1
1
mirror of https://github.com/explosion/spaCy.git synced 2025-01-22 23:34:12 +03:00
spaCy/examples/keras_parikh_entailment/spacy_hook.py

90 lines
2.9 KiB
Python
Raw Normal View History

2016-11-01 03:51:54 +03:00
from keras.models import model_from_json
import numpy
import numpy.random
2017-01-31 22:27:13 +03:00
import json
from spacy.tokens.span import Span
try:
import cPickle as pickle
except ImportError:
import pickle
2016-11-01 03:51:54 +03:00
class KerasSimilarityShim(object):
@classmethod
2017-01-31 22:27:13 +03:00
def load(cls, path, nlp, get_features=None, max_length=100):
2016-11-01 03:51:54 +03:00
if get_features is None:
2017-01-31 22:27:13 +03:00
get_features = get_word_ids
2016-11-01 03:51:54 +03:00
with (path / 'config.json').open() as file_:
2017-01-31 22:27:13 +03:00
model = model_from_json(file_.read())
2016-11-01 03:51:54 +03:00
with (path / 'model').open('rb') as file_:
weights = pickle.load(file_)
embeddings = get_embeddings(nlp.vocab)
model.set_weights([embeddings] + weights)
2017-01-31 22:27:13 +03:00
return cls(model, get_features=get_features, max_length=max_length)
2016-11-01 03:51:54 +03:00
2017-01-31 22:27:13 +03:00
def __init__(self, model, get_features=None, max_length=100):
2016-11-01 03:51:54 +03:00
self.model = model
self.get_features = get_features
2017-01-31 22:27:13 +03:00
self.max_length = max_length
2016-11-01 03:51:54 +03:00
def __call__(self, doc):
doc.user_hooks['similarity'] = self.predict
doc.user_span_hooks['similarity'] = self.predict
2017-01-31 22:27:13 +03:00
2016-11-01 03:51:54 +03:00
def predict(self, doc1, doc2):
2017-01-31 22:27:13 +03:00
x1 = self.get_features([doc1], max_length=self.max_length, tree_truncate=True)
x2 = self.get_features([doc2], max_length=self.max_length, tree_truncate=True)
2016-11-01 03:51:54 +03:00
scores = self.model.predict([x1, x2])
return scores[0]
def get_embeddings(vocab, nr_unk=100):
nr_vector = max(lex.rank for lex in vocab) + 1
vectors = numpy.zeros((nr_vector+nr_unk+2, vocab.vectors_length), dtype='float32')
2016-11-01 03:51:54 +03:00
for lex in vocab:
if lex.has_vector:
vectors[lex.rank+1] = lex.vector / lex.vector_norm
2016-11-01 03:51:54 +03:00
return vectors
def get_word_ids(docs, rnn_encode=False, tree_truncate=False, max_length=100, nr_unk=100):
2016-11-01 03:51:54 +03:00
Xs = numpy.zeros((len(docs), max_length), dtype='int32')
for i, doc in enumerate(docs):
2016-11-13 17:52:20 +03:00
if tree_truncate:
2017-01-31 22:27:13 +03:00
if isinstance(doc, Span):
queue = [doc.root]
else:
queue = [sent.root for sent in doc.sents]
2016-11-13 17:52:20 +03:00
else:
queue = list(doc)
words = []
while len(words) <= max_length and queue:
word = queue.pop(0)
if rnn_encode or (not word.is_punct and not word.is_space):
words.append(word)
2016-11-13 17:52:20 +03:00
if tree_truncate:
queue.extend(list(word.lefts))
queue.extend(list(word.rights))
words.sort()
for j, token in enumerate(words):
if token.has_vector:
Xs[i, j] = token.rank+1
else:
Xs[i, j] = (token.shape % (nr_unk-1))+2
j += 1
if j >= max_length:
break
else:
Xs[i, len(words)] = 1
2016-11-01 03:51:54 +03:00
return Xs
def create_similarity_pipeline(nlp, max_length=100):
2017-01-31 22:27:13 +03:00
return [
nlp.tagger,
nlp.entity,
nlp.parser,
KerasSimilarityShim.load(nlp.path / 'similarity', nlp, max_length)
2017-01-31 22:27:13 +03:00
]