mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-19 04:32:32 +03:00
Add progress on SpanPredictor component
This isn't working. There is a CUDA error in the torch code during initialization and it's not clear why.
This commit is contained in:
parent
a098849112
commit
2190cbc0e6
|
@ -14,7 +14,7 @@ from ..extract_spans import extract_spans
|
|||
import torch
|
||||
from thinc.util import xp2torch, torch2xp
|
||||
|
||||
from .coref_util import add_dummy
|
||||
from .coref_util import add_dummy, get_sentence_ids
|
||||
|
||||
@registry.architectures("spacy.Coref.v1")
|
||||
def build_wl_coref_model(
|
||||
|
@ -74,6 +74,33 @@ def build_wl_coref_model(
|
|||
# and just return words as spans.
|
||||
return coref_model
|
||||
|
||||
@registry.architectures("spacy.SpanPredictor.v1")
|
||||
def build_span_predictor(
|
||||
tok2vec: Model[List[Doc], List[Floats2d]],
|
||||
hidden_size: int = 1024,
|
||||
dist_emb_size: int = 64,
|
||||
):
|
||||
# TODO fix this
|
||||
try:
|
||||
dim = tok2vec.get_dim("nO")
|
||||
except ValueError:
|
||||
# happens with transformer listener
|
||||
dim = 768
|
||||
|
||||
with Model.define_operators({">>": chain, "&": tuplify}):
|
||||
# TODO fix device - should be automatic
|
||||
device = "cuda:0"
|
||||
span_predictor = PyTorchWrapper(
|
||||
SpanPredictor(hidden_size, dist_emb_size, device),
|
||||
convert_inputs=convert_span_predictor_inputs
|
||||
)
|
||||
# TODO use proper parameter for prefix
|
||||
head_info = build_get_head_metadata("coref_head_clusters")
|
||||
model = (tok2vec & head_info) >> span_predictor
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def convert_coref_scorer_inputs(
|
||||
model: Model,
|
||||
X: List[Floats2d],
|
||||
|
@ -84,6 +111,7 @@ def convert_coref_scorer_inputs(
|
|||
# TODO real batching
|
||||
X = X[0]
|
||||
|
||||
|
||||
word_features = xp2torch(X, requires_grad=is_train)
|
||||
def backprop(args: ArgsKwargs) -> List[Floats2d]:
|
||||
# convert to xp and wrap in list
|
||||
|
@ -116,10 +144,15 @@ def convert_span_predictor_inputs(
|
|||
X: Tuple[Ints1d, Floats2d, Ints1d],
|
||||
is_train: bool
|
||||
):
|
||||
sent_id = xp2torch(X[0], requires_grad=False)
|
||||
word_features = xp2torch(X[1], requires_grad=False)
|
||||
head_ids = xp2torch(X[2], requires_grad=False)
|
||||
argskwargs = ArgsKwargs(args=(sent_id, word_features, head_ids), kwargs={})
|
||||
tok2vec, (sent_ids, head_ids) = X
|
||||
# Normally we shoudl use the input is_train, but for these two it's not relevant
|
||||
sent_ids = xp2torch(sent_ids[0], requires_grad=False)
|
||||
head_ids = xp2torch(head_ids[0], requires_grad=False)
|
||||
|
||||
word_features = xp2torch(tok2vec[0], requires_grad=is_train)
|
||||
|
||||
argskwargs = ArgsKwargs(args=(sent_ids, word_features, head_ids), kwargs={})
|
||||
# TODO actually support backprop
|
||||
return argskwargs, lambda dX: []
|
||||
|
||||
# TODO This probably belongs in the component, not the model.
|
||||
|
@ -189,6 +222,36 @@ def _clusterize(
|
|||
clusters.append(sorted(cluster))
|
||||
return sorted(clusters)
|
||||
|
||||
def build_get_head_metadata(prefix):
|
||||
# TODO this name is awful, fix it
|
||||
model = Model("HeadDataProvider", attrs={"prefix": prefix}, forward=head_data_forward)
|
||||
return model
|
||||
|
||||
def head_data_forward(model, docs, is_train):
|
||||
"""A layer to generate the extra data needed for the span predictor.
|
||||
"""
|
||||
sent_ids = []
|
||||
head_ids = []
|
||||
prefix = model.attrs["prefix"]
|
||||
|
||||
for doc in docs:
|
||||
sids = model.ops.asarray2i(get_sentence_ids(doc))
|
||||
sent_ids.append(sids)
|
||||
heads = []
|
||||
for key, sg in doc.spans.items():
|
||||
if not key.startswith(prefix):
|
||||
continue
|
||||
for span in sg:
|
||||
# TODO warn if spans are more than one token
|
||||
heads.append(span[0].i)
|
||||
heads = model.ops.asarray2i(heads)
|
||||
head_ids.append(heads)
|
||||
|
||||
# each of these is a list with one entry per doc
|
||||
# backprop is just a placeholder
|
||||
# TODO it would probably be better to have a list of tuples than two lists of arrays
|
||||
return (sent_ids, head_ids), lambda x: []
|
||||
|
||||
|
||||
class CorefScorer(torch.nn.Module):
|
||||
"""Combines all coref modules together to find coreferent spans.
|
||||
|
@ -492,6 +555,7 @@ class SpanPredictor(torch.nn.Module):
|
|||
emb_ids[(emb_ids < 0) + (emb_ids > 126)] = 127
|
||||
# Obtain "same sentence" boolean mask, [n_heads, n_words]
|
||||
sent_id = torch.tensor(sent_id, device=words.device)
|
||||
heads_ids = heads_ids.long()
|
||||
same_sent = (sent_id[heads_ids].unsqueeze(1) == sent_id.unsqueeze(0))
|
||||
|
||||
# To save memory, only pass candidates from one sentence for each head
|
||||
|
@ -506,7 +570,7 @@ class SpanPredictor(torch.nn.Module):
|
|||
), dim=1)
|
||||
|
||||
lengths = same_sent.sum(dim=1)
|
||||
padding_mask = torch.arange(0, lengths.max(), device=words.device).unsqueeze(0)
|
||||
padding_mask = torch.arange(0, lengths.max().item(), device=words.device).unsqueeze(0)
|
||||
padding_mask = (padding_mask < lengths.unsqueeze(1)) # [n_heads, max_sent_len]
|
||||
|
||||
# [n_heads, max_sent_len, input_size * 2 + distance_emb_size]
|
||||
|
|
|
@ -39,6 +39,15 @@ def add_dummy(tensor: torch.Tensor, eps: bool = False):
|
|||
output = torch.cat((dummy, tensor), dim=1)
|
||||
return output
|
||||
|
||||
def get_sentence_ids(doc):
|
||||
out = []
|
||||
sent_id = -1
|
||||
for tok in doc:
|
||||
if tok.is_sent_start:
|
||||
sent_id += 1
|
||||
out.append(sent_id)
|
||||
return out
|
||||
|
||||
def doc2clusters(doc: Doc, prefix=DEFAULT_CLUSTER_PREFIX) -> MentionClusters:
|
||||
"""Given a doc, give the mention clusters.
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from typing import Iterable, Tuple, Optional, Dict, Callable, Any, List
|
||||
import warnings
|
||||
|
||||
from thinc.types import Floats2d, Ints2d
|
||||
from thinc.types import Floats2d, Floats3d, Ints2d
|
||||
from thinc.api import Model, Config, Optimizer, CategoricalCrossentropy
|
||||
from thinc.api import set_dropout_rate
|
||||
from itertools import islice
|
||||
|
@ -84,6 +84,7 @@ def make_coref(
|
|||
)
|
||||
|
||||
|
||||
|
||||
class CoreferenceResolver(TrainablePipe):
|
||||
"""Pipeline component for coreference resolution.
|
||||
|
||||
|
@ -208,7 +209,7 @@ class CoreferenceResolver(TrainablePipe):
|
|||
total_loss = 0
|
||||
|
||||
for eg in examples:
|
||||
# TODO does this even work?
|
||||
# TODO check this causes no issues (in practice it runs)
|
||||
preds, backprop = self.model.begin_update([eg.predicted])
|
||||
score_matrix, mention_idx = preds
|
||||
|
||||
|
@ -384,6 +385,52 @@ class CoreferenceResolver(TrainablePipe):
|
|||
return out
|
||||
|
||||
|
||||
default_span_predictor_config = """
|
||||
[model]
|
||||
@architectures = "spacy.SpanPredictor.v1"
|
||||
hidden_size = 1024
|
||||
dist_emb_size = 64
|
||||
|
||||
[model.tok2vec]
|
||||
@architectures = "spacy.Tok2Vec.v2"
|
||||
|
||||
[model.tok2vec.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = 64
|
||||
rows = [2000, 2000, 1000, 1000, 1000, 1000]
|
||||
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
|
||||
include_static_vectors = false
|
||||
|
||||
[model.tok2vec.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||
width = ${model.tok2vec.embed.width}
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
depth = 2
|
||||
"""
|
||||
DEFAULT_SPAN_PREDICTOR_MODEL = Config().from_str(default_span_predictor_config)["model"]
|
||||
|
||||
@Language.factory(
|
||||
"span_predictor",
|
||||
assigns=["doc.spans"],
|
||||
requires=["doc.spans"],
|
||||
default_config={
|
||||
"model": DEFAULT_SPAN_PREDICTOR_MODEL,
|
||||
"input_prefix": "coref_head_clusters",
|
||||
"output_prefix": "coref_clusters",
|
||||
},
|
||||
default_score_weights={"span_predictor_f": 1.0, "span_predictor_p": None, "span_predictor_r": None},
|
||||
)
|
||||
def make_span_predictor(
|
||||
nlp: Language,
|
||||
name: str,
|
||||
model,
|
||||
input_prefix: str = "coref_head_clusters",
|
||||
output_prefix: str = "coref_clusters",
|
||||
) -> "SpanPredictor":
|
||||
"""Create a SpanPredictor component."""
|
||||
return SpanPredictor(nlp.vocab, model, name, input_prefix=input_prefix, output_prefix=output_prefix)
|
||||
|
||||
class SpanPredictor(TrainablePipe):
|
||||
"""Pipeline component to resolve one-token spans to full spans.
|
||||
|
||||
|
@ -407,11 +454,41 @@ class SpanPredictor(TrainablePipe):
|
|||
|
||||
self.cfg = {}
|
||||
|
||||
def predict(self, docs: Iterable[Doc]):
|
||||
...
|
||||
def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
|
||||
# for now pretend there's just one doc
|
||||
|
||||
out = []
|
||||
for doc in docs:
|
||||
# TODO check shape here
|
||||
span_scores = self.model.predict(doc)
|
||||
span_scores = span_scores[0]
|
||||
# the information about clustering has to come from the input docs
|
||||
# first let's convert the scores to a list of span idxs
|
||||
start_scores = span_scores[:, :, 0]
|
||||
end_scores = span_scores[:, :, 1]
|
||||
starts = start_scores.argmax(axis=1)
|
||||
ends = end_scores.argmax(axis=1)
|
||||
|
||||
# TODO check start < end
|
||||
|
||||
# get the old clusters (shape will be preserved)
|
||||
clusters = doc2clusters(doc, self.input_prefix)
|
||||
cidx = 0
|
||||
out_clusters = []
|
||||
for cluster in clusters:
|
||||
ncluster = []
|
||||
for mention in cluster:
|
||||
ncluster.append( (starts[cidx], ends[cidx]) )
|
||||
cidx += 1
|
||||
out_clusters.append(ncluster)
|
||||
out.append(out_clusters)
|
||||
return out
|
||||
|
||||
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
|
||||
...
|
||||
for doc, clusters in zip(docs, clusters_by_doc):
|
||||
for ii, cluster in enumerate(clusters):
|
||||
spans = [doc[mm[0]:mm[1]] for mm in cluster]
|
||||
doc.spans[f"{self.output_prefix}_{ii}"] = spans
|
||||
|
||||
def update(
|
||||
self,
|
||||
|
@ -421,7 +498,33 @@ class SpanPredictor(TrainablePipe):
|
|||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None,
|
||||
) -> Dict[str, float]:
|
||||
...
|
||||
"""Learn from a batch of documents and gold-standard information,
|
||||
updating the pipe's model. Delegates to predict and get_loss.
|
||||
"""
|
||||
if losses is None:
|
||||
losses = {}
|
||||
losses.setdefault(self.name, 0.0)
|
||||
validate_examples(examples, "SpanPredictor.update")
|
||||
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
return losses
|
||||
set_dropout_rate(self.model, drop)
|
||||
|
||||
total_loss = 0
|
||||
|
||||
for eg in examples:
|
||||
preds, backprop = self.model.begin_update([eg.predicted])
|
||||
score_matrix, mention_idx = preds
|
||||
|
||||
loss, d_scores = self.get_loss([eg], score_matrix, mention_idx)
|
||||
total_loss += loss
|
||||
# TODO check shape here
|
||||
backprop((d_scores, mention_idx))
|
||||
|
||||
if sgd is not None:
|
||||
self.finish_update(sgd)
|
||||
losses[self.name] += total_loss
|
||||
return losses
|
||||
|
||||
def rehearse(
|
||||
self,
|
||||
|
@ -431,7 +534,12 @@ class SpanPredictor(TrainablePipe):
|
|||
sgd: Optional[Optimizer] = None,
|
||||
losses: Optional[Dict[str, float]] = None,
|
||||
) -> Dict[str, float]:
|
||||
...
|
||||
# TODO this should be added later
|
||||
raise NotImplementedError(
|
||||
Errors.E931.format(
|
||||
parent="SpanPredictor", method="add_label", name=self.name
|
||||
)
|
||||
)
|
||||
|
||||
def add_label(self, label: str) -> int:
|
||||
"""Technically this method should be implemented from TrainablePipe,
|
||||
|
@ -446,9 +554,39 @@ class SpanPredictor(TrainablePipe):
|
|||
def get_loss(
|
||||
self,
|
||||
examples: Iterable[Example],
|
||||
# TODO add necessary args
|
||||
span_scores: Floats3d,
|
||||
):
|
||||
...
|
||||
ops = self.model.ops
|
||||
|
||||
# NOTE This is doing fake batching, and should always get a list of one example
|
||||
assert len(examples) == 1, "Only fake batching is supported."
|
||||
# starts and ends are gold starts and ends (Ints1d)
|
||||
# span_scores is a Floats3d. What are the axes? mention x token x start/end
|
||||
|
||||
for eg in examples:
|
||||
|
||||
# get gold data
|
||||
gold = doc2clusters(eg.reference, self.output_prefix)
|
||||
# flatten the gold data
|
||||
starts = []
|
||||
ends = []
|
||||
for cluster in gold:
|
||||
for mention in cluster:
|
||||
starts.append(mention[0])
|
||||
ends.append(mention[1])
|
||||
|
||||
start_scores = span_scores[:, :, 0]
|
||||
end_scores = span_scores[:, :, 1]
|
||||
n_classes = start_scores.shape[1]
|
||||
start_probs = ops.softmax(start_scores, axis=1)
|
||||
end_probs = ops.softmax(end_scores, axis=1)
|
||||
start_targets = to_categorical(starts, n_classes)
|
||||
end_targets = to_categorical(ends, n_classes)
|
||||
start_grads = (start_probs - start_targets)
|
||||
end_grads = (end_probs - end_targets)
|
||||
grads = ops.xp.stack((start_grads, end_grads), axis=2)
|
||||
loss = float((grads ** 2).sum())
|
||||
return loss, grads
|
||||
|
||||
def initialize(
|
||||
self,
|
||||
|
@ -461,6 +599,12 @@ class SpanPredictor(TrainablePipe):
|
|||
X = []
|
||||
Y = []
|
||||
for ex in islice(get_examples(), 2):
|
||||
|
||||
if not ex.predicted.spans:
|
||||
# set placeholder for shape inference
|
||||
doc = ex.predicted
|
||||
assert len(doc) > 2, "Coreference requires at least two tokens"
|
||||
doc.spans[f"{self.input_prefix}_0"] = [doc[0:1], doc[1:2]]
|
||||
X.append(ex.predicted)
|
||||
Y.append(ex.reference)
|
||||
|
||||
|
@ -468,5 +612,31 @@ class SpanPredictor(TrainablePipe):
|
|||
self.model.initialize(X=X, Y=Y)
|
||||
|
||||
def score(self, examples, **kwargs):
|
||||
# TODO this will overlap significantly with coref, maybe factor into function
|
||||
...
|
||||
"""Score a batch of examples."""
|
||||
# TODO This is basically the same as the main coref component - factor out?
|
||||
|
||||
scores = []
|
||||
for metric in (b_cubed, muc, ceafe):
|
||||
evaluator = Evaluator(metric)
|
||||
|
||||
for ex in examples:
|
||||
# XXX this is the only different part
|
||||
p_clusters = doc2clusters(ex.predicted, self.output_prefix)
|
||||
g_clusters = doc2clusters(ex.reference, self.output_prefix)
|
||||
|
||||
cluster_info = get_cluster_info(p_clusters, g_clusters)
|
||||
|
||||
evaluator.update(cluster_info)
|
||||
|
||||
score = {
|
||||
"coref_f": evaluator.get_f1(),
|
||||
"coref_p": evaluator.get_precision(),
|
||||
"coref_r": evaluator.get_recall(),
|
||||
}
|
||||
scores.append(score)
|
||||
|
||||
out = {}
|
||||
for field in ("f", "p", "r"):
|
||||
fname = f"coref_{field}"
|
||||
out[fname] = mean([ss[fname] for ss in scores])
|
||||
return out
|
||||
|
|
Loading…
Reference in New Issue
Block a user