spaCy/spacy/tokens/token.pyx

1006 lines
33 KiB
Cython
Raw Normal View History

# cython: infer_types=True
from libc.string cimport memcpy
from cpython.mem cimport PyMem_Malloc, PyMem_Free
# Compiler crashes on memory view coercion without this. Should report bug.
from cython.view cimport array as cvarray
cimport numpy as np
np.import_array()
import numpy
2020-02-18 17:38:18 +03:00
from thinc.api import get_array_module
2016-09-23 15:22:06 +03:00
from ..typedefs cimport hash_t
from ..lexeme cimport Lexeme
from ..attrs cimport IS_ALPHA, IS_ASCII, IS_DIGIT, IS_LOWER, IS_PUNCT, IS_SPACE
from ..attrs cimport IS_BRACKET, IS_QUOTE, IS_LEFT_PUNCT, IS_RIGHT_PUNCT
2018-02-11 20:55:48 +03:00
from ..attrs cimport IS_OOV, IS_TITLE, IS_UPPER, IS_CURRENCY, LIKE_URL, LIKE_NUM, LIKE_EMAIL
from ..attrs cimport IS_STOP, ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX
from ..attrs cimport LENGTH, CLUSTER, LEMMA, POS, TAG, DEP
from ..symbols cimport conj
from .. import parts_of_speech
from .. import util
from ..errors import Errors, Warnings, user_warning, models_warning
from .underscore import Underscore, get_ext_args
2019-03-07 19:14:57 +03:00
from .morphanalysis cimport MorphAnalysis
cdef class Token:
"""An individual token i.e. a word, punctuation symbol, whitespace,
etc.
DOCS: https://spacy.io/api/token
"""
2017-10-07 19:56:01 +03:00
@classmethod
def set_extension(cls, name, **kwargs):
"""Define a custom attribute which becomes available as `Token._`.
name (unicode): Name of the attribute to set.
default: Optional default value of the attribute.
getter (callable): Optional getter function.
setter (callable): Optional setter function.
method (callable): Optional method for method extension.
force (bool): Force overwriting existing attribute.
DOCS: https://spacy.io/api/token#set_extension
USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes
"""
if cls.has_extension(name) and not kwargs.get("force", False):
raise ValueError(Errors.E090.format(name=name, obj="Token"))
Underscore.token_extensions[name] = get_ext_args(**kwargs)
2017-10-07 19:56:01 +03:00
@classmethod
def get_extension(cls, name):
"""Look up a previously registered extension by name.
name (unicode): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple.
DOCS: https://spacy.io/api/token#get_extension
"""
2018-04-29 16:48:19 +03:00
return Underscore.token_extensions.get(name)
2017-10-07 19:56:01 +03:00
@classmethod
def has_extension(cls, name):
"""Check whether an extension has been registered.
name (unicode): Name of the extension.
RETURNS (bool): Whether the extension has been registered.
DOCS: https://spacy.io/api/token#has_extension
"""
2018-04-29 16:48:19 +03:00
return name in Underscore.token_extensions
2017-10-07 19:56:01 +03:00
@classmethod
def remove_extension(cls, name):
"""Remove a previously registered extension.
name (unicode): Name of the extension.
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
removed extension.
DOCS: https://spacy.io/api/token#remove_extension
"""
if not cls.has_extension(name):
raise ValueError(Errors.E046.format(name=name))
return Underscore.token_extensions.pop(name)
def __cinit__(self, Vocab vocab, Doc doc, int offset):
"""Construct a `Token` object.
vocab (Vocab): A storage container for lexical types.
doc (Doc): The parent document.
offset (int): The index of the token within the document.
DOCS: https://spacy.io/api/token#init
"""
self.vocab = vocab
self.doc = doc
2015-11-03 16:15:14 +03:00
self.c = &self.doc.c[offset]
self.i = offset
2017-01-16 15:27:57 +03:00
def __hash__(self):
return hash((self.doc, self.i))
def __len__(self):
"""The number of unicode characters in the token, i.e. `token.text`.
RETURNS (int): The number of unicode characters in the token.
DOCS: https://spacy.io/api/token#len
2017-04-15 14:05:15 +03:00
"""
return self.c.lex.length
def __unicode__(self):
return self.text
2015-11-02 21:22:18 +03:00
def __bytes__(self):
return self.text.encode('utf8')
2015-11-02 21:22:18 +03:00
2015-07-24 04:49:30 +03:00
def __str__(self):
return self.__unicode__()
2015-07-24 04:49:30 +03:00
def __repr__(self):
2015-11-02 21:22:18 +03:00
return self.__str__()
def __richcmp__(self, Token other, int op):
# http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html
if other is None:
if op in (0, 1, 2):
return False
else:
return True
cdef Doc my_doc = self.doc
cdef Doc other_doc = other.doc
my = self.idx
their = other.idx
if op == 0:
return my < their
elif op == 2:
if my_doc is other_doc:
return my == their
else:
return False
elif op == 4:
return my > their
elif op == 1:
return my <= their
elif op == 3:
if my_doc is other_doc:
return my != their
else:
return True
elif op == 5:
return my >= their
else:
raise ValueError(Errors.E041.format(op=op))
def __reduce__(self):
raise NotImplementedError(Errors.E111)
2017-10-07 19:56:01 +03:00
@property
def _(self):
"""Custom extension attributes registered via `set_extension`."""
2017-10-07 19:56:01 +03:00
return Underscore(Underscore.token_extensions, self,
start=self.idx, end=None)
cpdef bint check_flag(self, attr_id_t flag_id) except -1:
"""Check the value of a boolean flag.
flag_id (int): The ID of the flag attribute.
RETURNS (bool): Whether the flag is set.
DOCS: https://spacy.io/api/token#check_flag
2017-04-15 14:05:15 +03:00
"""
return Lexeme.c_check_flag(self.c.lex, flag_id)
def nbor(self, int i=1):
"""Get a neighboring token.
2016-11-01 14:25:36 +03:00
i (int): The relative position of the token to get. Defaults to 1.
RETURNS (Token): The token at position `self.doc[self.i+i]`.
DOCS: https://spacy.io/api/token#nbor
2017-04-15 14:05:15 +03:00
"""
if self.i+i < 0 or (self.i+i >= len(self.doc)):
raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc)))
return self.doc[self.i+i]
def similarity(self, other):
"""Make a semantic similarity estimate. The default estimate is cosine
similarity using an average of word vectors.
other (object): The object to compare with. By default, accepts `Doc`,
`Span`, `Token` and `Lexeme` objects.
RETURNS (float): A scalar similarity score. Higher is more similar.
DOCS: https://spacy.io/api/token#similarity
2017-04-15 14:05:15 +03:00
"""
if "similarity" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["similarity"](self, other)
if hasattr(other, "__len__") and len(other) == 1 and hasattr(other, "__getitem__"):
if self.c.lex.orth == getattr(other[0], "orth", None):
return 1.0
elif hasattr(other, "orth"):
if self.c.lex.orth == other.orth:
return 1.0
if self.vocab.vectors.n_keys == 0:
models_warning(Warnings.W007.format(obj="Token"))
2015-09-22 03:10:01 +03:00
if self.vector_norm == 0 or other.vector_norm == 0:
user_warning(Warnings.W008.format(obj="Token"))
2015-09-22 03:10:01 +03:00
return 0.0
vector = self.vector
2019-03-07 02:56:31 +03:00
xp = get_array_module(vector)
2019-03-07 03:06:12 +03:00
return (xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm))
@property
def morph(self):
return MorphAnalysis.from_id(self.vocab, self.c.morph)
2019-03-07 19:14:57 +03:00
Modify morphology to support arbitrary features (#4932) * Restructure tag maps for MorphAnalysis changes Prepare tag maps for upcoming MorphAnalysis changes that allow arbritrary features. * Use default tag map rather than duplicating for ca / uk / vi * Import tag map into defaults for ga * Modify tag maps so all morphological fields and features are strings * Move features from `"Other"` to the top level * Rewrite tuples as strings separated by `","` * Rewrite morph symbols for fr lemmatizer as strings * Export MorphAnalysis under spacy.tokens * Modify morphology to support arbitrary features Modify `Morphology` and `MorphAnalysis` so that arbitrary features are supported. * Modify `MorphAnalysisC` so that it can support arbitrary features and multiple values per field. `MorphAnalysisC` is redesigned to contain: * key: hash of UD FEATS string of morphological features * array of `MorphFeatureC` structs that each contain a hash of `Field` and `Field=Value` for a given morphological feature, which makes it possible to: * find features by field * represent multiple values for a given field * `get_field()` is renamed to `get_by_field()` and is no longer `nogil`. Instead a new helper function `get_n_by_field()` is `nogil` and returns `n` features by field. * `MorphAnalysis.get()` returns all possible values for a field as a list of individual features such as `["Tense=Pres", "Tense=Past"]`. * `MorphAnalysis`'s `str()` and `repr()` are the UD FEATS string. * `Morphology.feats_to_dict()` converts a UD FEATS string to a dict where: * Each field has one entry in the dict * Multiple values remain separated by a separator in the value string * `Token.morph_` returns the UD FEATS string and you can set `Token.morph_` with a UD FEATS string or with a tag map dict. * Modify get_by_field to use np.ndarray Modify `get_by_field()` to use np.ndarray. Remove `max_results` from `get_n_by_field()` and always iterate over all the fields. * Rewrite without MorphFeatureC * Add shortcut for existing feats strings as keys Add shortcut for existing feats strings as keys in `Morphology.add()`. * Check for '_' as empty analysis when adding morphs * Extend helper converters in Morphology Add and extend helper converters that convert and normalize between: * UD FEATS strings (`"Case=dat,gen|Number=sing"`) * per-field dict of feats (`{"Case": "dat,gen", "Number": "sing"}`) * list of individual features (`["Case=dat", "Case=gen", "Number=sing"]`) All converters sort fields and values where applicable.
2020-01-24 00:01:54 +03:00
property morph_:
def __get__(self):
return str(MorphAnalysis.from_id(self.vocab, self.c.morph))
def __set__(self, features):
cdef hash_t key = self.vocab.morphology.add(features)
self.c.morph = key
@property
def lex_id(self):
"""RETURNS (int): Sequential ID of the token's lexical type."""
return self.c.lex.id
@property
def rank(self):
"""RETURNS (int): Sequential ID of the token's lexical type, used to
index into tables, e.g. for word vectors."""
return self.c.lex.id
@property
def string(self):
"""Deprecated: Use Token.text_with_ws instead."""
return self.text_with_ws
@property
def text(self):
"""RETURNS (unicode): The original verbatim text of the token."""
return self.orth_
@property
def text_with_ws(self):
"""RETURNS (unicode): The text content of the span (with trailing
whitespace).
"""
cdef unicode orth = self.vocab.strings[self.c.lex.orth]
if self.c.spacy:
return orth + " "
else:
return orth
@property
def prob(self):
"""RETURNS (float): Smoothed log probability estimate of token type."""
return self.c.lex.prob
@property
def sentiment(self):
"""RETURNS (float): A scalar value indicating the positivity or
negativity of the token."""
if "sentiment" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["sentiment"](self)
return self.c.lex.sentiment
@property
def lang(self):
"""RETURNS (uint64): ID of the language of the parent document's
vocabulary.
"""
return self.c.lex.lang
@property
def idx(self):
"""RETURNS (int): The character offset of the token within the parent
document.
"""
return self.c.idx
@property
def cluster(self):
"""RETURNS (int): Brown cluster ID."""
return self.c.lex.cluster
@property
def orth(self):
"""RETURNS (uint64): ID of the verbatim text content."""
return self.c.lex.orth
@property
def lower(self):
"""RETURNS (uint64): ID of the lowercase token text."""
return self.c.lex.lower
@property
def norm(self):
"""RETURNS (uint64): ID of the token's norm, i.e. a normalised form of
the token text. Usually set in the language's tokenizer exceptions
or norm exceptions.
"""
if self.c.norm == 0:
return self.c.lex.norm
else:
return self.c.norm
@property
def shape(self):
"""RETURNS (uint64): ID of the token's shape, a transform of the
tokens's string, to show orthographic features (e.g. "Xxxx", "dd").
"""
return self.c.lex.shape
@property
def prefix(self):
"""RETURNS (uint64): ID of a length-N substring from the start of the
token. Defaults to `N=1`.
"""
return self.c.lex.prefix
@property
def suffix(self):
"""RETURNS (uint64): ID of a length-N substring from the end of the
token. Defaults to `N=3`.
"""
return self.c.lex.suffix
property lemma:
"""RETURNS (uint64): ID of the base form of the word, with no
inflectional suffixes.
"""
def __get__(self):
2017-11-18 05:33:31 +03:00
if self.c.lemma == 0:
lemma_ = self.vocab.morphology.lemmatizer.lookup(self.orth_, orth=self.orth)
return self.vocab.strings[lemma_]
2017-11-18 05:33:31 +03:00
else:
return self.c.lemma
def __set__(self, attr_t lemma):
self.c.lemma = lemma
property pos:
"""RETURNS (uint64): ID of coarse-grained part-of-speech tag."""
def __get__(self):
return self.c.pos
2018-03-27 22:21:11 +03:00
def __set__(self, pos):
self.c.pos = pos
property tag:
"""RETURNS (uint64): ID of fine-grained part-of-speech tag."""
def __get__(self):
return self.c.tag
def __set__(self, attr_t tag):
self.vocab.morphology.assign_tag(self.c, tag)
property dep:
"""RETURNS (uint64): ID of syntactic dependency label."""
def __get__(self):
return self.c.dep
def __set__(self, attr_t label):
self.c.dep = label
@property
def has_vector(self):
"""A boolean value indicating whether a word vector is associated with
the object.
RETURNS (bool): Whether a word vector is associated with the object.
DOCS: https://spacy.io/api/token#has_vector
2017-04-15 14:05:15 +03:00
"""
if "has_vector" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["has_vector"](self)
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
return True
return self.vocab.has_vector(self.c.lex.orth)
@property
def vector(self):
"""A real-valued meaning representation.
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
representing the token's semantics.
DOCS: https://spacy.io/api/token#vector
2017-04-15 14:05:15 +03:00
"""
if "vector" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["vector"](self)
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
return self.doc.tensor[self.i]
else:
return self.vocab.get_vector(self.c.lex.orth)
@property
def vector_norm(self):
"""The L2 norm of the token's vector representation.
RETURNS (float): The L2 norm of the vector representation.
DOCS: https://spacy.io/api/token#vector_norm
"""
if "vector_norm" in self.doc.user_token_hooks:
return self.doc.user_token_hooks["vector_norm"](self)
vector = self.vector
xp = get_array_module(vector)
total = (vector ** 2).sum()
return xp.sqrt(total) if total != 0. else 0.
@property
def tensor(self):
if self.doc.tensor is None:
return None
return self.doc.tensor[self.i]
@property
def n_lefts(self):
"""The number of leftward immediate children of the word, in the
syntactic dependency parse.
RETURNS (int): The number of leftward immediate children of the
word, in the syntactic dependency parse.
DOCS: https://spacy.io/api/token#n_lefts
"""
return self.c.l_kids
@property
def n_rights(self):
"""The number of rightward immediate children of the word, in the
syntactic dependency parse.
RETURNS (int): The number of rightward immediate children of the
word, in the syntactic dependency parse.
DOCS: https://spacy.io/api/token#n_rights
"""
return self.c.r_kids
@property
def sent(self):
"""RETURNS (Span): The sentence span that the token is a part of."""
if 'sent' in self.doc.user_token_hooks:
return self.doc.user_token_hooks["sent"](self)
return self.doc[self.i : self.i+1].sent
property sent_start:
def __get__(self):
"""Deprecated: use Token.is_sent_start instead."""
# Raising a deprecation warning here causes errors for autocomplete
# Handle broken backwards compatibility case: doc[0].sent_start
# was False.
if self.i == 0:
return False
else:
return self.c.sent_start
def __set__(self, value):
self.is_sent_start = value
property is_sent_start:
"""A boolean value indicating whether the token starts a sentence.
`None` if unknown. Defaults to `True` for the first token in the `Doc`.
RETURNS (bool / None): Whether the token starts a sentence.
None if unknown.
DOCS: https://spacy.io/api/token#is_sent_start
"""
def __get__(self):
if self.c.sent_start == 0:
return None
elif self.c.sent_start < 0:
return False
else:
return True
def __set__(self, value):
if self.doc.is_parsed:
raise ValueError(Errors.E043)
if value is None:
self.c.sent_start = 0
elif value is True:
self.c.sent_start = 1
elif value is False:
self.c.sent_start = -1
else:
raise ValueError(Errors.E044.format(value=value))
@property
def lefts(self):
"""The leftward immediate children of the word, in the syntactic
dependency parse.
YIELDS (Token): A left-child of the token.
DOCS: https://spacy.io/api/token#lefts
"""
cdef int nr_iter = 0
cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
while ptr < self.c:
if ptr + ptr.head == self.c:
yield self.doc[ptr - (self.c - self.i)]
ptr += 1
nr_iter += 1
# This is ugly, but it's a way to guard out infinite loops
if nr_iter >= 10000000:
raise RuntimeError(Errors.E045.format(attr="token.lefts"))
@property
def rights(self):
"""The rightward immediate children of the word, in the syntactic
dependency parse.
YIELDS (Token): A right-child of the token.
DOCS: https://spacy.io/api/token#rights
"""
cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
tokens = []
cdef int nr_iter = 0
while ptr > self.c:
if ptr + ptr.head == self.c:
tokens.append(self.doc[ptr - (self.c - self.i)])
ptr -= 1
nr_iter += 1
if nr_iter >= 10000000:
raise RuntimeError(Errors.E045.format(attr="token.rights"))
tokens.reverse()
for t in tokens:
yield t
@property
def children(self):
"""A sequence of the token's immediate syntactic children.
2016-11-01 14:25:36 +03:00
YIELDS (Token): A child token such that `child.head==self`.
DOCS: https://spacy.io/api/token#children
2017-04-15 14:05:15 +03:00
"""
yield from self.lefts
yield from self.rights
@property
def subtree(self):
"""A sequence containing the token and all the token's syntactic
descendants.
2016-11-01 14:25:36 +03:00
YIELDS (Token): A descendent token such that
`self.is_ancestor(descendent) or token == self`.
DOCS: https://spacy.io/api/token#subtree
2017-04-15 14:05:15 +03:00
"""
for word in self.lefts:
yield from word.subtree
yield self
for word in self.rights:
yield from word.subtree
@property
def left_edge(self):
"""The leftmost token of this token's syntactic descendents.
2016-11-01 14:25:36 +03:00
RETURNS (Token): The first token such that `self.is_ancestor(token)`.
2017-04-15 14:05:15 +03:00
"""
return self.doc[self.c.l_edge]
2015-08-09 00:37:44 +03:00
@property
def right_edge(self):
"""The rightmost token of this token's syntactic descendents.
2016-11-01 14:25:36 +03:00
RETURNS (Token): The last token such that `self.is_ancestor(token)`.
2017-04-15 14:05:15 +03:00
"""
return self.doc[self.c.r_edge]
@property
def ancestors(self):
"""A sequence of this token's syntactic ancestors.
2016-11-01 14:25:36 +03:00
YIELDS (Token): A sequence of ancestor tokens such that
`ancestor.is_ancestor(self)`.
DOCS: https://spacy.io/api/token#ancestors
2017-04-15 14:05:15 +03:00
"""
cdef const TokenC* head_ptr = self.c
# Guard against infinite loop, no token can have
# more ancestors than tokens in the tree.
cdef int i = 0
while head_ptr.head != 0 and i < self.doc.length:
head_ptr += head_ptr.head
yield self.doc[head_ptr - (self.c - self.i)]
i += 1
2016-11-01 14:25:36 +03:00
def is_ancestor(self, descendant):
"""Check whether this token is a parent, grandparent, etc. of another
2016-11-01 14:25:36 +03:00
in the dependency tree.
descendant (Token): Another token.
RETURNS (bool): Whether this token is the ancestor of the descendant.
DOCS: https://spacy.io/api/token#is_ancestor
2017-04-15 14:05:15 +03:00
"""
2016-11-01 15:28:00 +03:00
if self.doc is not descendant.doc:
2016-11-01 14:25:36 +03:00
return False
return any(ancestor.i == self.i for ancestor in descendant.ancestors)
property head:
"""The syntactic parent, or "governor", of this token.
RETURNS (Token): The token predicted by the parser to be the head of
the current token.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
return self.doc[self.i + self.c.head]
def __set__(self, Token new_head):
# This function sets the head of self to new_head and updates the
# counters for left/right dependents and left/right corner for the
# new and the old head
# Do nothing if old head is new head
if self.i + self.c.head == new_head.i:
return
cdef Token old_head = self.head
cdef int rel_newhead_i = new_head.i - self.i
# Is the new head a descendant of the old head
cdef bint is_desc = old_head.is_ancestor(new_head)
cdef int new_edge
cdef Token anc, child
# Update number of deps of old head
if self.c.head > 0: # left dependent
old_head.c.l_kids -= 1
if self.c.l_edge == old_head.c.l_edge:
# The token dominates the left edge so the left edge of
# the head may change when the token is reattached, it may
# not change if the new head is a descendant of the current
# head.
new_edge = self.c.l_edge
# The new l_edge is the left-most l_edge on any of the
# other dependents where the l_edge is left of the head,
# otherwise it is the head
if not is_desc:
new_edge = old_head.i
for child in old_head.children:
if child == self:
continue
if child.c.l_edge < new_edge:
new_edge = child.c.l_edge
old_head.c.l_edge = new_edge
# Walk up the tree from old_head and assign new l_edge to
# ancestors until an ancestor already has an l_edge that's
# further left
for anc in old_head.ancestors:
if anc.c.l_edge <= new_edge:
break
anc.c.l_edge = new_edge
elif self.c.head < 0: # right dependent
old_head.c.r_kids -= 1
# Do the same thing as for l_edge
if self.c.r_edge == old_head.c.r_edge:
new_edge = self.c.r_edge
if not is_desc:
new_edge = old_head.i
for child in old_head.children:
if child == self:
continue
if child.c.r_edge > new_edge:
new_edge = child.c.r_edge
old_head.c.r_edge = new_edge
for anc in old_head.ancestors:
if anc.c.r_edge >= new_edge:
break
anc.c.r_edge = new_edge
# Update number of deps of new head
if rel_newhead_i > 0: # left dependent
new_head.c.l_kids += 1
# Walk up the tree from new head and set l_edge to self.l_edge
# until you hit a token with an l_edge further to the left
if self.c.l_edge < new_head.c.l_edge:
new_head.c.l_edge = self.c.l_edge
for anc in new_head.ancestors:
if anc.c.l_edge <= self.c.l_edge:
break
anc.c.l_edge = self.c.l_edge
elif rel_newhead_i < 0: # right dependent
new_head.c.r_kids += 1
# Do the same as for l_edge
if self.c.r_edge > new_head.c.r_edge:
new_head.c.r_edge = self.c.r_edge
for anc in new_head.ancestors:
if anc.c.r_edge >= self.c.r_edge:
break
anc.c.r_edge = self.c.r_edge
# Set new head
self.c.head = rel_newhead_i
2015-08-09 00:37:44 +03:00
@property
def conjuncts(self):
"""A sequence of coordinated tokens, including the token itself.
2016-11-01 14:25:36 +03:00
RETURNS (tuple): The coordinated tokens.
DOCS: https://spacy.io/api/token#conjuncts
2017-04-15 14:05:15 +03:00
"""
cdef Token word, child
if "conjuncts" in self.doc.user_token_hooks:
return tuple(self.doc.user_token_hooks["conjuncts"](self))
start = self
while start.i != start.head.i:
if start.dep == conj:
start = start.head
else:
break
queue = [start]
output = [start]
for word in queue:
for child in word.rights:
if child.c.dep == conj:
output.append(child)
queue.append(child)
return tuple([w for w in output if w.i != self.i])
property ent_type:
"""RETURNS (uint64): Named entity type."""
def __get__(self):
return self.c.ent_type
def __set__(self, ent_type):
self.c.ent_type = ent_type
property ent_type_:
"""RETURNS (unicode): Named entity type."""
def __get__(self):
return self.vocab.strings[self.c.ent_type]
def __set__(self, ent_type):
self.c.ent_type = self.vocab.strings.add(ent_type)
@property
def ent_iob(self):
"""IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
is assigned.
RETURNS (uint64): IOB code of named entity tag.
"""
return self.c.ent_iob
@property
def ent_iob_(self):
"""IOB code of named entity tag. "B" means the token begins an entity,
"I" means it is inside an entity, "O" means it is outside an entity,
and "" means no entity tag is set. "B" with an empty ent_type
means that the token is blocked from further processing by NER.
RETURNS (unicode): IOB code of named entity tag.
"""
iob_strings = ("", "I", "O", "B")
return iob_strings[self.c.ent_iob]
property ent_id:
"""RETURNS (uint64): ID of the entity the token is an instance of,
if any.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
2016-09-23 16:07:07 +03:00
return self.c.ent_id
def __set__(self, hash_t key):
2017-03-31 15:00:14 +03:00
self.c.ent_id = key
property ent_id_:
"""RETURNS (unicode): ID of the entity the token is an instance of,
if any.
2017-04-15 14:05:15 +03:00
"""
def __get__(self):
return self.vocab.strings[self.c.ent_id]
2017-03-31 15:00:14 +03:00
def __set__(self, name):
self.c.ent_id = self.vocab.strings.add(name)
2019-03-14 17:48:40 +03:00
property ent_kb_id:
"""RETURNS (uint64): Named entity KB ID."""
def __get__(self):
return self.c.ent_kb_id
def __set__(self, attr_t ent_kb_id):
self.c.ent_kb_id = ent_kb_id
property ent_kb_id_:
"""RETURNS (unicode): Named entity KB ID."""
def __get__(self):
return self.vocab.strings[self.c.ent_kb_id]
def __set__(self, ent_kb_id):
self.c.ent_kb_id = self.vocab.strings.add(ent_kb_id)
@property
def whitespace_(self):
"""RETURNS (unicode): The trailing whitespace character, if present."""
return " " if self.c.spacy else ""
@property
def orth_(self):
"""RETURNS (unicode): Verbatim text content (identical to
💫 Port master changes over to develop (#2979) * Create aryaprabhudesai.md (#2681) * Update _install.jade (#2688) Typo fix: "models" -> "model" * Add FAC to spacy.explain (resolves #2706) * Remove docstrings for deprecated arguments (see #2703) * When calling getoption() in conftest.py, pass a default option (#2709) * When calling getoption() in conftest.py, pass a default option This is necessary to allow testing an installed spacy by running: pytest --pyargs spacy * Add contributor agreement * update bengali token rules for hyphen and digits (#2731) * Less norm computations in token similarity (#2730) * Less norm computations in token similarity * Contributor agreement * Remove ')' for clarity (#2737) Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know. * added contributor agreement for mbkupfer (#2738) * Basic support for Telugu language (#2751) * Lex _attrs for polish language (#2750) * Signed spaCy contributor agreement * Added polish version of english lex_attrs * Introduces a bulk merge function, in order to solve issue #653 (#2696) * Fix comment * Introduce bulk merge to increase performance on many span merges * Sign contributor agreement * Implement pull request suggestions * Describe converters more explicitly (see #2643) * Add multi-threading note to Language.pipe (resolves #2582) [ci skip] * Fix formatting * Fix dependency scheme docs (closes #2705) [ci skip] * Don't set stop word in example (closes #2657) [ci skip] * Add words to portuguese language _num_words (#2759) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Update Indonesian model (#2752) * adding e-KTP in tokenizer exceptions list * add exception token * removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception * add tokenizer exceptions list * combining base_norms with norm_exceptions * adding norm_exception * fix double key in lemmatizer * remove unused import on punctuation.py * reformat stop_words to reduce number of lines, improve readibility * updating tokenizer exception * implement is_currency for lang/id * adding orth_first_upper in tokenizer_exceptions * update the norm_exception list * remove bunch of abbreviations * adding contributors file * Fixed spaCy+Keras example (#2763) * bug fixes in keras example * created contributor agreement * Adding French hyphenated first name (#2786) * Fix typo (closes #2784) * Fix typo (#2795) [ci skip] Fixed typo on line 6 "regcognizer --> recognizer" * Adding basic support for Sinhala language. (#2788) * adding Sinhala language package, stop words, examples and lex_attrs. * Adding contributor agreement * Updating contributor agreement * Also include lowercase norm exceptions * Fix error (#2802) * Fix error ValueError: cannot resize an array that references or is referenced by another array in this way. Use the resize function * added spaCy Contributor Agreement * Add charlax's contributor agreement (#2805) * agreement of contributor, may I introduce a tiny pl languge contribution (#2799) * Contributors agreement * Contributors agreement * Contributors agreement * Add jupyter=True to displacy.render in documentation (#2806) * Revert "Also include lowercase norm exceptions" This reverts commit 70f4e8adf37cfcfab60be2b97d6deae949b30e9e. * Remove deprecated encoding argument to msgpack * Set up dependency tree pattern matching skeleton (#2732) * Fix bug when too many entity types. Fixes #2800 * Fix Python 2 test failure * Require older msgpack-numpy * Restore encoding arg on msgpack-numpy * Try to fix version pin for msgpack-numpy * Update Portuguese Language (#2790) * Add words to portuguese language _num_words * Add words to portuguese language _num_words * Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols * Extended punctuation and norm_exceptions in the Portuguese language * Correct error in spacy universe docs concerning spacy-lookup (#2814) * Update Keras Example for (Parikh et al, 2016) implementation (#2803) * bug fixes in keras example * created contributor agreement * baseline for Parikh model * initial version of parikh 2016 implemented * tested asymmetric models * fixed grevious error in normalization * use standard SNLI test file * begin to rework parikh example * initial version of running example * start to document the new version * start to document the new version * Update Decompositional Attention.ipynb * fixed calls to similarity * updated the README * import sys package duh * simplified indexing on mapping word to IDs * stupid python indent error * added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround * Fix typo (closes #2815) [ci skip] * Update regex version dependency * Set version to 2.0.13.dev3 * Skip seemingly problematic test * Remove problematic test * Try previous version of regex * Revert "Remove problematic test" This reverts commit bdebbef45552d698d390aa430b527ee27830f11b. * Unskip test * Try older version of regex * 💫 Update training examples and use minibatching (#2830) <!--- Provide a general summary of your changes in the title. --> ## Description Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results. ### Types of change enhancements ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Visual C++ link updated (#2842) (closes #2841) [ci skip] * New landing page * Add contribution agreement * Correcting lang/ru/examples.py (#2845) * Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement * Correct some grammatical inaccuracies in lang\ru\examples.py * Move contributor agreement to separate file * Set version to 2.0.13.dev4 * Add Persian(Farsi) language support (#2797) * Also include lowercase norm exceptions * Remove in favour of https://github.com/explosion/spaCy/graphs/contributors * Rule-based French Lemmatizer (#2818) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class. ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> - Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version. - Add several files containing exhaustive list of words for each part of speech - Add some lemma rules - Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX - Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned - Modify the lemmatize function to check in lookup table as a last resort - Init files are updated so the model can support all the functionalities mentioned above - Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [X] I have submitted the spaCy Contributor Agreement. - [X] I ran the tests, and all new and existing tests passed. - [X] My changes don't require a change to the documentation, or if they do, I've added all required information. * Set version to 2.0.13 * Fix formatting and consistency * Update docs for new version [ci skip] * Increment version [ci skip] * Add info on wheels [ci skip] * Adding "This is a sentence" example to Sinhala (#2846) * Add wheels badge * Update badge [ci skip] * Update README.rst [ci skip] * Update murmurhash pin * Increment version to 2.0.14.dev0 * Update GPU docs for v2.0.14 * Add wheel to setup_requires * Import prefer_gpu and require_gpu functions from Thinc * Add tests for prefer_gpu() and require_gpu() * Update requirements and setup.py * Workaround bug in thinc require_gpu * Set version to v2.0.14 * Update push-tag script * Unhack prefer_gpu * Require thinc 6.10.6 * Update prefer_gpu and require_gpu docs [ci skip] * Fix specifiers for GPU * Set version to 2.0.14.dev1 * Set version to 2.0.14 * Update Thinc version pin * Increment version * Fix msgpack-numpy version pin * Increment version * Update version to 2.0.16 * Update version [ci skip] * Redundant ')' in the Stop words' example (#2856) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [ ] I have submitted the spaCy Contributor Agreement. - [ ] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information. * Documentation improvement regarding joblib and SO (#2867) Some documentation improvements ## Description 1. Fixed the dead URL to joblib 2. Fixed Stack Overflow brand name (with space) ### Types of change Documentation ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * raise error when setting overlapping entities as doc.ents (#2880) * Fix out-of-bounds access in NER training The helper method state.B(1) gets the index of the first token of the buffer, or -1 if no such token exists. Normally this is safe because we pass this to functions like state.safe_get(), which returns an empty token. Here we used it directly as an array index, which is not okay! This error may have been the cause of out-of-bounds access errors during training. Similar errors may still be around, so much be hunted down. Hunting this one down took a long time...I printed out values across training runs and diffed, looking for points of divergence between runs, when no randomness should be allowed. * Change PyThaiNLP Url (#2876) * Fix missing comma * Add example showing a fix-up rule for space entities * Set version to 2.0.17.dev0 * Update regex version * Revert "Update regex version" This reverts commit 62358dd867d15bc6a475942dff34effba69dd70a. * Try setting older regex version, to align with conda * Set version to 2.0.17 * Add spacy-js to universe [ci-skip] * Add spacy-raspberry to universe (closes #2889) * Add script to validate universe json [ci skip] * Removed space in docs + added contributor indo (#2909) * - removed unneeded space in documentation * - added contributor info * Allow input text of length up to max_length, inclusive (#2922) * Include universe spec for spacy-wordnet component (#2919) * feat: include universe spec for spacy-wordnet component * chore: include spaCy contributor agreement * Minor formatting changes [ci skip] * Fix image [ci skip] Twitter URL doesn't work on live site * Check if the word is in one of the regular lists specific to each POS (#2886) * 💫 Create random IDs for SVGs to prevent ID clashes (#2927) Resolves #2924. ## Description Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.) ### Types of change bug fix ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix typo [ci skip] * fixes symbolic link on py3 and windows (#2949) * fixes symbolic link on py3 and windows during setup of spacy using command python -m spacy link en_core_web_sm en closes #2948 * Update spacy/compat.py Co-Authored-By: cicorias <cicorias@users.noreply.github.com> * Fix formatting * Update universe [ci skip] * Catalan Language Support (#2940) * Catalan language Support * Ddding Catalan to documentation * Sort languages alphabetically [ci skip] * Update tests for pytest 4.x (#2965) <!--- Provide a general summary of your changes in the title. --> ## Description - [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize)) - [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here) ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Fix regex pin to harmonize with conda (#2964) * Update README.rst * Fix bug where Vocab.prune_vector did not use 'batch_size' (#2977) Fixes #2976 * Fix typo * Fix typo * Remove duplicate file * Require thinc 7.0.0.dev2 Fixes bug in gpu_ops that would use cupy instead of numpy on CPU * Add missing import * Fix error IDs * Fix tests
2018-11-29 18:30:29 +03:00
`Token.text`). Exists mostly for consistency with the other
attributes.
"""
return self.vocab.strings[self.c.lex.orth]
@property
def lower_(self):
"""RETURNS (unicode): The lowercase token text. Equivalent to
`Token.text.lower()`.
"""
return self.vocab.strings[self.c.lex.lower]
property norm_:
"""RETURNS (unicode): The token's norm, i.e. a normalised form of the
token text. Usually set in the language's tokenizer exceptions or
norm exceptions.
"""
def __get__(self):
return self.vocab.strings[self.norm]
def __set__(self, unicode norm_):
self.c.norm = self.vocab.strings.add(norm_)
@property
def shape_(self):
"""RETURNS (unicode): Transform of the tokens's string, to show
orthographic features. For example, "Xxxx" or "dd".
"""
return self.vocab.strings[self.c.lex.shape]
@property
def prefix_(self):
"""RETURNS (unicode): A length-N substring from the start of the token.
Defaults to `N=1`.
"""
return self.vocab.strings[self.c.lex.prefix]
@property
def suffix_(self):
"""RETURNS (unicode): A length-N substring from the end of the token.
Defaults to `N=3`.
"""
return self.vocab.strings[self.c.lex.suffix]
@property
def lang_(self):
"""RETURNS (unicode): Language of the parent document's vocabulary,
e.g. 'en'.
"""
return self.vocab.strings[self.c.lex.lang]
property lemma_:
"""RETURNS (unicode): The token lemma, i.e. the base form of the word,
with no inflectional suffixes.
"""
def __get__(self):
2017-11-18 05:33:31 +03:00
if self.c.lemma == 0:
return self.vocab.morphology.lemmatizer.lookup(self.orth_, orth=self.orth)
2017-11-18 05:33:31 +03:00
else:
return self.vocab.strings[self.c.lemma]
def __set__(self, unicode lemma_):
self.c.lemma = self.vocab.strings.add(lemma_)
property pos_:
"""RETURNS (unicode): Coarse-grained part-of-speech tag."""
def __get__(self):
return parts_of_speech.NAMES[self.c.pos]
2018-03-27 22:21:11 +03:00
def __set__(self, pos_name):
self.c.pos = parts_of_speech.IDS[pos_name]
property tag_:
"""RETURNS (unicode): Fine-grained part-of-speech tag."""
def __get__(self):
return self.vocab.strings[self.c.tag]
def __set__(self, tag):
self.tag = self.vocab.strings.add(tag)
property dep_:
"""RETURNS (unicode): The syntactic dependency label."""
def __get__(self):
return self.vocab.strings[self.c.dep]
def __set__(self, unicode label):
self.c.dep = self.vocab.strings.add(label)
@property
def is_oov(self):
"""RETURNS (bool): Whether the token is out-of-vocabulary."""
return Lexeme.c_check_flag(self.c.lex, IS_OOV)
@property
def is_stop(self):
"""RETURNS (bool): Whether the token is a stop word, i.e. part of a
"stop list" defined by the language data.
"""
return Lexeme.c_check_flag(self.c.lex, IS_STOP)
@property
def is_alpha(self):
"""RETURNS (bool): Whether the token consists of alpha characters.
Equivalent to `token.text.isalpha()`.
"""
return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)
2015-08-09 00:37:44 +03:00
@property
def is_ascii(self):
"""RETURNS (bool): Whether the token consists of ASCII characters.
Equivalent to `[any(ord(c) >= 128 for c in token.text)]`.
"""
return Lexeme.c_check_flag(self.c.lex, IS_ASCII)
@property
def is_digit(self):
"""RETURNS (bool): Whether the token consists of digits. Equivalent to
`token.text.isdigit()`.
"""
return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)
@property
def is_lower(self):
"""RETURNS (bool): Whether the token is in lowercase. Equivalent to
`token.text.islower()`.
"""
return Lexeme.c_check_flag(self.c.lex, IS_LOWER)
@property
def is_upper(self):
"""RETURNS (bool): Whether the token is in uppercase. Equivalent to
`token.text.isupper()`
"""
return Lexeme.c_check_flag(self.c.lex, IS_UPPER)
@property
def is_title(self):
"""RETURNS (bool): Whether the token is in titlecase. Equivalent to
`token.text.istitle()`.
"""
return Lexeme.c_check_flag(self.c.lex, IS_TITLE)
@property
def is_punct(self):
"""RETURNS (bool): Whether the token is punctuation."""
return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)
@property
def is_space(self):
"""RETURNS (bool): Whether the token consists of whitespace characters.
Equivalent to `token.text.isspace()`.
"""
return Lexeme.c_check_flag(self.c.lex, IS_SPACE)
@property
def is_bracket(self):
"""RETURNS (bool): Whether the token is a bracket."""
return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)
@property
def is_quote(self):
"""RETURNS (bool): Whether the token is a quotation mark."""
return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)
@property
def is_left_punct(self):
"""RETURNS (bool): Whether the token is a left punctuation mark."""
return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)
@property
def is_right_punct(self):
"""RETURNS (bool): Whether the token is a right punctuation mark."""
return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)
@property
def is_currency(self):
2018-02-11 20:55:48 +03:00
"""RETURNS (bool): Whether the token is a currency symbol."""
return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY)
2018-02-11 20:55:48 +03:00
@property
def like_url(self):
"""RETURNS (bool): Whether the token resembles a URL."""
return Lexeme.c_check_flag(self.c.lex, LIKE_URL)
2015-08-09 00:37:44 +03:00
@property
def like_num(self):
"""RETURNS (bool): Whether the token resembles a number, e.g. "10.9",
"10", "ten", etc.
"""
return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)
@property
def like_email(self):
"""RETURNS (bool): Whether the token resembles an email address."""
return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)