd5730d16432443a2b247316928d4f789ad8741. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-09-13 10:51:12 +03:00
if self.save_activations:
doc.activations[self.name] = {}
for act_name, acts in activations.items():
doc.activations[self.name][act_name] = acts[i]
doc_tree_ids = batch_tree_ids[i]
if hasattr(doc_tree_ids, "get"):
doc_tree_ids = doc_tree_ids.get()
for j, tree_id in enumerate(doc_tree_ids):
if self.overwrite or doc[j].lemma == 0:
# If no applicable tree could be found during prediction,
# the special identifier -1 is used. Otherwise the tree
# is guaranteed to be applicable.
if tree_id == -1:
if self.backoff is not None:
doc[j].lemma = getattr(doc[j], self.backoff)
else:
lemma = self.trees.apply(tree_id, doc[j].text)
doc[j].lemma_ = lemma
@property
def labels(self) -> Tuple[int, ...]:
"""Returns the labels currently added to the component."""
return tuple(self.cfg["labels"])
@property
def hide_labels(self) -> bool:
return True
@property
def label_data(self) -> Dict:
trees = []
for tree_id in range(len(self.trees)):
tree = self.trees[tree_id]
if "orig" in tree:
tree["orig"] = self.vocab.strings[tree["orig"]]
if "subst" in tree:
tree["subst"] = self.vocab.strings[tree["subst"]]
trees.append(tree)
return dict(trees=trees, labels=tuple(self.cfg["labels"]))
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
labels: Optional[Dict] = None,
):
validate_get_examples(get_examples, "EditTreeLemmatizer.initialize")
if labels is None:
self._labels_from_data(get_examples)
else:
self._add_labels(labels)
# Sample for the model.
doc_sample = []
label_sample = []
for example in islice(get_examples(), 10):
doc_sample.append(example.x)
gold_labels: List[List[float]] = []
for token in example.reference:
if token.lemma == 0:
gold_label = None
else:
gold_label = self._pair2label(token.text, token.lemma_)
gold_labels.append(
[
1.0 if label == gold_label else 0.0
for label in self.cfg["labels"]
]
)
gold_labels = cast(Floats2d, gold_labels)
label_sample.append(self.model.ops.asarray(gold_labels, dtype="float32"))
self._require_labels()
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
assert len(label_sample) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=doc_sample, Y=label_sample)
def from_bytes(self, bytes_data, *, exclude=tuple()):
deserializers = {
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
"model": lambda b: self.model.from_bytes(b),
"vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
"trees": lambda b: self.trees.from_bytes(b),
}
util.from_bytes(bytes_data, deserializers, exclude)
return self
def to_bytes(self, *, exclude=tuple()):
serializers = {
"cfg": lambda: srsly.json_dumps(self.cfg),
"model": lambda: self.model.to_bytes(),
"vocab": lambda: self.vocab.to_bytes(exclude=exclude),
"trees": lambda: self.trees.to_bytes(),
}
return util.to_bytes(serializers, exclude)
def to_disk(self, path, exclude=tuple()):
path = util.ensure_path(path)
serializers = {
"cfg": lambda p: srsly.write_json(p, self.cfg),
"model": lambda p: self.model.to_disk(p),
"vocab": lambda p: self.vocab.to_disk(p, exclude=exclude),
"trees": lambda p: self.trees.to_disk(p),
}
util.to_disk(path, serializers, exclude)
def from_disk(self, path, exclude=tuple()):
def load_model(p):
try:
with open(p, "rb") as mfile:
self.model.from_bytes(mfile.read())
except AttributeError:
raise ValueError(Errors.E149) from None
deserializers = {
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
"model": load_model,
"vocab": lambda p: self.vocab.from_disk(p, exclude=exclude),
"trees": lambda p: self.trees.from_disk(p),
}
util.from_disk(path, deserializers, exclude)
return self
def _add_labels(self, labels: Dict):
if "labels" not in labels:
raise ValueError(Errors.E857.format(name="labels"))
if "trees" not in labels:
raise ValueError(Errors.E857.format(name="trees"))
self.cfg["labels"] = list(labels["labels"])
trees = []
for tree in labels["trees"]:
errors = validate_edit_tree(tree)
if errors:
raise ValueError(Errors.E1026.format(errors="\n".join(errors)))
tree = dict(tree)
if "orig" in tree:
tree["orig"] = self.vocab.strings.add(tree["orig"])
if "orig" in tree:
tree["subst"] = self.vocab.strings.add(tree["subst"])
trees.append(tree)
self.trees.from_json(trees)
for label, tree in enumerate(self.labels):
self.tree2label[tree] = label
def _labels_from_data(self, get_examples: Callable[[], Iterable[Example]]):
# Count corpus tree frequencies in ad-hoc storage to avoid cluttering
# the final pipe/string store.
vocab = Vocab()
trees = EditTrees(vocab.strings)
tree_freqs: Counter = Counter()
repr_pairs: Dict = {}
for example in get_examples():
for token in example.reference:
if token.lemma != 0:
tree_id = trees.add(token.text, token.lemma_)
tree_freqs[tree_id] += 1
repr_pairs[tree_id] = (token.text, token.lemma_)
# Construct trees that make the frequency cut-off using representative
# form - token pairs.
for tree_id, freq in tree_freqs.items():
if freq >= self.min_tree_freq:
form, lemma = repr_pairs[tree_id]
self._pair2label(form, lemma, add_label=True)
def _pair2label(self, form, lemma, add_label=False):
"""
Look up the edit tree identifier for a form/label pair. If the edit
tree is unknown and "add_label" is set, the edit tree will be added to
the labels.
"""
tree_id = self.trees.add(form, lemma)
if tree_id not in self.tree2label:
if not add_label:
return None
self.tree2label[tree_id] = len(self.cfg["labels"])
self.cfg["labels"].append(tree_id)
return self.tree2label[tree_id]