spaCy/spacy/syntax/beam_parser.pyx

293 lines
11 KiB
Cython
Raw Normal View History

2016-07-23 07:07:09 +03:00
# cython: profile=True
# cython: experimental_cpp_class_def=True
# cython: cdivision=True
2016-07-26 20:13:39 +03:00
# cython: infer_types=True
2016-07-23 07:07:09 +03:00
"""
MALT-style dependency parser
"""
from __future__ import unicode_literals
cimport cython
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memset, memcpy
from libc.stdlib cimport rand
from libc.math cimport log, exp, isnan, isinf
2016-07-23 07:07:09 +03:00
import random
import os.path
from os import path
import shutil
import json
2016-07-26 20:13:39 +03:00
import math
2016-07-23 07:07:09 +03:00
from cymem.cymem cimport Pool, Address
2016-07-26 20:13:39 +03:00
from murmurhash.mrmr cimport real_hash64 as hash64
2016-07-23 07:07:09 +03:00
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from util import Config
from thinc.linear.features cimport ConjunctionExtracter
2016-07-24 02:14:56 +03:00
from thinc.structs cimport FeatureC, ExampleC
2016-07-23 07:07:09 +03:00
from thinc.extra.search cimport Beam
from thinc.extra.search cimport MaxViolation
2016-07-24 02:14:56 +03:00
from thinc.extra.eg cimport Example
2016-07-23 07:07:09 +03:00
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
from .transition_system cimport TransitionSystem, Transition
from ..gold cimport GoldParse
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from .parser cimport Parser
2016-07-26 20:13:39 +03:00
from ._neural cimport ParserPerceptron
from ._neural cimport ParserNeuralNet
2016-07-23 07:07:09 +03:00
DEBUG = False
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(name):
pf = _parse_features
if name == 'ner':
return pf.ner
elif name == 'debug':
return pf.unigrams
else:
return (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s1_s0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
cdef int BEAM_WIDTH = 8
cdef class BeamParser(Parser):
cdef public int beam_width
def __init__(self, *args, **kwargs):
self.beam_width = kwargs.get('beam_width', BEAM_WIDTH)
Parser.__init__(self, *args, **kwargs)
cdef int parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) with gil:
self._parseC(tokens, length, nr_feat, nr_class)
cdef int _parseC(self, TokenC* tokens, int length, int nr_feat, int nr_class) except -1:
cdef Beam beam = Beam(self.moves.n_moves, self.beam_width)
beam.initialize(_init_state, length, tokens)
beam.check_done(_check_final_state, NULL)
while not beam.is_done:
self._advance_beam(beam, None, False)
state = <StateClass>beam.at(0)
self.moves.finalize_state(state.c)
for i in range(length):
tokens[i] = state.c._sent[i]
_cleanup(beam)
def train(self, Doc tokens, GoldParse gold_parse, itn=0):
2016-07-23 07:07:09 +03:00
self.moves.preprocess_gold(gold_parse)
cdef Beam pred = Beam(self.moves.n_moves, self.beam_width)
pred.initialize(_init_state, tokens.length, tokens.c)
pred.check_done(_check_final_state, NULL)
cdef Beam gold = Beam(self.moves.n_moves, self.beam_width)
gold.initialize(_init_state, tokens.length, tokens.c)
gold.check_done(_check_final_state, NULL)
violn = MaxViolation()
2016-07-23 07:07:09 +03:00
while not pred.is_done and not gold.is_done:
2016-07-26 20:13:39 +03:00
# We search separately here, to allow for ambiguity in the gold parse.
2016-07-23 07:07:09 +03:00
self._advance_beam(pred, gold_parse, False)
self._advance_beam(gold, gold_parse, True)
2016-07-26 20:13:39 +03:00
violn.check_crf(pred, gold)
if pred.loss > 0 and pred.min_score > (gold.score + self.model.time):
2016-07-24 02:14:56 +03:00
break
else:
2016-07-26 20:13:39 +03:00
violn.check_crf(pred, gold)
if isinstance(self.model, ParserNeuralNet):
2016-07-27 03:56:36 +03:00
min_grad = 0.1 ** (itn+1)
2016-07-26 20:13:39 +03:00
for grad, hist in zip(violn.p_probs, violn.p_hist):
2016-07-27 03:56:36 +03:00
assert not math.isnan(grad) and not math.isinf(grad)
2016-07-26 20:13:39 +03:00
if abs(grad) >= min_grad:
self._update_dense(tokens, hist, grad)
for grad, hist in zip(violn.g_probs, violn.g_hist):
2016-07-27 03:56:36 +03:00
assert not math.isnan(grad) and not math.isinf(grad)
2016-07-26 20:13:39 +03:00
if abs(grad) >= min_grad:
self._update_dense(tokens, hist, grad)
else:
self.model.time += 1
#min_grad = 0.01 ** (itn+1)
#for grad, hist in zip(violn.p_probs, violn.p_hist):
# assert not math.isnan(grad)
# assert not math.isinf(grad)
# if abs(grad) >= min_grad:
# self._update(tokens, hist, -grad)
#for grad, hist in zip(violn.g_probs, violn.g_hist):
# assert not math.isnan(grad)
# assert not math.isinf(grad)
# if abs(grad) >= min_grad:
# self._update(tokens, hist, -grad)
if violn.p_hist:
self._update(tokens, violn.p_hist[0], -1.0)
if violn.g_hist:
self._update(tokens, violn.g_hist[0], 1.0)
2016-07-23 07:07:09 +03:00
_cleanup(pred)
_cleanup(gold)
return pred.loss
2016-07-26 20:13:39 +03:00
2016-07-23 07:07:09 +03:00
def _advance_beam(self, Beam beam, GoldParse gold, bint follow_gold):
2016-07-24 02:14:56 +03:00
cdef Example py_eg = Example(nr_class=self.moves.n_moves, nr_atom=CONTEXT_SIZE,
nr_feat=self.model.nr_feat, widths=self.model.widths)
cdef ExampleC* eg = py_eg.c
2016-07-26 20:13:39 +03:00
cdef ParserNeuralNet nn_model
cdef ParserPerceptron ap_model
2016-07-23 07:07:09 +03:00
for i in range(beam.size):
2016-07-24 02:14:56 +03:00
py_eg.reset()
2016-07-23 07:07:09 +03:00
stcls = <StateClass>beam.at(i)
if not stcls.c.is_final():
2016-07-26 20:13:39 +03:00
if isinstance(self.model, ParserNeuralNet):
ParserNeuralNet.set_featuresC(self.model, eg, stcls.c)
else:
ParserPerceptron.set_featuresC(self.model, eg, stcls.c)
self.model.set_scoresC(beam.scores[i], eg.features, eg.nr_feat, 1)
2016-07-23 07:07:09 +03:00
self.moves.set_valid(beam.is_valid[i], stcls.c)
if gold is not None:
for i in range(beam.size):
2016-07-24 02:14:56 +03:00
py_eg.reset()
2016-07-23 07:07:09 +03:00
stcls = <StateClass>beam.at(i)
if not stcls.c.is_final():
self.moves.set_costs(beam.is_valid[i], beam.costs[i], stcls, gold)
if follow_gold:
for j in range(self.moves.n_moves):
2016-07-26 20:13:39 +03:00
beam.is_valid[i][j] *= beam.costs[i][j] < 1
2016-07-23 07:07:09 +03:00
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
beam.check_done(_check_final_state, NULL)
2016-07-24 02:14:56 +03:00
def _update_dense(self, Doc doc, history, weight_t loss):
2016-07-26 20:13:39 +03:00
cdef Example py_eg = Example(nr_class=self.moves.n_moves, nr_atom=CONTEXT_SIZE,
nr_feat=self.model.nr_feat, widths=self.model.widths)
2016-07-24 02:14:56 +03:00
cdef ExampleC* eg = py_eg.c
cdef ParserNeuralNet model = self.model
stcls = StateClass.init(doc.c, doc.length)
self.moves.initialize_state(stcls.c)
2016-07-26 20:13:39 +03:00
cdef uint64_t[2] key
key[0] = hash64(doc.c, sizeof(TokenC) * doc.length, 0)
key[1] = 0
cdef uint64_t clas
2016-07-24 02:14:56 +03:00
for clas in history:
model.set_featuresC(eg, stcls.c)
self.moves.set_valid(eg.is_valid, stcls.c)
2016-07-26 20:13:39 +03:00
# Update with a sparse gradient: everything's 0, except our class.
# Remember, this is a component of the global update. It's not our
# "job" here to think about the other beam candidates. We just want
# to work on this sequence. However, other beam candidates will
# have gradients that refer to the same state.
# We therefore have a key that indicates the current sequence, so that
# the model can merge updates that refer to the same state together,
# by summing their gradients.
memset(eg.costs, 0, self.moves.n_moves)
eg.costs[clas] = loss
2016-07-24 02:14:56 +03:00
model.updateC(
2016-07-26 20:13:39 +03:00
eg.features, eg.nr_feat, True, eg.costs, eg.is_valid, False, key=key[0])
2016-07-24 02:14:56 +03:00
self.moves.c[clas].do(stcls.c, self.moves.c[clas].label)
py_eg.reset()
2016-07-26 20:13:39 +03:00
# Build a hash of the state sequence.
# Position 0 represents the previous sequence, position 1 the new class.
# So we want to do:
# key.prev = hash((key.prev, key.new))
# key.new = clas
key[1] = clas
key[0] = hash64(key, sizeof(key), 0)
2016-07-23 07:07:09 +03:00
def _update(self, Doc tokens, list hist, weight_t inc):
cdef Pool mem = Pool()
cdef atom_t[CONTEXT_SIZE] context
features = <FeatureC*>mem.alloc(self.model.nr_feat, sizeof(FeatureC))
cdef StateClass stcls = StateClass.init(tokens.c, tokens.length)
self.moves.initialize_state(stcls.c)
cdef class_t clas
cdef ParserPerceptron model = self.model
for clas in hist:
fill_context(context, stcls.c)
nr_feat = model.extracter.set_features(features, context)
for feat in features[:nr_feat]:
model.update_weight(feat.key, clas, feat.value * inc)
self.moves.c[clas].do(stcls.c, self.moves.c[clas].label)
# These are passed as callbacks to thinc.search.Beam
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
dest = <StateClass>_dest
src = <StateClass>_src
moves = <const Transition*>_moves
dest.clone(src)
moves[clas].do(dest.c, moves[clas].label)
cdef void* _init_state(Pool mem, int length, void* tokens) except NULL:
cdef StateClass st = StateClass.init(<const TokenC*>tokens, length)
# Ensure sent_start is set to 0 throughout
for i in range(st.c.length):
st.c._sent[i].sent_start = False
st.c._sent[i].l_edge = i
st.c._sent[i].r_edge = i
st.fast_forward()
Py_INCREF(st)
return <void*>st
cdef int _check_final_state(void* _state, void* extra_args) except -1:
return (<StateClass>_state).is_final()
def _cleanup(Beam beam):
for i in range(beam.width):
Py_XDECREF(<PyObject*>beam._states[i].content)
Py_XDECREF(<PyObject*>beam._parents[i].content)
cdef hash_t _hash_state(void* _state, void* _) except 0:
state = <StateClass>_state
return state.c.hash()
2016-07-26 20:13:39 +03:00
# def _early_update(self, Doc doc, Beam pred, Beam gold):
# # Gather the partition function --- Z --- by which we can normalize the
# # scores into a probability distribution. The simple idea here is that
# # we clip the probability of all parses outside the beam to 0.
# cdef long double Z = 0.0
# for i in range(pred.size):
# # Make sure we've only got negative examples here.
# # Otherwise, we might double-count the gold.
# if pred._states[i].loss > 0:
# Z += exp(pred._states[i].score)
# cdef weight_t grad
# if Z > 0: # If no negative examples, don't update.
# Z += exp(gold.score)
# for i, hist in enumerate(pred.histories):
# if pred._states[i].loss > 0:
# # Update with the negative example.
# # Gradient of loss is P(parse) - 0
# grad = exp(pred._states[i].score) / Z
# if abs(grad) >= 0.01:
# self._update_dense(doc, hist, grad)
# # Update with the positive example.
# # Gradient of loss is P(parse) - 1
# grad = (exp(gold.score) / Z) - 1
# if abs(grad) >= 0.01:
# self._update_dense(doc, gold.histories[0], grad)
#
#