spaCy/spacy/tests/test_cli.py

1033 lines
36 KiB
Python
Raw Normal View History

import os
Add spacy-span-analyzer to debug data (#10668) * Rename to spans_key for consistency * Implement spans length in debug data * Implement how span bounds and spans are obtained In this commit, I implemented how span boundaries (the tokens) around a given span and spans are obtained. I've put them in the compile_gold() function so that it's accessible later on. I will do the actual computation of the span and boundary distinctiveness in the main function above. * Compute for p_spans and p_bounds * Add computation for SD and BD * Fix mypy issues * Add weighted average computation * Fix compile_gold conditional logic * Add test for frequency distribution computation * Add tests for kl-divergence computation * Fix weighted average computation * Make tables more compact by rounding them * Add more descriptive checks for spans * Modularize span computation methods In this commit, I added the _get_span_characteristics and _print_span_characteristics functions so that they can be reusable anywhere. * Remove unnecessary arguments and make fxs more compact * Update a few parameter arguments * Add tests for print_span and get_span methods * Update API to talk about span characteristics in brief * Add better reporting of spans_length * Add test for span length reporting * Update formatting of span length report Removed '' to indicate that it's not a string, then sort the n-grams by their length, not by their frequency. * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Show all frequency distribution when -V In this commit, I displayed the full frequency distribution of the span lengths when --verbose is passed. To make things simpler, I rewrote some of the formatter functions so that I can call them whenever. Another notable change is that instead of showing percentages as Integers, I showed them as floats (max 2-decimal places). I did this because it looks weird when it displays (0%). * Update logic on how total is computed The way the 90% thresholding is computed now is that we keep adding the percentages until we reach >= 90%. I also updated the wording and used the term "At least" to denote that >= 90% of your spans have these distributions. * Fix display when showing the threshold percentage * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add better phrasing for span information * Update spacy/cli/debug_data.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add minor edits for whitespaces etc. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-05-23 20:06:38 +03:00
import math
find-threshold: CLI command for multi-label classifier threshold tuning (#11280) * Add foundation for find-threshold CLI functionality. * Finish first draft for find-threshold. * Add tests. * Revert adjusted import statements. * Fix mypy errors. * Fix imports. * Harmonize arguments with spacy evaluate command. * Generalize component and threshold handling. Harmonize arguments with 'spacy evaluate' CLI. * Fix Spancat test. * Add beta parameter to Scorer and PRFScore. * Make beta a component scorer setting. * Remove beta. * Update nlp.config (workaround). * Reload pipeline on threshold change. Adjust tests. Remove confection reference. * Remove assumption of component being a Pipe object or having a .cfg attribute. * Adjust test output and reference values. * Remove beta references. Delete universe.json. * Reverting unnecessary changes. Removing unused default values. Renaming variables in find-cli tests. * Update spacy/cli/find_threshold.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Remove adding labels in tests. * Remove unused error * Undo changes to PRFScorer * Change default value for n_trials. Log table iteratively. * Add warnings for pointless applications of find_threshold(). * Fix imports. * Adjust type check of TextCategorizer to exclude subclasses. * Change check of if there's only one unique value in scores. * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Incorporate feedback. * Fix test issue. Update docstring. * Update docs & docstring. * Update spacy/tests/test_cli.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add examples to docs. Rename _nlp to nlp in tests. * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-11-25 13:44:55 +03:00
from collections import Counter
from typing import Tuple, List, Dict, Any
import pkg_resources
find-threshold: CLI command for multi-label classifier threshold tuning (#11280) * Add foundation for find-threshold CLI functionality. * Finish first draft for find-threshold. * Add tests. * Revert adjusted import statements. * Fix mypy errors. * Fix imports. * Harmonize arguments with spacy evaluate command. * Generalize component and threshold handling. Harmonize arguments with 'spacy evaluate' CLI. * Fix Spancat test. * Add beta parameter to Scorer and PRFScore. * Make beta a component scorer setting. * Remove beta. * Update nlp.config (workaround). * Reload pipeline on threshold change. Adjust tests. Remove confection reference. * Remove assumption of component being a Pipe object or having a .cfg attribute. * Adjust test output and reference values. * Remove beta references. Delete universe.json. * Reverting unnecessary changes. Removing unused default values. Renaming variables in find-cli tests. * Update spacy/cli/find_threshold.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Remove adding labels in tests. * Remove unused error * Undo changes to PRFScorer * Change default value for n_trials. Log table iteratively. * Add warnings for pointless applications of find_threshold(). * Fix imports. * Adjust type check of TextCategorizer to exclude subclasses. * Change check of if there's only one unique value in scores. * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Incorporate feedback. * Fix test issue. Update docstring. * Update docs & docstring. * Update spacy/tests/test_cli.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add examples to docs. Rename _nlp to nlp in tests. * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-11-25 13:44:55 +03:00
import numpy
import pytest
import srsly
2020-08-28 11:46:21 +03:00
from click import NoSuchOption
from packaging.specifiers import SpecifierSet
from thinc.api import Config, ConfigValidationError
from spacy import about
from spacy.cli import info
from spacy.cli._util import is_subpath_of, load_project_config
from spacy.cli._util import parse_config_overrides, string_to_list
from spacy.cli._util import substitute_project_variables
from spacy.cli._util import validate_project_commands
from spacy.cli._util import upload_file, download_file
from spacy.cli.debug_data import _compile_gold, _get_labels_from_model
from spacy.cli.debug_data import _get_labels_from_spancat
Add spacy-span-analyzer to debug data (#10668) * Rename to spans_key for consistency * Implement spans length in debug data * Implement how span bounds and spans are obtained In this commit, I implemented how span boundaries (the tokens) around a given span and spans are obtained. I've put them in the compile_gold() function so that it's accessible later on. I will do the actual computation of the span and boundary distinctiveness in the main function above. * Compute for p_spans and p_bounds * Add computation for SD and BD * Fix mypy issues * Add weighted average computation * Fix compile_gold conditional logic * Add test for frequency distribution computation * Add tests for kl-divergence computation * Fix weighted average computation * Make tables more compact by rounding them * Add more descriptive checks for spans * Modularize span computation methods In this commit, I added the _get_span_characteristics and _print_span_characteristics functions so that they can be reusable anywhere. * Remove unnecessary arguments and make fxs more compact * Update a few parameter arguments * Add tests for print_span and get_span methods * Update API to talk about span characteristics in brief * Add better reporting of spans_length * Add test for span length reporting * Update formatting of span length report Removed '' to indicate that it's not a string, then sort the n-grams by their length, not by their frequency. * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Show all frequency distribution when -V In this commit, I displayed the full frequency distribution of the span lengths when --verbose is passed. To make things simpler, I rewrote some of the formatter functions so that I can call them whenever. Another notable change is that instead of showing percentages as Integers, I showed them as floats (max 2-decimal places). I did this because it looks weird when it displays (0%). * Update logic on how total is computed The way the 90% thresholding is computed now is that we keep adding the percentages until we reach >= 90%. I also updated the wording and used the term "At least" to denote that >= 90% of your spans have these distributions. * Fix display when showing the threshold percentage * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add better phrasing for span information * Update spacy/cli/debug_data.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add minor edits for whitespaces etc. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-05-23 20:06:38 +03:00
from spacy.cli.debug_data import _get_distribution, _get_kl_divergence
from spacy.cli.debug_data import _get_span_characteristics
from spacy.cli.debug_data import _print_span_characteristics
from spacy.cli.debug_data import _get_spans_length_freq_dist
from spacy.cli.download import get_compatibility, get_version
from spacy.cli.init_config import RECOMMENDATIONS, init_config, fill_config
from spacy.cli.package import get_third_party_dependencies
from spacy.cli.package import _is_permitted_package_name
from spacy.cli.project.run import _check_requirements
from spacy.cli.validate import get_model_pkgs
find-threshold: CLI command for multi-label classifier threshold tuning (#11280) * Add foundation for find-threshold CLI functionality. * Finish first draft for find-threshold. * Add tests. * Revert adjusted import statements. * Fix mypy errors. * Fix imports. * Harmonize arguments with spacy evaluate command. * Generalize component and threshold handling. Harmonize arguments with 'spacy evaluate' CLI. * Fix Spancat test. * Add beta parameter to Scorer and PRFScore. * Make beta a component scorer setting. * Remove beta. * Update nlp.config (workaround). * Reload pipeline on threshold change. Adjust tests. Remove confection reference. * Remove assumption of component being a Pipe object or having a .cfg attribute. * Adjust test output and reference values. * Remove beta references. Delete universe.json. * Reverting unnecessary changes. Removing unused default values. Renaming variables in find-cli tests. * Update spacy/cli/find_threshold.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Remove adding labels in tests. * Remove unused error * Undo changes to PRFScorer * Change default value for n_trials. Log table iteratively. * Add warnings for pointless applications of find_threshold(). * Fix imports. * Adjust type check of TextCategorizer to exclude subclasses. * Change check of if there's only one unique value in scores. * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Incorporate feedback. * Fix test issue. Update docstring. * Update docs & docstring. * Update spacy/tests/test_cli.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add examples to docs. Rename _nlp to nlp in tests. * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-11-25 13:44:55 +03:00
from spacy.cli.find_threshold import find_threshold
from spacy.lang.en import English
from spacy.lang.nl import Dutch
from spacy.language import Language
from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate
find-threshold: CLI command for multi-label classifier threshold tuning (#11280) * Add foundation for find-threshold CLI functionality. * Finish first draft for find-threshold. * Add tests. * Revert adjusted import statements. * Fix mypy errors. * Fix imports. * Harmonize arguments with spacy evaluate command. * Generalize component and threshold handling. Harmonize arguments with 'spacy evaluate' CLI. * Fix Spancat test. * Add beta parameter to Scorer and PRFScore. * Make beta a component scorer setting. * Remove beta. * Update nlp.config (workaround). * Reload pipeline on threshold change. Adjust tests. Remove confection reference. * Remove assumption of component being a Pipe object or having a .cfg attribute. * Adjust test output and reference values. * Remove beta references. Delete universe.json. * Reverting unnecessary changes. Removing unused default values. Renaming variables in find-cli tests. * Update spacy/cli/find_threshold.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Remove adding labels in tests. * Remove unused error * Undo changes to PRFScorer * Change default value for n_trials. Log table iteratively. * Add warnings for pointless applications of find_threshold(). * Fix imports. * Adjust type check of TextCategorizer to exclude subclasses. * Change check of if there's only one unique value in scores. * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Incorporate feedback. * Fix test issue. Update docstring. * Update docs & docstring. * Update spacy/tests/test_cli.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add examples to docs. Rename _nlp to nlp in tests. * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-11-25 13:44:55 +03:00
from spacy.tokens import Doc, DocBin
Add spacy-span-analyzer to debug data (#10668) * Rename to spans_key for consistency * Implement spans length in debug data * Implement how span bounds and spans are obtained In this commit, I implemented how span boundaries (the tokens) around a given span and spans are obtained. I've put them in the compile_gold() function so that it's accessible later on. I will do the actual computation of the span and boundary distinctiveness in the main function above. * Compute for p_spans and p_bounds * Add computation for SD and BD * Fix mypy issues * Add weighted average computation * Fix compile_gold conditional logic * Add test for frequency distribution computation * Add tests for kl-divergence computation * Fix weighted average computation * Make tables more compact by rounding them * Add more descriptive checks for spans * Modularize span computation methods In this commit, I added the _get_span_characteristics and _print_span_characteristics functions so that they can be reusable anywhere. * Remove unnecessary arguments and make fxs more compact * Update a few parameter arguments * Add tests for print_span and get_span methods * Update API to talk about span characteristics in brief * Add better reporting of spans_length * Add test for span length reporting * Update formatting of span length report Removed '' to indicate that it's not a string, then sort the n-grams by their length, not by their frequency. * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Show all frequency distribution when -V In this commit, I displayed the full frequency distribution of the span lengths when --verbose is passed. To make things simpler, I rewrote some of the formatter functions so that I can call them whenever. Another notable change is that instead of showing percentages as Integers, I showed them as floats (max 2-decimal places). I did this because it looks weird when it displays (0%). * Update logic on how total is computed The way the 90% thresholding is computed now is that we keep adding the percentages until we reach >= 90%. I also updated the wording and used the term "At least" to denote that >= 90% of your spans have these distributions. * Fix display when showing the threshold percentage * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add better phrasing for span information * Update spacy/cli/debug_data.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add minor edits for whitespaces etc. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-05-23 20:06:38 +03:00
from spacy.tokens.span import Span
from spacy.training import Example, docs_to_json, offsets_to_biluo_tags
from spacy.training.converters import conll_ner_to_docs, conllu_to_docs
from spacy.training.converters import iob_to_docs
from spacy.util import ENV_VARS, get_minor_version, load_model_from_config, load_config
from ..cli.init_pipeline import _init_labels
from .util import make_tempdir
@pytest.mark.issue(4665)
def test_cli_converters_conllu_empty_heads_ner():
"""
conllu_to_docs should not raise an exception if the HEAD column contains an
underscore
"""
input_data = """
1 [ _ PUNCT -LRB- _ _ punct _ _
2 This _ DET DT _ _ det _ _
3 killing _ NOUN NN _ _ nsubj _ _
4 of _ ADP IN _ _ case _ _
5 a _ DET DT _ _ det _ _
6 respected _ ADJ JJ _ _ amod _ _
7 cleric _ NOUN NN _ _ nmod _ _
8 will _ AUX MD _ _ aux _ _
9 be _ AUX VB _ _ aux _ _
10 causing _ VERB VBG _ _ root _ _
11 us _ PRON PRP _ _ iobj _ _
12 trouble _ NOUN NN _ _ dobj _ _
13 for _ ADP IN _ _ case _ _
14 years _ NOUN NNS _ _ nmod _ _
15 to _ PART TO _ _ mark _ _
16 come _ VERB VB _ _ acl _ _
17 . _ PUNCT . _ _ punct _ _
18 ] _ PUNCT -RRB- _ _ punct _ _
"""
docs = list(conllu_to_docs(input_data))
# heads are all 0
assert not all([t.head.i for t in docs[0]])
# NER is unset
assert not docs[0].has_annotation("ENT_IOB")
@pytest.mark.issue(4924)
def test_issue4924():
nlp = Language()
example = Example.from_dict(nlp.make_doc(""), {})
nlp.evaluate([example])
@pytest.mark.issue(7055)
def test_issue7055():
"""Test that fill-config doesn't turn sourced components into factories."""
source_cfg = {
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger"]},
"components": {
"tok2vec": {"factory": "tok2vec"},
"tagger": {"factory": "tagger"},
},
}
source_nlp = English.from_config(source_cfg)
with make_tempdir() as dir_path:
# We need to create a loadable source pipeline
source_path = dir_path / "test_model"
source_nlp.to_disk(source_path)
base_cfg = {
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]},
"components": {
"tok2vec": {"source": str(source_path)},
"tagger": {"source": str(source_path)},
"ner": {"factory": "ner"},
},
}
base_cfg = Config(base_cfg)
base_path = dir_path / "base.cfg"
base_cfg.to_disk(base_path)
output_path = dir_path / "config.cfg"
fill_config(output_path, base_path, silent=True)
filled_cfg = load_config(output_path)
assert filled_cfg["components"]["tok2vec"]["source"] == str(source_path)
assert filled_cfg["components"]["tagger"]["source"] == str(source_path)
assert filled_cfg["components"]["ner"]["factory"] == "ner"
assert "model" in filled_cfg["components"]["ner"]
2020-12-30 14:35:26 +03:00
def test_cli_info():
nlp = Dutch()
nlp.add_pipe("textcat")
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
raw_data = info(tmp_dir, exclude=[""])
assert raw_data["lang"] == "nl"
assert raw_data["components"] == ["textcat"]
2020-09-22 13:01:06 +03:00
def test_cli_converters_conllu_to_docs():
# from NorNE: https://github.com/ltgoslo/norne/blob/3d23274965f513f23aa48455b28b1878dad23c05/ud/nob/no_bokmaal-ud-dev.conllu
lines = [
"1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\tO",
"2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tB-PER",
"3\tEilertsen\tEilertsen\tPROPN\t_\t_\t2\tname\t_\tI-PER",
"4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tO",
]
input_data = "\n".join(lines)
converted_docs = list(conllu_to_docs(input_data, n_sents=1))
assert len(converted_docs) == 1
converted = [docs_to_json(converted_docs)]
assert converted[0]["id"] == 0
assert len(converted[0]["paragraphs"]) == 1
assert len(converted[0]["paragraphs"][0]["sentences"]) == 1
sent = converted[0]["paragraphs"][0]["sentences"][0]
assert len(sent["tokens"]) == 4
tokens = sent["tokens"]
assert [t["orth"] for t in tokens] == ["Dommer", "Finn", "Eilertsen", "avstår"]
assert [t["tag"] for t in tokens] == ["NOUN", "PROPN", "PROPN", "VERB"]
assert [t["head"] for t in tokens] == [1, 2, -1, 0]
assert [t["dep"] for t in tokens] == ["appos", "nsubj", "name", "ROOT"]
2020-07-04 17:25:34 +03:00
ent_offsets = [
(e[0], e[1], e[2]) for e in converted[0]["paragraphs"][0]["entities"]
]
2020-09-22 12:50:19 +03:00
biluo_tags = offsets_to_biluo_tags(converted_docs[0], ent_offsets, missing="O")
assert biluo_tags == ["O", "B-PER", "L-PER", "O"]
@pytest.mark.parametrize(
"lines",
[
(
"1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\tname=O",
"2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tSpaceAfter=No|name=B-PER",
"3\tEilertsen\tEilertsen\tPROPN\t_\t_\t2\tname\t_\tname=I-PER",
"4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tSpaceAfter=No|name=O",
"5\t.\t$.\tPUNCT\t_\t_\t4\tpunct\t_\tname=B-BAD",
),
(
"1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\t_",
"2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tSpaceAfter=No|NE=B-PER",
"3\tEilertsen\tEilertsen\tPROPN\t_\t_\t2\tname\t_\tNE=L-PER",
"4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tSpaceAfter=No",
"5\t.\t$.\tPUNCT\t_\t_\t4\tpunct\t_\tNE=B-BAD",
),
],
)
2020-09-22 13:01:06 +03:00
def test_cli_converters_conllu_to_docs_name_ner_map(lines):
input_data = "\n".join(lines)
converted_docs = list(
conllu_to_docs(input_data, n_sents=1, ner_map={"PER": "PERSON", "BAD": ""})
2020-07-04 17:25:34 +03:00
)
assert len(converted_docs) == 1
converted = [docs_to_json(converted_docs)]
assert converted[0]["id"] == 0
assert len(converted[0]["paragraphs"]) == 1
assert converted[0]["paragraphs"][0]["raw"] == "Dommer FinnEilertsen avstår. "
assert len(converted[0]["paragraphs"][0]["sentences"]) == 1
sent = converted[0]["paragraphs"][0]["sentences"][0]
assert len(sent["tokens"]) == 5
tokens = sent["tokens"]
assert [t["orth"] for t in tokens] == ["Dommer", "Finn", "Eilertsen", "avstår", "."]
assert [t["tag"] for t in tokens] == ["NOUN", "PROPN", "PROPN", "VERB", "PUNCT"]
assert [t["head"] for t in tokens] == [1, 2, -1, 0, -1]
assert [t["dep"] for t in tokens] == ["appos", "nsubj", "name", "ROOT", "punct"]
2020-07-04 17:25:34 +03:00
ent_offsets = [
(e[0], e[1], e[2]) for e in converted[0]["paragraphs"][0]["entities"]
]
2020-09-22 12:50:19 +03:00
biluo_tags = offsets_to_biluo_tags(converted_docs[0], ent_offsets, missing="O")
assert biluo_tags == ["O", "B-PERSON", "L-PERSON", "O", "O"]
2020-09-22 13:01:06 +03:00
def test_cli_converters_conllu_to_docs_subtokens():
Add convert CLI option to merge CoNLL-U subtokens (#4722) * Add convert CLI option to merge CoNLL-U subtokens Add `-T` option to convert CLI that merges CoNLL-U subtokens into one token in the converted data. Each CoNLL-U sentence is read into a `Doc` and the `Retokenizer` is used to merge subtokens with features as follows: * `orth` is the merged token orth (should correspond to raw text and `# text`) * `tag` is all subtoken tags concatenated with `_`, e.g. `ADP_DET` * `pos` is the POS of the syntactic root of the span (as determined by the Retokenizer) * `morph` is all morphological features merged * `lemma` is all subtoken lemmas concatenated with ` `, e.g. `de o` * with `-m` all morphological features are combined with the tag using the separator `__`, e.g. `ADP_DET__Definite=Def|Gender=Masc|Number=Sing|PronType=Art` * `dep` is the dependency relation for the syntactic root of the span (as determined by the Retokenizer) Concatenated tags will be mapped to the UD POS of the syntactic root (e.g., `ADP`) and the morphological features will be the combined features. In many cases, the original UD subtokens can be reconstructed from the available features given a language-specific lookup table, e.g., Portuguese `do / ADP_DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` is `de / ADP`, `o / DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` or lookup rules for forms containing open class words like Spanish `hablarlo / VERB_PRON / Case=Acc|Gender=Masc|Number=Sing|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf`. * Clean up imports
2020-01-29 19:44:25 +03:00
# https://raw.githubusercontent.com/ohenrik/nb_news_ud_sm/master/original_data/no-ud-dev-ner.conllu
lines = [
"1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\tname=O",
"2-3\tFE\t_\t_\t_\t_\t_\t_\t_\t_",
"2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tname=B-PER",
"3\tEilertsen\tEilertsen\tX\t_\tGender=Fem|Tense=past\t2\tname\t_\tname=I-PER",
"4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tSpaceAfter=No|name=O",
"5\t.\t$.\tPUNCT\t_\t_\t4\tpunct\t_\tname=O",
]
input_data = "\n".join(lines)
converted_docs = list(
conllu_to_docs(
input_data, n_sents=1, merge_subtokens=True, append_morphology=True
)
2020-02-18 17:38:18 +03:00
)
assert len(converted_docs) == 1
converted = [docs_to_json(converted_docs)]
Add convert CLI option to merge CoNLL-U subtokens (#4722) * Add convert CLI option to merge CoNLL-U subtokens Add `-T` option to convert CLI that merges CoNLL-U subtokens into one token in the converted data. Each CoNLL-U sentence is read into a `Doc` and the `Retokenizer` is used to merge subtokens with features as follows: * `orth` is the merged token orth (should correspond to raw text and `# text`) * `tag` is all subtoken tags concatenated with `_`, e.g. `ADP_DET` * `pos` is the POS of the syntactic root of the span (as determined by the Retokenizer) * `morph` is all morphological features merged * `lemma` is all subtoken lemmas concatenated with ` `, e.g. `de o` * with `-m` all morphological features are combined with the tag using the separator `__`, e.g. `ADP_DET__Definite=Def|Gender=Masc|Number=Sing|PronType=Art` * `dep` is the dependency relation for the syntactic root of the span (as determined by the Retokenizer) Concatenated tags will be mapped to the UD POS of the syntactic root (e.g., `ADP`) and the morphological features will be the combined features. In many cases, the original UD subtokens can be reconstructed from the available features given a language-specific lookup table, e.g., Portuguese `do / ADP_DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` is `de / ADP`, `o / DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` or lookup rules for forms containing open class words like Spanish `hablarlo / VERB_PRON / Case=Acc|Gender=Masc|Number=Sing|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf`. * Clean up imports
2020-01-29 19:44:25 +03:00
assert converted[0]["id"] == 0
assert len(converted[0]["paragraphs"]) == 1
assert converted[0]["paragraphs"][0]["raw"] == "Dommer FE avstår. "
Add convert CLI option to merge CoNLL-U subtokens (#4722) * Add convert CLI option to merge CoNLL-U subtokens Add `-T` option to convert CLI that merges CoNLL-U subtokens into one token in the converted data. Each CoNLL-U sentence is read into a `Doc` and the `Retokenizer` is used to merge subtokens with features as follows: * `orth` is the merged token orth (should correspond to raw text and `# text`) * `tag` is all subtoken tags concatenated with `_`, e.g. `ADP_DET` * `pos` is the POS of the syntactic root of the span (as determined by the Retokenizer) * `morph` is all morphological features merged * `lemma` is all subtoken lemmas concatenated with ` `, e.g. `de o` * with `-m` all morphological features are combined with the tag using the separator `__`, e.g. `ADP_DET__Definite=Def|Gender=Masc|Number=Sing|PronType=Art` * `dep` is the dependency relation for the syntactic root of the span (as determined by the Retokenizer) Concatenated tags will be mapped to the UD POS of the syntactic root (e.g., `ADP`) and the morphological features will be the combined features. In many cases, the original UD subtokens can be reconstructed from the available features given a language-specific lookup table, e.g., Portuguese `do / ADP_DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` is `de / ADP`, `o / DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` or lookup rules for forms containing open class words like Spanish `hablarlo / VERB_PRON / Case=Acc|Gender=Masc|Number=Sing|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf`. * Clean up imports
2020-01-29 19:44:25 +03:00
assert len(converted[0]["paragraphs"][0]["sentences"]) == 1
sent = converted[0]["paragraphs"][0]["sentences"][0]
assert len(sent["tokens"]) == 4
tokens = sent["tokens"]
assert [t["orth"] for t in tokens] == ["Dommer", "FE", "avstår", "."]
assert [t["tag"] for t in tokens] == [
"NOUN__Definite=Ind|Gender=Masc|Number=Sing",
"PROPN_X__Gender=Fem,Masc|Tense=past",
"VERB__Mood=Ind|Tense=Pres|VerbForm=Fin",
2020-02-18 17:38:18 +03:00
"PUNCT",
Add convert CLI option to merge CoNLL-U subtokens (#4722) * Add convert CLI option to merge CoNLL-U subtokens Add `-T` option to convert CLI that merges CoNLL-U subtokens into one token in the converted data. Each CoNLL-U sentence is read into a `Doc` and the `Retokenizer` is used to merge subtokens with features as follows: * `orth` is the merged token orth (should correspond to raw text and `# text`) * `tag` is all subtoken tags concatenated with `_`, e.g. `ADP_DET` * `pos` is the POS of the syntactic root of the span (as determined by the Retokenizer) * `morph` is all morphological features merged * `lemma` is all subtoken lemmas concatenated with ` `, e.g. `de o` * with `-m` all morphological features are combined with the tag using the separator `__`, e.g. `ADP_DET__Definite=Def|Gender=Masc|Number=Sing|PronType=Art` * `dep` is the dependency relation for the syntactic root of the span (as determined by the Retokenizer) Concatenated tags will be mapped to the UD POS of the syntactic root (e.g., `ADP`) and the morphological features will be the combined features. In many cases, the original UD subtokens can be reconstructed from the available features given a language-specific lookup table, e.g., Portuguese `do / ADP_DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` is `de / ADP`, `o / DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` or lookup rules for forms containing open class words like Spanish `hablarlo / VERB_PRON / Case=Acc|Gender=Masc|Number=Sing|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf`. * Clean up imports
2020-01-29 19:44:25 +03:00
]
2020-02-18 17:38:18 +03:00
assert [t["pos"] for t in tokens] == ["NOUN", "PROPN", "VERB", "PUNCT"]
assert [t["morph"] for t in tokens] == [
"Definite=Ind|Gender=Masc|Number=Sing",
"Gender=Fem,Masc|Tense=past",
"Mood=Ind|Tense=Pres|VerbForm=Fin",
"",
]
assert [t["lemma"] for t in tokens] == ["dommer", "Finn Eilertsen", "avstå", "$."]
Add convert CLI option to merge CoNLL-U subtokens (#4722) * Add convert CLI option to merge CoNLL-U subtokens Add `-T` option to convert CLI that merges CoNLL-U subtokens into one token in the converted data. Each CoNLL-U sentence is read into a `Doc` and the `Retokenizer` is used to merge subtokens with features as follows: * `orth` is the merged token orth (should correspond to raw text and `# text`) * `tag` is all subtoken tags concatenated with `_`, e.g. `ADP_DET` * `pos` is the POS of the syntactic root of the span (as determined by the Retokenizer) * `morph` is all morphological features merged * `lemma` is all subtoken lemmas concatenated with ` `, e.g. `de o` * with `-m` all morphological features are combined with the tag using the separator `__`, e.g. `ADP_DET__Definite=Def|Gender=Masc|Number=Sing|PronType=Art` * `dep` is the dependency relation for the syntactic root of the span (as determined by the Retokenizer) Concatenated tags will be mapped to the UD POS of the syntactic root (e.g., `ADP`) and the morphological features will be the combined features. In many cases, the original UD subtokens can be reconstructed from the available features given a language-specific lookup table, e.g., Portuguese `do / ADP_DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` is `de / ADP`, `o / DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` or lookup rules for forms containing open class words like Spanish `hablarlo / VERB_PRON / Case=Acc|Gender=Masc|Number=Sing|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf`. * Clean up imports
2020-01-29 19:44:25 +03:00
assert [t["head"] for t in tokens] == [1, 1, 0, -1]
assert [t["dep"] for t in tokens] == ["appos", "nsubj", "ROOT", "punct"]
2020-07-04 17:25:34 +03:00
ent_offsets = [
(e[0], e[1], e[2]) for e in converted[0]["paragraphs"][0]["entities"]
]
2020-09-22 12:50:19 +03:00
biluo_tags = offsets_to_biluo_tags(converted_docs[0], ent_offsets, missing="O")
assert biluo_tags == ["O", "U-PER", "O", "O"]
Add convert CLI option to merge CoNLL-U subtokens (#4722) * Add convert CLI option to merge CoNLL-U subtokens Add `-T` option to convert CLI that merges CoNLL-U subtokens into one token in the converted data. Each CoNLL-U sentence is read into a `Doc` and the `Retokenizer` is used to merge subtokens with features as follows: * `orth` is the merged token orth (should correspond to raw text and `# text`) * `tag` is all subtoken tags concatenated with `_`, e.g. `ADP_DET` * `pos` is the POS of the syntactic root of the span (as determined by the Retokenizer) * `morph` is all morphological features merged * `lemma` is all subtoken lemmas concatenated with ` `, e.g. `de o` * with `-m` all morphological features are combined with the tag using the separator `__`, e.g. `ADP_DET__Definite=Def|Gender=Masc|Number=Sing|PronType=Art` * `dep` is the dependency relation for the syntactic root of the span (as determined by the Retokenizer) Concatenated tags will be mapped to the UD POS of the syntactic root (e.g., `ADP`) and the morphological features will be the combined features. In many cases, the original UD subtokens can be reconstructed from the available features given a language-specific lookup table, e.g., Portuguese `do / ADP_DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` is `de / ADP`, `o / DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` or lookup rules for forms containing open class words like Spanish `hablarlo / VERB_PRON / Case=Acc|Gender=Masc|Number=Sing|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf`. * Clean up imports
2020-01-29 19:44:25 +03:00
2020-09-22 12:50:19 +03:00
def test_cli_converters_iob_to_docs():
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
lines = [
"I|O like|O London|I-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O",
"I|O like|O London|B-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O",
"I|PRP|O like|VBP|O London|NNP|I-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O",
"I|PRP|O like|VBP|O London|NNP|B-GPE and|CC|O New|NNP|B-GPE York|NNP|I-GPE City|NNP|I-GPE .|.|O",
]
input_data = "\n".join(lines)
converted_docs = list(iob_to_docs(input_data, n_sents=10))
Improve spacy.gold (no GoldParse, no json format!) (#5555) * Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 20:34:12 +03:00
assert len(converted_docs) == 1
converted = docs_to_json(converted_docs)
assert converted["id"] == 0
assert len(converted["paragraphs"]) == 1
assert len(converted["paragraphs"][0]["sentences"]) == 4
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
for i in range(0, 4):
Improve spacy.gold (no GoldParse, no json format!) (#5555) * Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 20:34:12 +03:00
sent = converted["paragraphs"][0]["sentences"][i]
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
assert len(sent["tokens"]) == 8
tokens = sent["tokens"]
2020-07-04 17:25:34 +03:00
expected = ["I", "like", "London", "and", "New", "York", "City", "."]
assert [t["orth"] for t in tokens] == expected
Improve spacy.gold (no GoldParse, no json format!) (#5555) * Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 20:34:12 +03:00
assert len(converted_docs[0].ents) == 8
for ent in converted_docs[0].ents:
2020-07-04 17:25:34 +03:00
assert ent.text in ["New York City", "London"]
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
2020-09-22 12:50:19 +03:00
def test_cli_converters_conll_ner_to_docs():
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
lines = [
"-DOCSTART- -X- O O",
"",
"I\tO",
"like\tO",
"London\tB-GPE",
"and\tO",
"New\tB-GPE",
"York\tI-GPE",
"City\tI-GPE",
".\tO",
"",
"I O",
"like O",
"London B-GPE",
"and O",
"New B-GPE",
"York I-GPE",
"City I-GPE",
". O",
"",
"I PRP O",
"like VBP O",
"London NNP B-GPE",
"and CC O",
"New NNP B-GPE",
"York NNP I-GPE",
"City NNP I-GPE",
". . O",
"",
"I PRP _ O",
"like VBP _ O",
"London NNP _ B-GPE",
"and CC _ O",
"New NNP _ B-GPE",
"York NNP _ I-GPE",
"City NNP _ I-GPE",
". . _ O",
"",
"I\tPRP\t_\tO",
"like\tVBP\t_\tO",
"London\tNNP\t_\tB-GPE",
"and\tCC\t_\tO",
"New\tNNP\t_\tB-GPE",
"York\tNNP\t_\tI-GPE",
"City\tNNP\t_\tI-GPE",
".\t.\t_\tO",
]
input_data = "\n".join(lines)
converted_docs = list(conll_ner_to_docs(input_data, n_sents=10))
Improve spacy.gold (no GoldParse, no json format!) (#5555) * Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 20:34:12 +03:00
assert len(converted_docs) == 1
converted = docs_to_json(converted_docs)
assert converted["id"] == 0
assert len(converted["paragraphs"]) == 1
assert len(converted["paragraphs"][0]["sentences"]) == 5
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
for i in range(0, 5):
Improve spacy.gold (no GoldParse, no json format!) (#5555) * Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 20:34:12 +03:00
sent = converted["paragraphs"][0]["sentences"][i]
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
assert len(sent["tokens"]) == 8
tokens = sent["tokens"]
2019-08-31 14:39:06 +03:00
# fmt: off
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
assert [t["orth"] for t in tokens] == ["I", "like", "London", "and", "New", "York", "City", "."]
2019-08-31 14:39:06 +03:00
# fmt: on
Improve spacy.gold (no GoldParse, no json format!) (#5555) * Update errors * Remove beam for now (maybe) Remove beam_utils Update setup.py Remove beam * Remove GoldParse WIP on removing goldparse Get ArcEager compiling after GoldParse excise Update setup.py Get spacy.syntax compiling after removing GoldParse Rename NewExample -> Example and clean up Clean html files Start updating tests Update Morphologizer * fix error numbers * fix merge conflict * informative error when calling to_array with wrong field * fix error catching * fixing language and scoring tests * start testing get_aligned * additional tests for new get_aligned function * Draft create_gold_state for arc_eager oracle * Fix import * Fix import * Remove TokenAnnotation code from nonproj * fixing NER one-to-many alignment * Fix many-to-one IOB codes * fix test for misaligned * attempt to fix cases with weird spaces * fix spaces * test_gold_biluo_different_tokenization works * allow None as BILUO annotation * fixed some tests + WIP roundtrip unit test * add spaces to json output format * minibatch utiltiy can deal with strings, docs or examples * fix augment (needs further testing) * various fixes in scripts - needs to be further tested * fix test_cli * cleanup * correct silly typo * add support for MORPH in to/from_array, fix morphologizer overfitting test * fix tagger * fix entity linker * ensure test keeps working with non-linked entities * pipe() takes docs, not examples * small bug fix * textcat bugfix * throw informative error when running the components with the wrong type of objects * fix parser tests to work with example (most still failing) * fix BiluoPushDown parsing entities * small fixes * bugfix tok2vec * fix renames and simple_ner labels * various small fixes * prevent writing dummy values like deps because that could interfer with sent_start values * fix the fix * implement split_sent with aligned SENT_START attribute * test for split sentences with various alignment issues, works * Return ArcEagerGoldParse from ArcEager * Update parser and NER gold stuff * Draft new GoldCorpus class * add links to to_dict * clean up * fix test checking for variants * Fix oracles * Start updating converters * Move converters under spacy.gold * Move things around * Fix naming * Fix name * Update converter to produce DocBin * Update converters * Allow DocBin to take list of Doc objects. * Make spacy convert output docbin * Fix import * Fix docbin * Fix compile in ArcEager * Fix import * Serialize all attrs by default * Update converter * Remove jsonl converter * Add json2docs converter * Draft Corpus class for DocBin * Work on train script * Update Corpus * Update DocBin * Allocate Doc before starting to add words * Make doc.from_array several times faster * Update train.py * Fix Corpus * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests * Skip tests that cause crashes * Skip test causing segfault * Remove GoldCorpus * Update imports * Update after removing GoldCorpus * Fix module name of corpus * Fix mimport * Work on parser oracle * Update arc_eager oracle * Restore ArcEager.get_cost function * Update transition system * Update test_arc_eager_oracle * Remove beam test * Update test * Unskip * Unskip tests * add links to to_dict * clean up * fix test checking for variants * Allow DocBin to take list of Doc objects. * Fix compile in ArcEager * Serialize all attrs by default Move converters under spacy.gold Move things around Fix naming Fix name Update converter to produce DocBin Update converters Make spacy convert output docbin Fix import Fix docbin Fix import Update converter Remove jsonl converter Add json2docs converter * Allocate Doc before starting to add words * Make doc.from_array several times faster * Start updating converters * Work on train script * Draft Corpus class for DocBin Update Corpus Fix Corpus * Update DocBin Add missing strings when serializing * Update train.py * Fix parser model * Start debugging arc_eager oracle * Update header * Fix parser declaration * Xfail some tests Skip tests that cause crashes Skip test causing segfault * Remove GoldCorpus Update imports Update after removing GoldCorpus Fix module name of corpus Fix mimport * Work on parser oracle Update arc_eager oracle Restore ArcEager.get_cost function Update transition system * Update tests Remove beam test Update test Unskip Unskip tests * Add get_aligned_parse method in Example Fix Example.get_aligned_parse * Add kwargs to Corpus.dev_dataset to match train_dataset * Update nonproj * Use get_aligned_parse in ArcEager * Add another arc-eager oracle test * Remove Example.doc property Remove Example.doc Remove Example.doc Remove Example.doc Remove Example.doc * Update ArcEager oracle Fix Break oracle * Debugging * Fix Corpus * Fix eg.doc * Format * small fixes * limit arg for Corpus * fix test_roundtrip_docs_to_docbin * fix test_make_orth_variants * fix add_label test * Update tests * avoid writing temp dir in json2docs, fixing 4402 test * Update test * Add missing costs to NER oracle * Update test * Work on Example.get_aligned_ner method * Clean up debugging * Xfail tests * Remove prints * Remove print * Xfail some tests * Replace unseen labels for parser * Update test * Update test * Xfail test * Fix Corpus * fix imports * fix docs_to_json * various small fixes * cleanup * Support gold_preproc in Corpus * Support gold_preproc * Pass gold_preproc setting into corpus * Remove debugging * Fix gold_preproc * Fix json2docs converter * Fix convert command * Fix flake8 * Fix import * fix output_dir (converted to Path by typer) * fix var * bugfix: update states after creating golds to avoid out of bounds indexing * Improve efficiency of ArEager oracle * pull merge_sent into iob2docs to avoid Doc creation for each line * fix asserts * bugfix excl Span.end in iob2docs * Support max_length in Corpus * Fix arc_eager oracle * Filter out uannotated sentences in NER * Remove debugging in parser * Simplify NER alignment * Fix conversion of NER data * Fix NER init_gold_batch * Tweak efficiency of precomputable affine * Update onto-json default * Update gold test for NER * Fix parser test * Update test * Add NER data test * Fix convert for single file * Fix test * Hack scorer to avoid evaluating non-nered data * Fix handling of NER data in Example * Output unlabelled spans from O biluo tags in iob_utils * Fix unset variable * Return kept examples from init_gold_batch * Return examples from init_gold_batch * Dont return Example from init_gold_batch * Set spaces on gold doc after conversion * Add test * Fix spaces reading * Improve NER alignment * Improve handling of missing values in NER * Restore the 'cutting' in parser training * Add assertion * Print epochs * Restore random cuts in parser/ner training * Implement Doc.copy * Implement Example.copy * Copy examples at the start of Language.update * Don't unset example docs * Tweak parser model slightly * attempt to fix _guess_spaces * _add_entities_to_doc first, so that links don't get overwritten * fixing get_aligned_ner for one-to-many * fix indexing into x_text * small fix biluo_tags_from_offsets * Add onto-ner config * Simplify NER alignment * Fix NER scoring for partially annotated documents * fix indexing into x_text * fix test_cli failing tests by ignoring spans in doc.ents with empty label * Fix limit * Improve NER alignment * Fix count_train * Remove print statement * fix tests, we're not having nothing but None * fix clumsy fingers * Fix tests * Fix doc.ents * Remove empty docs in Corpus and improve limit * Update config Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 20:34:12 +03:00
assert len(converted_docs[0].ents) == 10
for ent in converted_docs[0].ents:
2020-07-04 17:25:34 +03:00
assert ent.text in ["New York City", "London"]
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
def test_project_config_validation_full():
config = {
"vars": {"some_var": 20},
"directories": ["assets", "configs", "corpus", "scripts", "training"],
"assets": [
{
"dest": "x",
Allow assets to be optional in spacy project (#10714) * Allow assets to be optional in spacy project: draft for optional flag/download_all options. * Allow assets to be optional in spacy project: added OPTIONAL_DEFAULT reflecting default asset optionality. * Allow assets to be optional in spacy project: renamed --all to --extra. * Allow assets to be optional in spacy project: included optional flag in project config test. * Allow assets to be optional in spacy project: added documentation. * Allow assets to be optional in spacy project: fixing deprecated --all reference. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Allow assets to be optional in spacy project: fixed project_assets() docstring. * Allow assets to be optional in spacy project: adjusted wording in justification of optional assets. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Allow assets to be optional in spacy project: switched to as keyword in project.yml. Updated docs. * Allow assets to be optional in spacy project: updated comment. * Allow assets to be optional in spacy project: replacing 'optional' with 'extra' in output. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Allow assets to be optional in spacy project: replacing 'optional' with 'extra' in docstring.. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Allow assets to be optional in spacy project: replacing 'optional' with 'extra' in test.. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Allow assets to be optional in spacy project: replacing 'optional' with 'extra' in test. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Allow assets to be optional in spacy project: renamed OPTIONAL_DEFAULT to EXTRA_DEFAULT. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-05-10 11:40:11 +03:00
"extra": True,
"url": "https://example.com",
"checksum": "63373dd656daa1fd3043ce166a59474c",
},
{
"dest": "y",
"git": {
"repo": "https://github.com/example/repo",
"branch": "develop",
"path": "y",
},
},
Allow assets to be optional in spacy project (#10714) * Allow assets to be optional in spacy project: draft for optional flag/download_all options. * Allow assets to be optional in spacy project: added OPTIONAL_DEFAULT reflecting default asset optionality. * Allow assets to be optional in spacy project: renamed --all to --extra. * Allow assets to be optional in spacy project: included optional flag in project config test. * Allow assets to be optional in spacy project: added documentation. * Allow assets to be optional in spacy project: fixing deprecated --all reference. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Allow assets to be optional in spacy project: fixed project_assets() docstring. * Allow assets to be optional in spacy project: adjusted wording in justification of optional assets. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Allow assets to be optional in spacy project: switched to as keyword in project.yml. Updated docs. * Allow assets to be optional in spacy project: updated comment. * Allow assets to be optional in spacy project: replacing 'optional' with 'extra' in output. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Allow assets to be optional in spacy project: replacing 'optional' with 'extra' in docstring.. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Allow assets to be optional in spacy project: replacing 'optional' with 'extra' in test.. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Allow assets to be optional in spacy project: replacing 'optional' with 'extra' in test. Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Allow assets to be optional in spacy project: renamed OPTIONAL_DEFAULT to EXTRA_DEFAULT. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-05-10 11:40:11 +03:00
{
"dest": "z",
"extra": False,
"url": "https://example.com",
"checksum": "63373dd656daa1fd3043ce166a59474c",
},
],
"commands": [
{
"name": "train",
"help": "Train a model",
"script": ["python -m spacy train config.cfg -o training"],
"deps": ["config.cfg", "corpus/training.spcy"],
"outputs": ["training/model-best"],
},
{"name": "test", "script": ["pytest", "custom.py"], "no_skip": True},
],
"workflows": {"all": ["train", "test"], "train": ["train"]},
}
errors = validate(ProjectConfigSchema, config)
assert not errors
2020-07-10 19:21:01 +03:00
@pytest.mark.parametrize(
"config",
[
{"commands": [{"name": "a"}, {"name": "a"}]},
{"commands": [{"name": "a"}], "workflows": {"a": []}},
{"commands": [{"name": "a"}], "workflows": {"b": ["c"]}},
],
)
def test_project_config_validation1(config):
with pytest.raises(SystemExit):
validate_project_commands(config)
@pytest.mark.parametrize(
"config,n_errors",
[
({"commands": {"a": []}}, 1),
({"commands": [{"help": "..."}]}, 1),
({"commands": [{"name": "a", "extra": "b"}]}, 1),
({"commands": [{"extra": "b"}]}, 2),
({"commands": [{"name": "a", "deps": [123]}]}, 1),
],
)
def test_project_config_validation2(config, n_errors):
errors = validate(ProjectConfigSchema, config)
assert len(errors) == n_errors
@pytest.mark.parametrize(
"int_value",
[10, pytest.param("10", marks=pytest.mark.xfail)],
)
def test_project_config_interpolation(int_value):
variables = {"a": int_value, "b": {"c": "foo", "d": True}}
commands = [
{"name": "x", "script": ["hello ${vars.a} ${vars.b.c}"]},
{"name": "y", "script": ["${vars.b.c} ${vars.b.d}"]},
]
project = {"commands": commands, "vars": variables}
with make_tempdir() as d:
srsly.write_yaml(d / "project.yml", project)
cfg = load_project_config(d)
assert type(cfg) == dict
assert type(cfg["commands"]) == list
assert cfg["commands"][0]["script"][0] == "hello 10 foo"
assert cfg["commands"][1]["script"][0] == "foo true"
commands = [{"name": "x", "script": ["hello ${vars.a} ${vars.b.e}"]}]
project = {"commands": commands, "vars": variables}
with pytest.raises(ConfigValidationError):
substitute_project_variables(project)
@pytest.mark.parametrize(
"greeting",
[342, "everyone", "tout le monde", pytest.param("42", marks=pytest.mark.xfail)],
)
def test_project_config_interpolation_override(greeting):
variables = {"a": "world"}
commands = [
{"name": "x", "script": ["hello ${vars.a}"]},
]
overrides = {"vars.a": greeting}
project = {"commands": commands, "vars": variables}
with make_tempdir() as d:
srsly.write_yaml(d / "project.yml", project)
cfg = load_project_config(d, overrides=overrides)
assert type(cfg) == dict
assert type(cfg["commands"]) == list
assert cfg["commands"][0]["script"][0] == f"hello {greeting}"
def test_project_config_interpolation_env():
variables = {"a": 10}
env_var = "SPACY_TEST_FOO"
env_vars = {"foo": env_var}
commands = [{"name": "x", "script": ["hello ${vars.a} ${env.foo}"]}]
project = {"commands": commands, "vars": variables, "env": env_vars}
with make_tempdir() as d:
srsly.write_yaml(d / "project.yml", project)
cfg = load_project_config(d)
assert cfg["commands"][0]["script"][0] == "hello 10 "
os.environ[env_var] = "123"
with make_tempdir() as d:
srsly.write_yaml(d / "project.yml", project)
cfg = load_project_config(d)
assert cfg["commands"][0]["script"][0] == "hello 10 123"
2020-07-10 19:21:01 +03:00
@pytest.mark.parametrize(
"args,expected",
[
# fmt: off
(["--x.foo", "10"], {"x.foo": 10}),
(["--x.foo=10"], {"x.foo": 10}),
2020-07-10 19:21:01 +03:00
(["--x.foo", "bar"], {"x.foo": "bar"}),
(["--x.foo=bar"], {"x.foo": "bar"}),
2020-07-10 19:21:01 +03:00
(["--x.foo", "--x.bar", "baz"], {"x.foo": True, "x.bar": "baz"}),
(["--x.foo", "--x.bar=baz"], {"x.foo": True, "x.bar": "baz"}),
(["--x.foo", "10.1", "--x.bar", "--x.baz", "false"], {"x.foo": 10.1, "x.bar": True, "x.baz": False}),
(["--x.foo", "10.1", "--x.bar", "--x.baz=false"], {"x.foo": 10.1, "x.bar": True, "x.baz": False})
2020-07-10 19:21:01 +03:00
# fmt: on
],
)
def test_parse_config_overrides(args, expected):
assert parse_config_overrides(args) == expected
@pytest.mark.parametrize("args", [["--foo"], ["--x.foo", "bar", "--baz"]])
2020-07-10 19:21:01 +03:00
def test_parse_config_overrides_invalid(args):
2020-08-28 11:46:21 +03:00
with pytest.raises(NoSuchOption):
2020-07-10 19:21:01 +03:00
parse_config_overrides(args)
2020-08-13 18:38:30 +03:00
@pytest.mark.parametrize("args", [["--x.foo", "bar", "baz"], ["x.foo"]])
def test_parse_config_overrides_invalid_2(args):
with pytest.raises(SystemExit):
parse_config_overrides(args)
def test_parse_cli_overrides():
2020-09-30 16:15:11 +03:00
overrides = "--x.foo bar --x.bar=12 --x.baz false --y.foo=hello"
os.environ[ENV_VARS.CONFIG_OVERRIDES] = overrides
2020-09-21 13:50:13 +03:00
result = parse_config_overrides([])
assert len(result) == 4
assert result["x.foo"] == "bar"
assert result["x.bar"] == 12
assert result["x.baz"] is False
assert result["y.foo"] == "hello"
2020-09-30 16:15:11 +03:00
os.environ[ENV_VARS.CONFIG_OVERRIDES] = "--x"
2020-09-21 13:50:13 +03:00
assert parse_config_overrides([], env_var=None) == {}
with pytest.raises(SystemExit):
parse_config_overrides([])
2020-09-30 16:15:11 +03:00
os.environ[ENV_VARS.CONFIG_OVERRIDES] = "hello world"
2020-09-21 13:50:13 +03:00
with pytest.raises(SystemExit):
parse_config_overrides([])
2020-09-30 16:15:11 +03:00
del os.environ[ENV_VARS.CONFIG_OVERRIDES]
2020-08-13 18:38:30 +03:00
@pytest.mark.parametrize("lang", ["en", "nl"])
@pytest.mark.parametrize(
"pipeline", [["tagger", "parser", "ner"], [], ["ner", "textcat", "sentencizer"]]
)
@pytest.mark.parametrize("optimize", ["efficiency", "accuracy"])
@pytest.mark.parametrize("pretraining", [True, False])
def test_init_config(lang, pipeline, optimize, pretraining):
2020-08-13 18:38:30 +03:00
# TODO: add more tests and also check for GPU with transformers
config = init_config(
lang=lang,
pipeline=pipeline,
optimize=optimize,
pretraining=pretraining,
gpu=False,
)
2020-12-08 19:37:20 +03:00
assert isinstance(config, Config)
if pretraining:
config["paths"]["raw_text"] = "my_data.jsonl"
2021-07-18 08:44:56 +03:00
load_model_from_config(config, auto_fill=True)
2020-08-15 15:50:29 +03:00
def test_model_recommendations():
for lang, data in RECOMMENDATIONS.items():
2020-08-15 15:50:29 +03:00
assert RecommendationSchema(**data)
@pytest.mark.parametrize(
"value",
[
# fmt: off
"parser,textcat,tagger",
" parser, textcat ,tagger ",
'parser,textcat,tagger',
' parser, textcat ,tagger ',
' "parser"," textcat " ,"tagger "',
" 'parser',' textcat ' ,'tagger '",
'[parser,textcat,tagger]',
'["parser","textcat","tagger"]',
'[" parser" ,"textcat ", " tagger " ]',
"[parser,textcat,tagger]",
"[ parser, textcat , tagger]",
"['parser','textcat','tagger']",
"[' parser' , 'textcat', ' tagger ' ]",
# fmt: on
],
)
def test_string_to_list(value):
assert string_to_list(value, intify=False) == ["parser", "textcat", "tagger"]
@pytest.mark.parametrize(
"value",
[
# fmt: off
"1,2,3",
'[1,2,3]',
'["1","2","3"]',
'[" 1" ,"2 ", " 3 " ]',
"[' 1' , '2', ' 3 ' ]",
# fmt: on
],
)
def test_string_to_list_intify(value):
assert string_to_list(value, intify=False) == ["1", "2", "3"]
assert string_to_list(value, intify=True) == [1, 2, 3]
def test_download_compatibility():
spec = SpecifierSet("==" + about.__version__)
spec.prereleases = False
if about.__version__ in spec:
model_name = "en_core_web_sm"
compatibility = get_compatibility()
version = get_version(model_name, compatibility)
assert get_minor_version(about.__version__) == get_minor_version(version)
def test_validate_compatibility_table():
spec = SpecifierSet("==" + about.__version__)
spec.prereleases = False
if about.__version__ in spec:
model_pkgs, compat = get_model_pkgs()
spacy_version = get_minor_version(about.__version__)
current_compat = compat.get(spacy_version, {})
assert len(current_compat) > 0
assert "en_core_web_sm" in current_compat
@pytest.mark.parametrize("component_name", ["ner", "textcat", "spancat", "tagger"])
def test_init_labels(component_name):
nlp = Dutch()
component = nlp.add_pipe(component_name)
for label in ["T1", "T2", "T3", "T4"]:
component.add_label(label)
assert len(nlp.get_pipe(component_name).labels) == 4
with make_tempdir() as tmp_dir:
_init_labels(nlp, tmp_dir)
config = init_config(
lang="nl",
pipeline=[component_name],
optimize="efficiency",
gpu=False,
)
config["initialize"]["components"][component_name] = {
"labels": {
"@readers": "spacy.read_labels.v1",
"path": f"{tmp_dir}/{component_name}.json",
}
}
nlp2 = load_model_from_config(config, auto_fill=True)
assert len(nlp2.get_pipe(component_name).labels) == 0
nlp2.initialize()
assert len(nlp2.get_pipe(component_name).labels) == 4
def test_get_third_party_dependencies():
# We can't easily test the detection of third-party packages here, but we
# can at least make sure that the function and its importlib magic runs.
nlp = Dutch()
# Test with component factory based on Cython module
nlp.add_pipe("tagger")
assert get_third_party_dependencies(nlp.config) == []
# Test with legacy function
nlp = Dutch()
nlp.add_pipe(
"textcat",
config={
"model": {
# Do not update from legacy architecture spacy.TextCatBOW.v1
"@architectures": "spacy.TextCatBOW.v1",
"exclusive_classes": True,
"ngram_size": 1,
"no_output_layer": False,
}
},
)
assert get_third_party_dependencies(nlp.config) == []
# Test with lang-specific factory
@Dutch.factory("third_party_test")
def test_factory(nlp, name):
return lambda x: x
nlp.add_pipe("third_party_test")
# Before #9674 this would throw an exception
get_third_party_dependencies(nlp.config)
@pytest.mark.parametrize(
"parent,child,expected",
[
("/tmp", "/tmp", True),
("/tmp", "/", False),
("/tmp", "/tmp/subdir", True),
("/tmp", "/tmpdir", False),
("/tmp", "/tmp/subdir/..", True),
("/tmp", "/tmp/..", False),
],
)
def test_is_subpath_of(parent, child, expected):
assert is_subpath_of(parent, child) == expected
@pytest.mark.slow
@pytest.mark.parametrize(
"factory_name,pipe_name",
[
("ner", "ner"),
("ner", "my_ner"),
("spancat", "spancat"),
("spancat", "my_spancat"),
],
)
def test_get_labels_from_model(factory_name, pipe_name):
labels = ("A", "B")
nlp = English()
pipe = nlp.add_pipe(factory_name, name=pipe_name)
for label in labels:
pipe.add_label(label)
nlp.initialize()
assert nlp.get_pipe(pipe_name).labels == labels
if factory_name == "spancat":
assert _get_labels_from_spancat(nlp)[pipe.key] == set(labels)
else:
assert _get_labels_from_model(nlp, factory_name) == set(labels)
def test_permitted_package_names():
# https://www.python.org/dev/peps/pep-0426/#name
assert _is_permitted_package_name("Meine_Bäume") == False
assert _is_permitted_package_name("_package") == False
assert _is_permitted_package_name("package_") == False
assert _is_permitted_package_name(".package") == False
assert _is_permitted_package_name("package.") == False
assert _is_permitted_package_name("-package") == False
assert _is_permitted_package_name("package-") == False
def test_debug_data_compile_gold():
nlp = English()
pred = Doc(nlp.vocab, words=["Token", ".", "New", "York", "City"])
ref = Doc(
nlp.vocab,
words=["Token", ".", "New York City"],
sent_starts=[True, False, True],
ents=["O", "O", "B-ENT"],
)
eg = Example(pred, ref)
data = _compile_gold([eg], ["ner"], nlp, True)
assert data["boundary_cross_ents"] == 0
pred = Doc(nlp.vocab, words=["Token", ".", "New", "York", "City"])
ref = Doc(
nlp.vocab,
words=["Token", ".", "New York City"],
sent_starts=[True, False, True],
ents=["O", "B-ENT", "I-ENT"],
)
eg = Example(pred, ref)
data = _compile_gold([eg], ["ner"], nlp, True)
assert data["boundary_cross_ents"] == 1
Add spacy-span-analyzer to debug data (#10668) * Rename to spans_key for consistency * Implement spans length in debug data * Implement how span bounds and spans are obtained In this commit, I implemented how span boundaries (the tokens) around a given span and spans are obtained. I've put them in the compile_gold() function so that it's accessible later on. I will do the actual computation of the span and boundary distinctiveness in the main function above. * Compute for p_spans and p_bounds * Add computation for SD and BD * Fix mypy issues * Add weighted average computation * Fix compile_gold conditional logic * Add test for frequency distribution computation * Add tests for kl-divergence computation * Fix weighted average computation * Make tables more compact by rounding them * Add more descriptive checks for spans * Modularize span computation methods In this commit, I added the _get_span_characteristics and _print_span_characteristics functions so that they can be reusable anywhere. * Remove unnecessary arguments and make fxs more compact * Update a few parameter arguments * Add tests for print_span and get_span methods * Update API to talk about span characteristics in brief * Add better reporting of spans_length * Add test for span length reporting * Update formatting of span length report Removed '' to indicate that it's not a string, then sort the n-grams by their length, not by their frequency. * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Show all frequency distribution when -V In this commit, I displayed the full frequency distribution of the span lengths when --verbose is passed. To make things simpler, I rewrote some of the formatter functions so that I can call them whenever. Another notable change is that instead of showing percentages as Integers, I showed them as floats (max 2-decimal places). I did this because it looks weird when it displays (0%). * Update logic on how total is computed The way the 90% thresholding is computed now is that we keep adding the percentages until we reach >= 90%. I also updated the wording and used the term "At least" to denote that >= 90% of your spans have these distributions. * Fix display when showing the threshold percentage * Apply suggestions from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add better phrasing for span information * Update spacy/cli/debug_data.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add minor edits for whitespaces etc. Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2022-05-23 20:06:38 +03:00
def test_debug_data_compile_gold_for_spans():
nlp = English()
spans_key = "sc"
pred = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
pred.spans[spans_key] = [Span(pred, 3, 6, "ORG"), Span(pred, 5, 6, "GPE")]
ref = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
ref.spans[spans_key] = [Span(ref, 3, 6, "ORG"), Span(ref, 5, 6, "GPE")]
eg = Example(pred, ref)
data = _compile_gold([eg], ["spancat"], nlp, True)
assert data["spancat"][spans_key] == Counter({"ORG": 1, "GPE": 1})
assert data["spans_length"][spans_key] == {"ORG": [3], "GPE": [1]}
assert data["spans_per_type"][spans_key] == {
"ORG": [Span(ref, 3, 6, "ORG")],
"GPE": [Span(ref, 5, 6, "GPE")],
}
assert data["sb_per_type"][spans_key] == {
"ORG": {"start": [ref[2:3]], "end": [ref[6:7]]},
"GPE": {"start": [ref[4:5]], "end": [ref[6:7]]},
}
def test_frequency_distribution_is_correct():
nlp = English()
docs = [
Doc(nlp.vocab, words=["Bank", "of", "China"]),
Doc(nlp.vocab, words=["China"]),
]
expected = Counter({"china": 0.5, "bank": 0.25, "of": 0.25})
freq_distribution = _get_distribution(docs, normalize=True)
assert freq_distribution == expected
def test_kl_divergence_computation_is_correct():
p = Counter({"a": 0.5, "b": 0.25})
q = Counter({"a": 0.25, "b": 0.50, "c": 0.15, "d": 0.10})
result = _get_kl_divergence(p, q)
expected = 0.1733
assert math.isclose(result, expected, rel_tol=1e-3)
def test_get_span_characteristics_return_value():
nlp = English()
spans_key = "sc"
pred = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
pred.spans[spans_key] = [Span(pred, 3, 6, "ORG"), Span(pred, 5, 6, "GPE")]
ref = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
ref.spans[spans_key] = [Span(ref, 3, 6, "ORG"), Span(ref, 5, 6, "GPE")]
eg = Example(pred, ref)
examples = [eg]
data = _compile_gold(examples, ["spancat"], nlp, True)
span_characteristics = _get_span_characteristics(
examples=examples, compiled_gold=data, spans_key=spans_key
)
assert {"sd", "bd", "lengths"}.issubset(span_characteristics.keys())
assert span_characteristics["min_length"] == 1
assert span_characteristics["max_length"] == 3
def test_ensure_print_span_characteristics_wont_fail():
"""Test if interface between two methods aren't destroyed if refactored"""
nlp = English()
spans_key = "sc"
pred = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
pred.spans[spans_key] = [Span(pred, 3, 6, "ORG"), Span(pred, 5, 6, "GPE")]
ref = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
ref.spans[spans_key] = [Span(ref, 3, 6, "ORG"), Span(ref, 5, 6, "GPE")]
eg = Example(pred, ref)
examples = [eg]
data = _compile_gold(examples, ["spancat"], nlp, True)
span_characteristics = _get_span_characteristics(
examples=examples, compiled_gold=data, spans_key=spans_key
)
_print_span_characteristics(span_characteristics)
@pytest.mark.parametrize("threshold", [70, 80, 85, 90, 95])
def test_span_length_freq_dist_threshold_must_be_correct(threshold):
sample_span_lengths = {
"span_type_1": [1, 4, 4, 5],
"span_type_2": [5, 3, 3, 2],
"span_type_3": [3, 1, 3, 3],
}
span_freqs = _get_spans_length_freq_dist(sample_span_lengths, threshold)
assert sum(span_freqs.values()) >= threshold
def test_span_length_freq_dist_output_must_be_correct():
sample_span_lengths = {
"span_type_1": [1, 4, 4, 5],
"span_type_2": [5, 3, 3, 2],
"span_type_3": [3, 1, 3, 3],
}
threshold = 90
span_freqs = _get_spans_length_freq_dist(sample_span_lengths, threshold)
assert sum(span_freqs.values()) >= threshold
assert list(span_freqs.keys()) == [3, 1, 4, 5, 2]
find-threshold: CLI command for multi-label classifier threshold tuning (#11280) * Add foundation for find-threshold CLI functionality. * Finish first draft for find-threshold. * Add tests. * Revert adjusted import statements. * Fix mypy errors. * Fix imports. * Harmonize arguments with spacy evaluate command. * Generalize component and threshold handling. Harmonize arguments with 'spacy evaluate' CLI. * Fix Spancat test. * Add beta parameter to Scorer and PRFScore. * Make beta a component scorer setting. * Remove beta. * Update nlp.config (workaround). * Reload pipeline on threshold change. Adjust tests. Remove confection reference. * Remove assumption of component being a Pipe object or having a .cfg attribute. * Adjust test output and reference values. * Remove beta references. Delete universe.json. * Reverting unnecessary changes. Removing unused default values. Renaming variables in find-cli tests. * Update spacy/cli/find_threshold.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Remove adding labels in tests. * Remove unused error * Undo changes to PRFScorer * Change default value for n_trials. Log table iteratively. * Add warnings for pointless applications of find_threshold(). * Fix imports. * Adjust type check of TextCategorizer to exclude subclasses. * Change check of if there's only one unique value in scores. * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Incorporate feedback. * Fix test issue. Update docstring. * Update docs & docstring. * Update spacy/tests/test_cli.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * Add examples to docs. Rename _nlp to nlp in tests. * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/cli/find_threshold.py Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
2022-11-25 13:44:55 +03:00
def test_cli_find_threshold(capsys):
thresholds = numpy.linspace(0, 1, 10)
def make_examples(nlp: Language) -> List[Example]:
docs: List[Example] = []
for t in [
(
"I am angry and confused in the Bank of America.",
{
"cats": {"ANGRY": 1.0, "CONFUSED": 1.0, "HAPPY": 0.0},
"spans": {"sc": [(31, 46, "ORG")]},
},
),
(
"I am confused but happy in New York.",
{
"cats": {"ANGRY": 0.0, "CONFUSED": 1.0, "HAPPY": 1.0},
"spans": {"sc": [(27, 35, "GPE")]},
},
),
]:
doc = nlp.make_doc(t[0])
docs.append(Example.from_dict(doc, t[1]))
return docs
def init_nlp(
components: Tuple[Tuple[str, Dict[str, Any]], ...] = ()
) -> Tuple[Language, List[Example]]:
new_nlp = English()
new_nlp.add_pipe( # type: ignore
factory_name="textcat_multilabel",
name="tc_multi",
config={"threshold": 0.9},
)
# Append additional components to pipeline.
for cfn, comp_config in components:
new_nlp.add_pipe(cfn, config=comp_config)
new_examples = make_examples(new_nlp)
new_nlp.initialize(get_examples=lambda: new_examples)
for i in range(5):
new_nlp.update(new_examples)
return new_nlp, new_examples
with make_tempdir() as docs_dir:
# Check whether find_threshold() identifies lowest threshold above 0 as (first) ideal threshold, as this matches
# the current model behavior with the examples above. This can break once the model behavior changes and serves
# mostly as a smoke test.
nlp, examples = init_nlp()
DocBin(docs=[example.reference for example in examples]).to_disk(
docs_dir / "docs.spacy"
)
with make_tempdir() as nlp_dir:
nlp.to_disk(nlp_dir)
res = find_threshold(
model=nlp_dir,
data_path=docs_dir / "docs.spacy",
pipe_name="tc_multi",
threshold_key="threshold",
scores_key="cats_macro_f",
silent=True,
)
assert res[0] != thresholds[0]
assert thresholds[0] < res[0] < thresholds[9]
assert res[1] == 1.0
assert res[2][1.0] == 0.0
# Test with spancat.
nlp, _ = init_nlp((("spancat", {}),))
with make_tempdir() as nlp_dir:
nlp.to_disk(nlp_dir)
res = find_threshold(
model=nlp_dir,
data_path=docs_dir / "docs.spacy",
pipe_name="spancat",
threshold_key="threshold",
scores_key="spans_sc_f",
silent=True,
)
assert res[0] != thresholds[0]
assert thresholds[0] < res[0] < thresholds[8]
assert res[1] >= 0.6
assert res[2][1.0] == 0.0
# Having multiple textcat_multilabel components should work, since the name has to be specified.
nlp, _ = init_nlp((("textcat_multilabel", {}),))
with make_tempdir() as nlp_dir:
nlp.to_disk(nlp_dir)
assert find_threshold(
model=nlp_dir,
data_path=docs_dir / "docs.spacy",
pipe_name="tc_multi",
threshold_key="threshold",
scores_key="cats_macro_f",
silent=True,
)
# Specifying the name of an non-existing pipe should fail.
nlp, _ = init_nlp()
with make_tempdir() as nlp_dir:
nlp.to_disk(nlp_dir)
with pytest.raises(AttributeError):
find_threshold(
model=nlp_dir,
data_path=docs_dir / "docs.spacy",
pipe_name="_",
threshold_key="threshold",
scores_key="cats_macro_f",
silent=True,
)
@pytest.mark.parametrize(
"reqs,output",
[
[
"""
spacy
# comment
thinc""",
(False, False),
],
[
"""# comment
--some-flag
spacy""",
(False, False),
],
[
"""# comment
--some-flag
spacy; python_version >= '3.6'""",
(False, False),
],
[
"""# comment
spacyunknowndoesnotexist12345""",
(True, False),
],
],
)
def test_project_check_requirements(reqs, output):
# excessive guard against unlikely package name
try:
pkg_resources.require("spacyunknowndoesnotexist12345")
except pkg_resources.DistributionNotFound:
assert output == _check_requirements([req.strip() for req in reqs.split("\n")])
def test_upload_download_local_file():
with make_tempdir() as d1, make_tempdir() as d2:
filename = "f.txt"
content = "content"
local_file = d1 / filename
remote_file = d2 / filename
with local_file.open(mode="w") as file_:
file_.write(content)
upload_file(local_file, remote_file)
local_file.unlink()
download_file(remote_file, local_file)
with local_file.open(mode="r") as file_:
assert file_.read() == content