mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
Make PrecomputableAffines work
This commit is contained in:
parent
61bc203f3f
commit
03a215c5fd
48
spacy/_ml.py
48
spacy/_ml.py
|
@ -30,6 +30,8 @@ from . import util
|
|||
import numpy
|
||||
import io
|
||||
|
||||
from blis.py import einsum
|
||||
|
||||
# TODO: Unset this once we don't want to support models previous models.
|
||||
import thinc.neural._classes.layernorm
|
||||
thinc.neural._classes.layernorm.set_compat_six_eight(False)
|
||||
|
@ -105,9 +107,7 @@ def _preprocess_doc(docs, drop=0.):
|
|||
def _init_for_precomputed(W, ops):
|
||||
if (W**2).sum() != 0.:
|
||||
return
|
||||
reshaped = W.reshape((W.shape[1], W.shape[0] * W.shape[2]))
|
||||
ops.xavier_uniform_init(reshaped)
|
||||
W[:] = reshaped.reshape(W.shape)
|
||||
ops.xavier_uniform_init(W, inplace=True)
|
||||
|
||||
|
||||
@describe.on_data(_set_dimensions_if_needed)
|
||||
|
@ -116,7 +116,7 @@ def _init_for_precomputed(W, ops):
|
|||
nF=Dimension("Number of features"),
|
||||
nO=Dimension("Output size"),
|
||||
W=Synapses("Weights matrix",
|
||||
lambda obj: (obj.nF, obj.nO, obj.nI),
|
||||
lambda obj: (obj.nI, obj.nF * obj.nO),
|
||||
lambda W, ops: _init_for_precomputed(W, ops)),
|
||||
b=Biases("Bias vector",
|
||||
lambda obj: (obj.nO,)),
|
||||
|
@ -130,31 +130,43 @@ class PrecomputableAffine(Model):
|
|||
self.nI = nI
|
||||
self.nF = nF
|
||||
|
||||
@property
|
||||
def nIF(self):
|
||||
return self.nI * self.nF
|
||||
|
||||
@property
|
||||
def nFO(self):
|
||||
return self.nF * self.nO
|
||||
|
||||
def begin_update(self, X, drop=0.):
|
||||
nN = X.shape[0]
|
||||
# X: (b, i)
|
||||
# Yf: (b, f, i)
|
||||
# Xf: (b, f, i)
|
||||
# Yf: (b, f, o)
|
||||
# dY: (b, o)
|
||||
# dYf: (b, f, o)
|
||||
#Yf = numpy.einsum('bi,foi->bfo', X, self.W)
|
||||
Yf = self.ops.xp.tensordot(
|
||||
X, self.W, axes=[[1], [2]])
|
||||
Yf += self.b
|
||||
# W: (i, fo)
|
||||
# Yf = numpy.einsum('bi,i_fo->b_fo', X, self.W)
|
||||
Yf = einsum('ab,bc->ac', X, self.W).reshape((nN, self.nF, self.nO))
|
||||
def backward(dY_ids, sgd=None):
|
||||
tensordot = self.ops.xp.tensordot
|
||||
dY, ids = dY_ids
|
||||
nB = ids.shape[0]
|
||||
Xf = X[ids]
|
||||
Xf = Xf.reshape((nB, self.nIF))
|
||||
|
||||
#dXf = numpy.einsum('bo,foi->bfi', dY, self.W)
|
||||
dXf = tensordot(dY, self.W, axes=[[1], [1]])
|
||||
#dW = numpy.einsum('bo,bfi->ofi', dY, Xf)
|
||||
dW = tensordot(dY, Xf, axes=[[0], [0]])
|
||||
# ofi -> foi
|
||||
self.d_W += dW.transpose((1, 0, 2))
|
||||
self.d_b += dY.sum(axis=0)
|
||||
dW_re = self.d_W.reshape((self.nIF, self.nO))
|
||||
W_re = self.d_W.reshape((self.nIF, self.nO))
|
||||
# bo,if_o->bif
|
||||
dXf = einsum('ab,cb->ac', dY, W_re)
|
||||
# b_if,bo->if_o
|
||||
einsum('ab,ac->bc', Xf, dY, out=dW_re)
|
||||
# self.d_b += dY.sum(axis=0)
|
||||
|
||||
if sgd is not None:
|
||||
sgd(self._mem.weights, self._mem.gradient, key=self.id)
|
||||
return dXf
|
||||
dXf = dXf.reshape((nB, self.nI, self.nF))
|
||||
dXf = dXf.transpose((0, 2, 1))
|
||||
return self.ops.xp.ascontiguousarray(dXf)
|
||||
return Yf, backward
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user