spaCy/examples/training/train_ner.py

116 lines
4.1 KiB
Python
Raw Normal View History

#!/usr/bin/env python
# coding: utf8
"""
Example of training spaCy's named entity recognizer, starting off with an
existing model or a blank model.
For more details, see the documentation:
* Training: https://alpha.spacy.io/usage/training
* NER: https://alpha.spacy.io/usage/linguistic-features#named-entities
Developed for: spaCy 2.0.0a18
Last updated for: spaCy 2.0.0a18
"""
from __future__ import unicode_literals, print_function
2017-10-26 17:10:56 +03:00
import plac
import random
from pathlib import Path
import spacy
2017-05-31 14:42:12 +03:00
from spacy.gold import GoldParse, biluo_tags_from_offsets
2017-01-27 14:27:10 +03:00
# training data
TRAIN_DATA = [
('Who is Shaka Khan?', [(7, 17, 'PERSON')]),
('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])
]
2017-10-26 17:10:56 +03:00
@plac.annotations(
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
output_dir=("Optional output directory", "option", "o", Path),
n_iter=("Number of training iterations", "option", "n", int))
def main(model=None, output_dir=None, n_iter=100):
2017-10-26 17:10:56 +03:00
"""Load the model, set up the pipeline and train the entity recognizer."""
if model is not None:
nlp = spacy.load(model) # load existing spaCy model
print("Loaded model '%s'" % model)
else:
nlp = spacy.blank('en') # create blank Language class
print("Created blank 'en' model")
# create the built-in pipeline components and add them to the pipeline
2017-10-26 16:15:08 +03:00
# nlp.create_pipe works for built-ins that are registered with spaCy
if 'ner' not in nlp.pipe_names:
ner = nlp.create_pipe('ner')
nlp.add_pipe(ner, last=True)
# function that allows begin_training to get the training data
get_data = lambda: reformat_train_data(nlp.tokenizer, TRAIN_DATA)
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
2017-10-27 01:31:30 +03:00
with nlp.disable_pipes(*other_pipes): # only train NER
optimizer = nlp.begin_training(get_data)
for itn in range(n_iter):
random.shuffle(TRAIN_DATA)
losses = {}
for raw_text, entity_offsets in TRAIN_DATA:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
nlp.update(
[doc], # Batch of Doc objects
[gold], # Batch of GoldParse objects
drop=0.5, # Dropout -- make it harder to memorise data
sgd=optimizer, # Callable to update weights
losses=losses)
print(losses)
# test the trained model
for text, _ in TRAIN_DATA:
doc = nlp(text)
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
# save model to output directory
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
print("Saved model to", output_dir)
# test the saved model
print("Loading from", output_dir)
2017-10-26 16:15:08 +03:00
nlp2 = spacy.load(output_dir)
for text, _ in TRAIN_DATA:
2017-10-26 16:15:08 +03:00
doc = nlp2(text)
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
2017-05-31 14:42:12 +03:00
def reformat_train_data(tokenizer, examples):
"""Reformat data to match JSON format.
https://alpha.spacy.io/api/annotation#json-input
tokenizer (Tokenizer): Tokenizer to process the raw text.
examples (list): The trainig data.
RETURNS (list): The reformatted training data."""
2017-05-31 14:42:12 +03:00
output = []
for i, (text, entity_offsets) in enumerate(examples):
doc = tokenizer(text)
ner_tags = biluo_tags_from_offsets(tokenizer(text), entity_offsets)
words = [w.text for w in doc]
tags = ['-'] * len(doc)
heads = [0] * len(doc)
deps = [''] * len(doc)
sentence = (range(len(doc)), words, tags, heads, deps, ner_tags)
output.append((text, [(sentence, [])]))
return output
if __name__ == '__main__':
2017-05-31 14:42:12 +03:00
plac.call(main)