spaCy/examples/vectors_fast_text.py

50 lines
1.5 KiB
Python
Raw Normal View History

2017-10-26 18:32:59 +03:00
#!/usr/bin/env python
# coding: utf8
"""Load vectors for a language trained using fastText
2017-10-02 00:40:02 +03:00
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
2017-11-07 03:22:30 +03:00
Compatible with: spaCy v2.0.0+
2017-10-26 18:32:59 +03:00
"""
2017-10-02 00:40:02 +03:00
from __future__ import unicode_literals
import plac
import numpy
import spacy
2017-11-01 02:43:28 +03:00
from spacy.language import Language
2017-10-02 00:40:02 +03:00
@plac.annotations(
2017-11-17 16:57:11 +03:00
vectors_loc=("Path to .vec file", "positional", None, str),
2018-12-02 06:26:26 +03:00
lang=(
"Optional language ID. If not set, blank Language() will be used.",
"positional",
None,
str,
),
)
def main(vectors_loc, lang=None):
if lang is None:
nlp = Language()
else:
# create empty language class this is required if you're planning to
# save the model to disk and load it back later (models always need a
# "lang" setting). Use 'xx' for blank multi-language class.
nlp = spacy.blank(lang)
2018-12-02 06:26:26 +03:00
with open(vectors_loc, "rb") as file_:
2017-10-02 00:40:02 +03:00
header = file_.readline()
nr_row, nr_dim = header.split()
nlp.vocab.reset_vectors(width=int(nr_dim))
2017-10-02 00:40:02 +03:00
for line in file_:
2018-12-02 06:26:26 +03:00
line = line.rstrip().decode("utf8")
pieces = line.rsplit(" ", int(nr_dim))
2017-10-02 00:40:02 +03:00
word = pieces[0]
2018-12-02 06:26:26 +03:00
vector = numpy.asarray([float(v) for v in pieces[1:]], dtype="f")
2017-11-01 02:43:22 +03:00
nlp.vocab.set_vector(word, vector) # add the vectors to the vocab
# test the vectors and similarity
2018-12-02 06:26:26 +03:00
text = "class colspan"
2017-11-01 02:43:22 +03:00
doc = nlp(text)
print(text, doc[0].similarity(doc[1]))
2017-10-02 00:40:02 +03:00
2018-12-02 06:26:26 +03:00
if __name__ == "__main__":
2017-10-02 00:40:02 +03:00
plac.call(main)