mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Pass tokvecs through as a list, instead of concatenated. Also fix padding
This commit is contained in:
parent
d52b65aec2
commit
3b7c108246
|
@ -134,13 +134,14 @@ def Tok2Vec(width, embed_size, preprocess=None):
|
|||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size//2)
|
||||
|
||||
tok2vec = (
|
||||
flatten
|
||||
>> (lower | prefix | suffix | shape )
|
||||
with_flatten(
|
||||
(lower | prefix | suffix | shape )
|
||||
>> Maxout(width, width*4, pieces=3)
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3)),
|
||||
pad=4, ndim=5)
|
||||
)
|
||||
if preprocess not in (False, None):
|
||||
tok2vec = preprocess >> tok2vec
|
||||
|
|
|
@ -179,10 +179,10 @@ class Language(object):
|
|||
tok2vec = self.pipeline[0]
|
||||
feats = tok2vec.doc2feats(docs)
|
||||
for proc in self.pipeline[1:]:
|
||||
tokvecs, bp_tokvecs = tok2vec.model.begin_update(feats, drop=drop)
|
||||
grads = {}
|
||||
d_tokvecs = proc.update((docs, tokvecs), golds, sgd=get_grads, drop=drop)
|
||||
bp_tokvecs(d_tokvecs, sgd=get_grads)
|
||||
tokvecses, bp_tokvecses = tok2vec.model.begin_update(feats, drop=drop)
|
||||
d_tokvecses = proc.update((docs, tokvecses), golds, sgd=get_grads, drop=drop)
|
||||
bp_tokvecses(d_tokvecses, sgd=get_grads)
|
||||
if sgd is not None:
|
||||
for key, (W, dW) in grads.items():
|
||||
# TODO: Unhack this when thinc improves
|
||||
|
|
|
@ -10,7 +10,7 @@ cimport numpy as np
|
|||
import cytoolz
|
||||
import util
|
||||
|
||||
from thinc.api import add, layerize, chain, clone, concatenate
|
||||
from thinc.api import add, layerize, chain, clone, concatenate, with_flatten
|
||||
from thinc.neural import Model, Maxout, Softmax, Affine
|
||||
from thinc.neural._classes.hash_embed import HashEmbed
|
||||
from thinc.neural.util import to_categorical
|
||||
|
@ -52,16 +52,16 @@ class TokenVectorEncoder(object):
|
|||
self.doc2feats = doc2feats()
|
||||
self.model = model
|
||||
|
||||
def __call__(self, docs, state=None):
|
||||
def __call__(self, docs):
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
tokvecs = self.predict(docs)
|
||||
self.set_annotations(docs, tokvecs)
|
||||
tokvecses = self.predict(docs)
|
||||
self.set_annotations(docs, tokvecses)
|
||||
|
||||
def pipe(self, stream, batch_size=128, n_threads=-1):
|
||||
for docs in cytoolz.partition_all(batch_size, stream):
|
||||
tokvecs = self.predict(docs)
|
||||
self.set_annotations(docs, tokvecs)
|
||||
tokvecses = self.predict(docs)
|
||||
self.set_annotations(docs, tokvecses)
|
||||
yield from docs
|
||||
|
||||
def predict(self, docs):
|
||||
|
@ -69,11 +69,9 @@ class TokenVectorEncoder(object):
|
|||
tokvecs = self.model(feats)
|
||||
return tokvecs
|
||||
|
||||
def set_annotations(self, docs, tokvecs):
|
||||
start = 0
|
||||
for doc in docs:
|
||||
doc.tensor = tokvecs[start : start + len(doc)]
|
||||
start += len(doc)
|
||||
def set_annotations(self, docs, tokvecses):
|
||||
for doc, tokvecs in zip(docs, tokvecses):
|
||||
doc.tensor = tokvecs
|
||||
|
||||
def begin_update(self, docs, drop=0.):
|
||||
if isinstance(docs, Doc):
|
||||
|
@ -136,7 +134,7 @@ class NeuralTagger(object):
|
|||
docs, tokvecs = docs_tokvecs
|
||||
|
||||
if self.model.nI is None:
|
||||
self.model.nI = tokvecs.shape[1]
|
||||
self.model.nI = tokvecs[0].shape[1]
|
||||
|
||||
tag_scores, bp_tag_scores = self.model.begin_update(tokvecs, drop=drop)
|
||||
loss, d_tag_scores = self.get_loss(docs, golds, tag_scores)
|
||||
|
@ -146,6 +144,7 @@ class NeuralTagger(object):
|
|||
return d_tokvecs
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
scores = self.model.ops.flatten(scores)
|
||||
tag_index = {tag: i for i, tag in enumerate(self.vocab.morphology.tag_names)}
|
||||
|
||||
cdef int idx = 0
|
||||
|
@ -161,7 +160,7 @@ class NeuralTagger(object):
|
|||
correct = self.model.ops.xp.array(correct, dtype='i')
|
||||
d_scores = scores - to_categorical(correct, nb_classes=scores.shape[1])
|
||||
loss = (d_scores**2).sum()
|
||||
d_scores = self.model.ops.asarray(d_scores, dtype='f')
|
||||
d_scores = self.model.ops.unflatten(d_scores, [len(d) for d in docs])
|
||||
return float(loss), d_scores
|
||||
|
||||
def begin_training(self, gold_tuples, pipeline=None):
|
||||
|
@ -179,9 +178,8 @@ class NeuralTagger(object):
|
|||
vocab.morphology = Morphology(vocab.strings, new_tag_map,
|
||||
vocab.morphology.lemmatizer)
|
||||
token_vector_width = pipeline[0].model.nO
|
||||
self.model = rebatch(1024, Softmax(self.vocab.morphology.n_tags,
|
||||
token_vector_width))
|
||||
#self.model = Softmax(self.vocab.morphology.n_tags)
|
||||
self.model = with_flatten(
|
||||
Softmax(self.vocab.morphology.n_tags, token_vector_width))
|
||||
|
||||
def use_params(self, params):
|
||||
with self.model.use_params(params):
|
||||
|
|
|
@ -311,7 +311,8 @@ cdef class Parser:
|
|||
return states
|
||||
|
||||
def update(self, docs_tokvecs, golds, drop=0., sgd=None):
|
||||
docs, tokvecs = docs_tokvecs
|
||||
docs, tokvec_lists = docs_tokvecs
|
||||
tokvecs = self.model[0].ops.flatten(tokvec_lists)
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
docs = [docs]
|
||||
golds = [golds]
|
||||
|
@ -324,7 +325,8 @@ cdef class Parser:
|
|||
state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream,
|
||||
drop)
|
||||
|
||||
todo = [(s, g) for s, g in zip(states, golds) if not s.is_final()]
|
||||
todo = [(s, g) for (s, g) in zip(states, golds)
|
||||
if not s.is_final()]
|
||||
|
||||
backprops = []
|
||||
cdef float loss = 0.
|
||||
|
@ -365,7 +367,7 @@ cdef class Parser:
|
|||
else:
|
||||
xp.add.at(d_tokvecs,
|
||||
token_ids, d_state_features * active_feats)
|
||||
return d_tokvecs
|
||||
return self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
|
||||
|
||||
def get_batch_model(self, batch_size, tokvecs, stream, dropout):
|
||||
lower, upper = self.model
|
||||
|
|
Loading…
Reference in New Issue
Block a user