mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Add the spacy.models_with_nvtx_range.v1 callback (#9124)
* Add the spacy.models_with_nvtx_range.v1 callback This callback recursively adds NVTX ranges to the Models in each pipe in a pipeline. * Fix create_models_with_nvtx_range type signature * NVTX range: wrap models of all trainable pipes jointly This avoids that (sub-)models that are shared between pipes get wrapped twice. * NVTX range callback: make color configurable Add forward_color and backprop_color options to set the color for the NVTX range. * Move create_models_with_nvtx_range to spacy.ml * Update create_models_with_nvtx_range for thinc changes with_nvtx_range now updates an existing node, rather than returning a wrapper node. So, we can simply walk over the nodes and update them. * NVTX: use after_pipeline_creation in example
This commit is contained in:
parent
5facdb031c
commit
1f05f56433
|
@ -1 +1,2 @@
|
|||
from .callbacks import create_models_with_nvtx_range # noqa: F401
|
||||
from .models import * # noqa: F401, F403
|
||||
|
|
37
spacy/ml/callbacks.py
Normal file
37
spacy/ml/callbacks.py
Normal file
|
@ -0,0 +1,37 @@
|
|||
from functools import partial
|
||||
from typing import Type, Callable, TYPE_CHECKING
|
||||
|
||||
from thinc.layers import with_nvtx_range
|
||||
from thinc.model import Model, wrap_model_recursive
|
||||
|
||||
from ..util import registry
|
||||
|
||||
if TYPE_CHECKING:
|
||||
# This lets us add type hints for mypy etc. without causing circular imports
|
||||
from ..language import Language # noqa: F401
|
||||
|
||||
|
||||
@registry.callbacks("spacy.models_with_nvtx_range.v1")
|
||||
def create_models_with_nvtx_range(
|
||||
forward_color: int = -1, backprop_color: int = -1
|
||||
) -> Callable[["Language"], "Language"]:
|
||||
def models_with_nvtx_range(nlp):
|
||||
pipes = [
|
||||
pipe
|
||||
for _, pipe in nlp.components
|
||||
if hasattr(pipe, "is_trainable") and pipe.is_trainable
|
||||
]
|
||||
|
||||
# We need process all models jointly to avoid wrapping callbacks twice.
|
||||
models = Model(
|
||||
"wrap_with_nvtx_range",
|
||||
forward=lambda model, X, is_train: ...,
|
||||
layers=[pipe.model for pipe in pipes],
|
||||
)
|
||||
|
||||
for node in models.walk():
|
||||
with_nvtx_range(node, forward_color=forward_color, backprop_color=backprop_color)
|
||||
|
||||
return nlp
|
||||
|
||||
return models_with_nvtx_range
|
|
@ -817,6 +817,26 @@ from the specified model. Intended for use in `[initialize.before_init]`.
|
|||
| `vocab` | The pipeline to copy the vocab from. The vocab includes the lookups and vectors. Defaults to `None`. ~~Optional[str]~~ |
|
||||
| **CREATES** | A function that takes the current `nlp` object and modifies its `tokenizer` and `vocab`. ~~Callable[[Language], None]~~ |
|
||||
|
||||
### spacy.models_with_nvtx_range.v1 {#models_with_nvtx_range tag="registered function"}
|
||||
|
||||
> #### Example config
|
||||
>
|
||||
> ```ini
|
||||
> [nlp]
|
||||
> after_pipeline_creation = {"@callbacks":"spacy.models_with_nvtx_range.v1"}
|
||||
> ```
|
||||
|
||||
Recursively wrap the models in each pipe using [NVTX](https://nvidia.github.io/NVTX/)
|
||||
range markers. These markers aid in GPU profiling by attributing specific operations
|
||||
to a ~~Model~~'s forward or backprop passes.
|
||||
|
||||
| Name | Description |
|
||||
|------------------|------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `forward_color` | Color identifier for forward passes. Defaults to `-1`. ~~int~~ |
|
||||
| `backprop_color` | Color identifier for backpropagation passes. Defaults to `-1`. ~~int~~ |
|
||||
| **CREATES** | A function that takes the current `nlp` and wraps forward/backprop passes in NVTX ranges. ~~Callable[[Language], Language]~~ |
|
||||
|
||||
|
||||
## Training data and alignment {#gold source="spacy/training"}
|
||||
|
||||
### training.offsets_to_biluo_tags {#offsets_to_biluo_tags tag="function"}
|
||||
|
|
Loading…
Reference in New Issue
Block a user