spaCy/spacy/language.py

295 lines
9.3 KiB
Python
Raw Normal View History

from __future__ import absolute_import
from warnings import warn
import pathlib
try:
import ujson as json
except ImportError:
import json
from .tokenizer import Tokenizer
from .vocab import Vocab
from .syntax.parser import Parser
from .tagger import Tagger
from .matcher import Matcher
from . import attrs
from . import orth
from .syntax.ner import BiluoPushDown
from .syntax.arc_eager import ArcEager
from .attrs import TAG, DEP, ENT_IOB, ENT_TYPE, HEAD
class Defaults(object):
def __init__(self, lang, path):
self.lang = lang
self.path = path
def Vectors(self):
pass
def Vocab(self, vectors=None, get_lex_attr=None):
if get_lex_attr is None:
get_lex_attr = self.lex_attrs()
if vectors is None:
vectors = self.Vectors()
return Vocab.load(self.path, get_lex_attr=get_lex_attr, vectors=vectors)
def Tokenizer(self, vocab):
return Tokenizer.load(self.path, vocab)
def Tagger(self, vocab):
return Tagger.load(self.path, self.vocab)
def Parser(self, vocab):
if (self.path / 'deps').exists():
return Parser.load(self.path / 'deps', vocab, ArcEager)
else:
return None
def Entity(self, vocab):
if (self.path / 'ner').exists():
return Parser.load(self.path / 'ner', vocab, BiluoPushDown)
else:
return None
def Matcher(self, vocab):
return Matcher.load(self.path, vocab)
def Pipeline(self, nlp):
return [
nlp.tokenizer,
nlp.tagger,
nlp.parser,
nlp.entity]
def dep_labels(self):
return {0: {'ROOT': True}}
def ner_labels(self):
return {0: {'PER': True, 'LOC': True, 'ORG': True, 'MISC': True}}
def lex_attrs(self, *args, **kwargs):
if 'oov_prob' in kwargs:
oov_prob = kwargs.get('oov_prob', -20)
else:
with (self.path / 'vocab' / 'oov_prob').open() as file_:
oov_prob = file_.read().strip()
return {
attrs.LOWER: self.lower,
attrs.NORM: self.norm,
attrs.SHAPE: orth.word_shape,
attrs.PREFIX: self.prefix,
attrs.SUFFIX: self.suffix,
attrs.CLUSTER: self.cluster,
attrs.PROB: lambda string: oov_prob,
attrs.LANG: lambda string: self.lang,
attrs.IS_ALPHA: orth.is_alpha,
attrs.IS_ASCII: orth.is_ascii,
attrs.IS_DIGIT: self.is_digit,
attrs.IS_LOWER: orth.is_lower,
attrs.IS_PUNCT: orth.is_punct,
attrs.IS_SPACE: self.is_space,
attrs.IS_TITLE: orth.is_title,
attrs.IS_UPPER: orth.is_upper,
attrs.IS_BRACKET: orth.is_bracket,
attrs.IS_QUOTE: orth.is_quote,
attrs.IS_LEFT_PUNCT: orth.is_left_punct,
attrs.IS_RIGHT_PUNCT: orth.is_right_punct,
attrs.LIKE_URL: orth.like_url,
attrs.LIKE_NUM: orth.like_number,
attrs.LIKE_EMAIL: orth.like_email,
attrs.IS_STOP: self.is_stop,
attrs.IS_OOV: lambda string: True
}
2015-12-28 18:54:03 +03:00
2015-08-25 16:37:17 +03:00
@staticmethod
def lower(string):
return string.lower()
@staticmethod
def norm(string):
return string
@staticmethod
def prefix(string):
return string[0]
@staticmethod
def suffix(string):
return string[-3:]
@staticmethod
def cluster(string):
return 0
@staticmethod
def is_digit(string):
return string.isdigit()
2015-08-25 16:37:17 +03:00
@staticmethod
def is_space(string):
return string.isspace()
2015-09-14 10:48:51 +03:00
@staticmethod
def is_stop(string):
return 0
class Language(object):
'''A text-processing pipeline. Usually you'll load this once per process, and
pass the instance around your program.
'''
lang = None
2015-08-25 16:37:17 +03:00
def __init__(self,
path=None,
vocab=True,
tokenizer=True,
tagger=True,
parser=True,
entity=True,
matcher=True,
serializer=True,
vectors=True,
pipeline=True,
defaults=True,
data_dir=None):
"""
2016-04-14 11:36:57 +03:00
A model can be specified:
2016-04-14 11:36:57 +03:00
1) by calling a Language subclass
- spacy.en.English()
2016-04-14 11:36:57 +03:00
2) by calling a Language subclass with data_dir
- spacy.en.English('my/model/root')
- spacy.en.English(data_dir='my/model/root')
2016-04-14 11:36:57 +03:00
3) by package name
- spacy.load('en_default')
- spacy.load('en_default==1.0.0')
2016-04-14 11:36:57 +03:00
4) by package name with a relocated package base
- spacy.load('en_default', via='/my/package/root')
- spacy.load('en_default==1.0.0', via='/my/package/root')
"""
if data_dir is not None and path is None:
warn("'data_dir' argument now named 'path'. Doing what you mean.")
path = data_dir
if isinstance(path, basestring):
path = pathlib.Path(path)
defaults = defaults if defaults is not True else self.get_defaults(self.path)
self.vocab = vocab if vocab is not True else defaults.Vocab(vectors=vectors)
self.tokenizer = tokenizer if tokenizer is not True else defaults.Tokenizer(self.vocab)
self.tagger = tagger if tagger is not True else defaults.Tagger(self.vocab)
self.entity = entity if entity is not True else defaults.Entity(self.vocab)
self.parser = parser if parser is not True else defaults.Parser(self.vocab)
self.matcher = matcher if matcher is not True else defaults.Matcher(self.vocab)
self.pipeline = self.pipeline if pipeline is not True else defaults.Pipeline(self)
2015-08-25 16:37:17 +03:00
def __reduce__(self):
args = (
self.path,
self.vocab,
self.tokenizer,
self.tagger,
self.parser,
self.entity,
2015-12-28 18:54:03 +03:00
self.matcher
)
return (self.__class__, args, None, None)
def __call__(self, text, tag=True, parse=True, entity=True):
2015-08-25 16:37:17 +03:00
"""Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string
is preserved.
Args:
text (unicode): The text to be processed.
Returns:
tokens (spacy.tokens.Doc):
>>> from spacy.en import English
>>> nlp = English()
>>> tokens = nlp('An example sentence. Another example sentence.')
>>> tokens[0].orth_, tokens[0].head.tag_
('An', 'NN')
"""
doc = self.pipeline[0](text)
2015-08-25 16:37:17 +03:00
if self.entity and entity:
# Add any of the entity labels already set, in case we don't have them.
for token in doc:
if token.ent_type != 0:
self.entity.add_label(token.ent_type)
skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity}
for proc in self.pipeline[1:]:
if proc and not skip.get(proc):
proc(doc)
return doc
2015-08-25 16:37:17 +03:00
def pipe(self, texts, tag=True, parse=True, entity=True, n_threads=2,
batch_size=1000):
skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity}
stream = self.pipeline[0].pipe(texts,
n_threads=n_threads, batch_size=batch_size)
for proc in self.pipeline[1:]:
if proc and not skip.get(proc):
if hasattr(proc, 'pipe'):
stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size)
else:
stream = (proc(item) for item in stream)
for doc in stream:
yield doc
def end_training(self, path=None):
if path is None:
path = self.path
if self.parser:
self.parser.model.end_training()
self.parser.model.dump(path / 'deps' / 'model')
if self.entity:
self.entity.model.end_training()
self.entity.model.dump(path / 'ner' / 'model')
if self.tagger:
self.tagger.model.end_training()
self.tagger.model.dump(path / 'pos' / 'model')
strings_loc = path / 'vocab' / 'strings.json'
with strings_loc.open('w', encoding='utf8') as file_:
self.vocab.strings.dump(file_)
self.vocab.dump(path / 'vocab' / 'lexemes.bin')
2015-08-25 16:37:17 +03:00
if self.tagger:
tagger_freqs = list(self.tagger.freqs[TAG].items())
else:
tagger_freqs = []
if self.parser:
dep_freqs = list(self.parser.moves.freqs[DEP].items())
head_freqs = list(self.parser.moves.freqs[HEAD].items())
else:
dep_freqs = []
head_freqs = []
if self.entity:
entity_iob_freqs = list(self.entity.moves.freqs[ENT_IOB].items())
entity_type_freqs = list(self.entity.moves.freqs[ENT_TYPE].items())
else:
entity_iob_freqs = []
entity_type_freqs = []
with (path / 'vocab' / 'serializer.json').open('w') as file_:
2015-08-25 16:37:17 +03:00
file_.write(
json.dumps([
(TAG, tagger_freqs),
(DEP, dep_freqs),
(ENT_IOB, entity_iob_freqs),
(ENT_TYPE, entity_type_freqs),
(HEAD, head_freqs)
]))
def get_defaults(self, path):
return Defaults(path)