2020-07-09 20:39:31 +03:00
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
from thinc.api import fix_random_seed, Adam, set_dropout_rate
|
|
|
|
from numpy.testing import assert_array_equal
|
|
|
|
import numpy
|
|
|
|
|
2020-07-28 23:43:19 +03:00
|
|
|
from spacy.ml.models import build_Tok2Vec_model, MultiHashEmbed, MaxoutWindowEncoder
|
2020-07-09 20:39:31 +03:00
|
|
|
from spacy.ml.models import build_text_classifier, build_simple_cnn_text_classifier
|
|
|
|
from spacy.lang.en import English
|
|
|
|
from spacy.lang.en.examples import sentences as EN_SENTENCES
|
|
|
|
|
|
|
|
|
2020-07-28 23:43:19 +03:00
|
|
|
def get_textcat_kwargs():
|
|
|
|
return {
|
|
|
|
"width": 64,
|
|
|
|
"embed_size": 2000,
|
|
|
|
"pretrained_vectors": None,
|
|
|
|
"exclusive_classes": False,
|
|
|
|
"ngram_size": 1,
|
|
|
|
"window_size": 1,
|
|
|
|
"conv_depth": 2,
|
|
|
|
"dropout": None,
|
|
|
|
"nO": 7,
|
|
|
|
}
|
|
|
|
|
|
|
|
def get_textcat_cnn_kwargs():
|
|
|
|
return {
|
|
|
|
"tok2vec": test_tok2vec(),
|
|
|
|
"exclusive_classes": False,
|
|
|
|
"nO": 13,
|
|
|
|
}
|
|
|
|
|
2020-07-09 20:39:31 +03:00
|
|
|
def get_all_params(model):
|
|
|
|
params = []
|
|
|
|
for node in model.walk():
|
|
|
|
for name in node.param_names:
|
|
|
|
params.append(node.get_param(name).ravel())
|
|
|
|
return node.ops.xp.concatenate(params)
|
|
|
|
|
|
|
|
|
|
|
|
def get_docs():
|
|
|
|
nlp = English()
|
|
|
|
return list(nlp.pipe(EN_SENTENCES + [" ".join(EN_SENTENCES)]))
|
|
|
|
|
|
|
|
|
|
|
|
def get_gradient(model, Y):
|
|
|
|
if isinstance(Y, model.ops.xp.ndarray):
|
|
|
|
dY = model.ops.alloc(Y.shape, dtype=Y.dtype)
|
|
|
|
dY += model.ops.xp.random.uniform(-1.0, 1.0, Y.shape)
|
|
|
|
return dY
|
|
|
|
elif isinstance(Y, List):
|
|
|
|
return [get_gradient(model, y) for y in Y]
|
|
|
|
else:
|
2020-07-10 20:47:53 +03:00
|
|
|
raise ValueError(f"Could not get gradient for type {type(Y)}")
|
2020-07-09 20:39:31 +03:00
|
|
|
|
|
|
|
|
2020-07-28 23:43:19 +03:00
|
|
|
def get_tok2vec_kwargs():
|
|
|
|
# This actually creates models, so seems best to put it in a function.
|
|
|
|
return {
|
|
|
|
"embed": MultiHashEmbed(
|
|
|
|
width=32,
|
|
|
|
rows=500,
|
|
|
|
also_embed_subwords=True,
|
|
|
|
also_use_static_vectors=False
|
|
|
|
),
|
|
|
|
"encode": MaxoutWindowEncoder(
|
|
|
|
width=32,
|
|
|
|
depth=2,
|
|
|
|
maxout_pieces=2,
|
|
|
|
window_size=1,
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2020-07-22 14:42:59 +03:00
|
|
|
def test_tok2vec():
|
2020-07-28 23:43:19 +03:00
|
|
|
return build_Tok2Vec_model(**get_tok2vec_kwargs())
|
2020-07-09 20:39:31 +03:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"seed,model_func,kwargs",
|
|
|
|
[
|
2020-07-28 23:43:19 +03:00
|
|
|
(0, build_Tok2Vec_model, get_tok2vec_kwargs()),
|
|
|
|
(0, build_text_classifier, get_textcat_kwargs()),
|
|
|
|
(0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs()),
|
2020-07-09 20:39:31 +03:00
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_models_initialize_consistently(seed, model_func, kwargs):
|
|
|
|
fix_random_seed(seed)
|
|
|
|
model1 = model_func(**kwargs)
|
|
|
|
model1.initialize()
|
|
|
|
fix_random_seed(seed)
|
|
|
|
model2 = model_func(**kwargs)
|
|
|
|
model2.initialize()
|
|
|
|
params1 = get_all_params(model1)
|
|
|
|
params2 = get_all_params(model2)
|
|
|
|
assert_array_equal(params1, params2)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"seed,model_func,kwargs,get_X",
|
|
|
|
[
|
2020-07-28 23:43:19 +03:00
|
|
|
(0, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
|
|
|
|
(0, build_text_classifier, get_textcat_kwargs(), get_docs),
|
|
|
|
(0, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
|
2020-07-09 20:39:31 +03:00
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_models_predict_consistently(seed, model_func, kwargs, get_X):
|
|
|
|
fix_random_seed(seed)
|
|
|
|
model1 = model_func(**kwargs).initialize()
|
|
|
|
Y1 = model1.predict(get_X())
|
|
|
|
fix_random_seed(seed)
|
|
|
|
model2 = model_func(**kwargs).initialize()
|
|
|
|
Y2 = model2.predict(get_X())
|
|
|
|
|
|
|
|
if model1.has_ref("tok2vec"):
|
|
|
|
tok2vec1 = model1.get_ref("tok2vec").predict(get_X())
|
|
|
|
tok2vec2 = model2.get_ref("tok2vec").predict(get_X())
|
|
|
|
for i in range(len(tok2vec1)):
|
|
|
|
for j in range(len(tok2vec1[i])):
|
2020-07-22 14:42:59 +03:00
|
|
|
assert_array_equal(
|
|
|
|
numpy.asarray(tok2vec1[i][j]), numpy.asarray(tok2vec2[i][j])
|
|
|
|
)
|
2020-07-09 20:39:31 +03:00
|
|
|
|
|
|
|
if isinstance(Y1, numpy.ndarray):
|
|
|
|
assert_array_equal(Y1, Y2)
|
|
|
|
elif isinstance(Y1, List):
|
|
|
|
assert len(Y1) == len(Y2)
|
|
|
|
for y1, y2 in zip(Y1, Y2):
|
|
|
|
assert_array_equal(y1, y2)
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Could not compare type {type(Y1)}")
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"seed,dropout,model_func,kwargs,get_X",
|
|
|
|
[
|
2020-07-28 23:43:19 +03:00
|
|
|
(0, 0.2, build_Tok2Vec_model, get_tok2vec_kwargs(), get_docs),
|
|
|
|
(0, 0.2, build_text_classifier, get_textcat_kwargs(), get_docs),
|
|
|
|
(0, 0.2, build_simple_cnn_text_classifier, get_textcat_cnn_kwargs(), get_docs),
|
2020-07-09 20:39:31 +03:00
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_models_update_consistently(seed, dropout, model_func, kwargs, get_X):
|
|
|
|
def get_updated_model():
|
|
|
|
fix_random_seed(seed)
|
|
|
|
optimizer = Adam(0.001)
|
|
|
|
model = model_func(**kwargs).initialize()
|
|
|
|
initial_params = get_all_params(model)
|
|
|
|
set_dropout_rate(model, dropout)
|
|
|
|
for _ in range(5):
|
|
|
|
Y, get_dX = model.begin_update(get_X())
|
|
|
|
dY = get_gradient(model, Y)
|
2020-07-22 14:42:59 +03:00
|
|
|
get_dX(dY)
|
2020-07-09 20:39:31 +03:00
|
|
|
model.finish_update(optimizer)
|
|
|
|
updated_params = get_all_params(model)
|
|
|
|
with pytest.raises(AssertionError):
|
|
|
|
assert_array_equal(initial_params, updated_params)
|
|
|
|
return model
|
|
|
|
|
|
|
|
model1 = get_updated_model()
|
|
|
|
model2 = get_updated_model()
|
|
|
|
assert_array_equal(get_all_params(model1), get_all_params(model2))
|