mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
111 lines
5.0 KiB
Python
111 lines
5.0 KiB
Python
|
# coding: utf-8
|
|||
|
from __future__ import unicode_literals
|
|||
|
|
|||
|
import requests
|
|||
|
|
|||
|
from spacy.lang.en import English
|
|||
|
from spacy.matcher import PhraseMatcher
|
|||
|
from spacy.tokens.doc import Doc
|
|||
|
from spacy.tokens.span import Span
|
|||
|
from spacy.tokens.token import Token
|
|||
|
|
|||
|
|
|||
|
class RESTCountriesComponent(object):
|
|||
|
"""Example of a spaCy v2.0 pipeline component that requests all countries
|
|||
|
via the REST Countries API, merges country names into one token, assigns
|
|||
|
entity labels and sets attributes on country tokens, e.g. the capital and
|
|||
|
lat/lng coordinates. Can be extended with more details from the API.
|
|||
|
|
|||
|
REST Countries API: https://restcountries.eu
|
|||
|
API License: Mozilla Public License MPL 2.0
|
|||
|
"""
|
|||
|
name = 'rest_countries' # component name, will show up in the pipeline
|
|||
|
|
|||
|
def __init__(self, nlp, label='GPE'):
|
|||
|
"""Initialise the pipeline component. The shared nlp instance is used
|
|||
|
to initialise the matcher with the shared vocab, get the label ID and
|
|||
|
generate Doc objects as phrase match patterns.
|
|||
|
"""
|
|||
|
# Make request once on initialisation and store the data
|
|||
|
r = requests.get('https://restcountries.eu/rest/v2/all')
|
|||
|
r.raise_for_status() # make sure requests raises an error if it fails
|
|||
|
countries = r.json()
|
|||
|
|
|||
|
# Convert API response to dict keyed by country name for easy lookup
|
|||
|
# This could also be extended using the alternative and foreign language
|
|||
|
# names provided by the API
|
|||
|
self.countries = {c['name']: c for c in countries}
|
|||
|
self.label = nlp.vocab.strings[label] # get entity label ID
|
|||
|
|
|||
|
# Set up the PhraseMatcher with Doc patterns for each country name
|
|||
|
patterns = [nlp(c) for c in self.countries.keys()]
|
|||
|
self.matcher = PhraseMatcher(nlp.vocab)
|
|||
|
self.matcher.add('COUNTRIES', None, *patterns)
|
|||
|
|
|||
|
# Register attribute on the Token. We'll be overwriting this based on
|
|||
|
# the matches, so we're only setting a default value, not a getter.
|
|||
|
# If no default value is set, it defaults to None.
|
|||
|
Token.set_extension('is_country', default=False)
|
|||
|
Token.set_extension('country_capital')
|
|||
|
Token.set_extension('country_latlng')
|
|||
|
Token.set_extension('country_flag')
|
|||
|
|
|||
|
# Register attributes on Doc and Span via a getter that checks if one of
|
|||
|
# the contained tokens is set to is_country == True.
|
|||
|
Doc.set_extension('has_country', getter=self.has_country)
|
|||
|
Span.set_extension('has_country', getter=self.has_country)
|
|||
|
|
|||
|
|
|||
|
def __call__(self, doc):
|
|||
|
"""Apply the pipeline component on a Doc object and modify it if matches
|
|||
|
are found. Return the Doc, so it can be processed by the next component
|
|||
|
in the pipeline, if available.
|
|||
|
"""
|
|||
|
matches = self.matcher(doc)
|
|||
|
spans = [] # keep the spans for later so we can merge them afterwards
|
|||
|
for _, start, end in matches:
|
|||
|
# Generate Span representing the entity & set label
|
|||
|
entity = Span(doc, start, end, label=self.label)
|
|||
|
spans.append(entity)
|
|||
|
# Set custom attribute on each token of the entity
|
|||
|
# Can be extended with other data returned by the API, like
|
|||
|
# currencies, country code, flag, calling code etc.
|
|||
|
for token in entity:
|
|||
|
token._.set('is_country', True)
|
|||
|
token._.set('country_capital', self.countries[entity.text]['capital'])
|
|||
|
token._.set('country_latlng', self.countries[entity.text]['latlng'])
|
|||
|
token._.set('country_flag', self.countries[entity.text]['flag'])
|
|||
|
# Overwrite doc.ents and add entity – be careful not to replace!
|
|||
|
doc.ents = list(doc.ents) + [entity]
|
|||
|
for span in spans:
|
|||
|
# Iterate over all spans and merge them into one token. This is done
|
|||
|
# after setting the entities – otherwise, it would cause mismatched
|
|||
|
# indices!
|
|||
|
span.merge()
|
|||
|
return doc # don't forget to return the Doc!
|
|||
|
|
|||
|
def has_country(self, tokens):
|
|||
|
"""Getter for Doc and Span attributes. Returns True if one of the tokens
|
|||
|
is a country. Since the getter is only called when we access the
|
|||
|
attribute, we can refer to the Token's 'is_country' attribute here,
|
|||
|
which is already set in the processing step."""
|
|||
|
return any([t._.get('is_country') for t in tokens])
|
|||
|
|
|||
|
|
|||
|
# For simplicity, we start off with only the blank English Language class and
|
|||
|
# no model or pre-defined pipeline loaded.
|
|||
|
|
|||
|
nlp = English()
|
|||
|
rest_countries = RESTCountriesComponent(nlp) # initialise component
|
|||
|
nlp.add_pipe(rest_countries) # add it to the pipeline
|
|||
|
|
|||
|
doc = nlp(u"Some text about Colombia and the Czech Republic")
|
|||
|
|
|||
|
print('Pipeline', nlp.pipe_names) # pipeline contains component name
|
|||
|
print('Doc has countries', doc._.has_country) # Doc contains countries
|
|||
|
for token in doc:
|
|||
|
if token._.is_country:
|
|||
|
print(token.text, token._.country_capital, token._.country_latlng,
|
|||
|
token._.country_flag) # country data
|
|||
|
print('Entities', [(e.text, e.label_) for e in doc.ents]) # all countries are entities
|