spaCy/spacy/tests/training/test_pretraining.py

349 lines
11 KiB
Python
Raw Normal View History

from pathlib import Path
import numpy as np
import pytest
import srsly
from spacy.vocab import Vocab
from thinc.api import Config
from ..util import make_tempdir
from ... import util
from ...lang.en import English
from ...training.initialize import init_nlp
from ...training.loop import train
from ...training.pretrain import pretrain
from ...tokens import Doc, DocBin
from ...language import DEFAULT_CONFIG_PRETRAIN_PATH, DEFAULT_CONFIG_PATH
pretrain_string_listener = """
[nlp]
lang = "en"
pipeline = ["tok2vec", "tagger"]
[components]
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 342
depth = 4
window_size = 1
embed_size = 2000
maxout_pieces = 3
subword_features = true
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.width}
[pretraining]
max_epochs = 5
[training]
max_epochs = 5
"""
pretrain_string_internal = """
[nlp]
lang = "en"
pipeline = ["tagger"]
[components]
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
[components.tagger.model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 342
depth = 4
window_size = 1
embed_size = 2000
maxout_pieces = 3
subword_features = true
[pretraining]
max_epochs = 5
[training]
max_epochs = 5
"""
pretrain_string_vectors = """
[nlp]
lang = "en"
pipeline = ["tok2vec", "tagger"]
[components]
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 342
depth = 4
window_size = 1
embed_size = 2000
maxout_pieces = 3
subword_features = true
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.width}
[pretraining]
max_epochs = 5
[pretraining.objective]
@architectures = spacy.PretrainVectors.v1
maxout_pieces = 3
hidden_size = 300
loss = cosine
[training]
max_epochs = 5
"""
CHAR_OBJECTIVES = [
{},
{"@architectures": "spacy.PretrainCharacters.v1"},
{
"@architectures": "spacy.PretrainCharacters.v1",
"maxout_pieces": 5,
"hidden_size": 42,
"n_characters": 2,
},
]
VECTOR_OBJECTIVES = [
{
"@architectures": "spacy.PretrainVectors.v1",
"maxout_pieces": 3,
"hidden_size": 300,
"loss": "cosine",
},
{
"@architectures": "spacy.PretrainVectors.v1",
"maxout_pieces": 2,
"hidden_size": 200,
"loss": "L2",
},
]
def test_pretraining_default():
"""Test that pretraining defaults to a character objective"""
config = Config().from_str(pretrain_string_internal)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
assert "PretrainCharacters" in filled["pretraining"]["objective"]["@architectures"]
@pytest.mark.parametrize("objective", CHAR_OBJECTIVES)
def test_pretraining_tok2vec_characters(objective):
"""Test that pretraining works with the character objective"""
config = Config().from_str(pretrain_string_listener)
config["pretraining"]["objective"] = objective
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled = filled.interpolate()
assert filled["pretraining"]["component"] == "tok2vec"
pretrain(filled, tmp_dir)
assert Path(tmp_dir / "model0.bin").exists()
assert Path(tmp_dir / "model4.bin").exists()
assert not Path(tmp_dir / "model5.bin").exists()
@pytest.mark.parametrize("objective", VECTOR_OBJECTIVES)
def test_pretraining_tok2vec_vectors_fail(objective):
"""Test that pretraining doesn't works with the vectors objective if there are no static vectors"""
config = Config().from_str(pretrain_string_listener)
config["pretraining"]["objective"] = objective
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled = filled.interpolate()
assert filled["initialize"]["vectors"] is None
with pytest.raises(ValueError):
pretrain(filled, tmp_dir)
@pytest.mark.parametrize("objective", VECTOR_OBJECTIVES)
def test_pretraining_tok2vec_vectors(objective):
"""Test that pretraining works with the vectors objective and static vectors defined"""
config = Config().from_str(pretrain_string_listener)
config["pretraining"]["objective"] = objective
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
nlp_path = write_vectors_model(tmp_dir)
filled["initialize"]["vectors"] = nlp_path
filled = filled.interpolate()
pretrain(filled, tmp_dir)
@pytest.mark.parametrize("config", [pretrain_string_internal, pretrain_string_listener])
def test_pretraining_tagger_tok2vec(config):
"""Test pretraining of the tagger's tok2vec layer (via a listener)"""
config = Config().from_str(pretrain_string_listener)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled["pretraining"]["component"] = "tagger"
filled["pretraining"]["layer"] = "tok2vec"
filled = filled.interpolate()
pretrain(filled, tmp_dir)
assert Path(tmp_dir / "model0.bin").exists()
assert Path(tmp_dir / "model4.bin").exists()
assert not Path(tmp_dir / "model5.bin").exists()
def test_pretraining_tagger():
"""Test pretraining of the tagger itself will throw an error (not an appropriate tok2vec layer)"""
config = Config().from_str(pretrain_string_internal)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
with make_tempdir() as tmp_dir:
file_path = write_sample_jsonl(tmp_dir)
filled["paths"]["raw_text"] = file_path
filled["pretraining"]["component"] = "tagger"
filled = filled.interpolate()
with pytest.raises(ValueError):
pretrain(filled, tmp_dir)
def test_pretraining_training():
"""Test that training can use a pretrained Tok2Vec model"""
config = Config().from_str(pretrain_string_internal)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
filled = nlp.config
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
train_config = util.load_config(DEFAULT_CONFIG_PATH)
filled = train_config.merge(filled)
with make_tempdir() as tmp_dir:
pretrain_dir = tmp_dir / "pretrain"
pretrain_dir.mkdir()
file_path = write_sample_jsonl(pretrain_dir)
filled["paths"]["raw_text"] = file_path
filled["pretraining"]["component"] = "tagger"
filled["pretraining"]["layer"] = "tok2vec"
train_dir = tmp_dir / "train"
train_dir.mkdir()
train_path, dev_path = write_sample_training(train_dir)
filled["paths"]["train"] = train_path
filled["paths"]["dev"] = dev_path
filled = filled.interpolate()
P = filled["pretraining"]
nlp_base = init_nlp(filled)
2021-06-28 12:48:00 +03:00
model_base = (
nlp_base.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
)
embed_base = None
for node in model_base.walk():
if node.name == "hashembed":
embed_base = node
pretrain(filled, pretrain_dir)
pretrained_model = Path(pretrain_dir / "model3.bin")
assert pretrained_model.exists()
filled["initialize"]["init_tok2vec"] = str(pretrained_model)
nlp = init_nlp(filled)
model = nlp.get_pipe(P["component"]).model.get_ref(P["layer"]).get_ref("embed")
embed = None
for node in model.walk():
if node.name == "hashembed":
embed = node
# ensure that the tok2vec weights are actually changed by the pretraining
assert np.any(np.not_equal(embed.get_param("E"), embed_base.get_param("E")))
train(nlp, train_dir)
def write_sample_jsonl(tmp_dir):
data = [
{
"meta": {"id": "1"},
"text": "This is the best TV you'll ever buy!",
"cats": {"pos": 1, "neg": 0},
},
{
"meta": {"id": "2"},
"text": "I wouldn't buy this again.",
"cats": {"pos": 0, "neg": 1},
},
]
file_path = f"{tmp_dir}/text.jsonl"
srsly.write_jsonl(file_path, data)
return file_path
def write_sample_training(tmp_dir):
words = ["The", "players", "start", "."]
tags = ["DT", "NN", "VBZ", "."]
doc = Doc(English().vocab, words=words, tags=tags)
doc_bin = DocBin()
doc_bin.add(doc)
train_path = f"{tmp_dir}/train.spacy"
dev_path = f"{tmp_dir}/dev.spacy"
doc_bin.to_disk(train_path)
doc_bin.to_disk(dev_path)
return train_path, dev_path
def write_vectors_model(tmp_dir):
import numpy
2021-06-28 12:48:00 +03:00
vocab = Vocab()
vector_data = {
"dog": numpy.random.uniform(-1, 1, (300,)),
"cat": numpy.random.uniform(-1, 1, (300,)),
2021-06-28 12:48:00 +03:00
"orange": numpy.random.uniform(-1, 1, (300,)),
}
for word, vector in vector_data.items():
vocab.set_vector(word, vector)
nlp_path = tmp_dir / "vectors_model"
nlp = English(vocab)
nlp.to_disk(nlp_path)
return str(nlp_path)