Roll back changes to parser update

This commit is contained in:
Matthew Honnibal 2017-05-23 04:23:05 -05:00
parent 3959d778ac
commit 3f725ff7b3
2 changed files with 56 additions and 89 deletions

View File

@ -15,7 +15,7 @@ cdef class Parser:
cdef readonly object cfg cdef readonly object cfg
cdef void _parse_step(self, StateC* state, cdef void _parse_step(self, StateC* state,
int* token_ids, float* scores, int* is_valid, const float* feat_weights,
const float* feat_weights, int nr_class, int nr_feat) nogil int nr_class, int nr_feat) nogil
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil #cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil

View File

@ -19,7 +19,6 @@ import numpy.random
cimport numpy as np cimport numpy as np
from libcpp.vector cimport vector from libcpp.vector cimport vector
from libcpp.pair cimport pair
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t from libc.stdint cimport uint32_t, uint64_t
@ -69,9 +68,6 @@ def set_debug(val):
DEBUG = val DEBUG = val
ctypedef pair[int, StateC*] step_t
cdef class precompute_hiddens: cdef class precompute_hiddens:
'''Allow a model to be "primed" by pre-computing input features in bulk. '''Allow a model to be "primed" by pre-computing input features in bulk.
@ -123,9 +119,6 @@ cdef class precompute_hiddens:
self._is_synchronized = True self._is_synchronized = True
return <float*>self._cached.data return <float*>self._cached.data
def get_bp_hiddens(self):
return self._bp_hiddens
def __call__(self, X): def __call__(self, X):
return self.begin_update(X)[0] return self.begin_update(X)[0]
@ -315,6 +308,7 @@ cdef class Parser:
cdef: cdef:
precompute_hiddens state2vec precompute_hiddens state2vec
StateClass state StateClass state
Pool mem
const float* feat_weights const float* feat_weights
StateC* st StateC* st
vector[StateC*] next_step, this_step vector[StateC*] next_step, this_step
@ -342,14 +336,7 @@ cdef class Parser:
cdef int i cdef int i
while not next_step.empty(): while not next_step.empty():
for i in cython.parallel.prange(next_step.size(), num_threads=4, nogil=True): for i in cython.parallel.prange(next_step.size(), num_threads=4, nogil=True):
token_ids = <int*>calloc(nr_feat, sizeof(int)) self._parse_step(next_step[i], feat_weights, nr_class, nr_feat)
scores = <float*>calloc(nr_class, sizeof(float))
is_valid = <int*>calloc(nr_class, sizeof(int))
self._parse_step(next_step[i], token_ids, scores, is_valid,
feat_weights, nr_class, nr_feat)
free(is_valid)
free(scores)
free(token_ids)
this_step, next_step = next_step, this_step this_step, next_step = next_step, this_step
next_step.clear() next_step.clear()
for st in this_step: for st in this_step:
@ -358,8 +345,12 @@ cdef class Parser:
return states return states
cdef void _parse_step(self, StateC* state, cdef void _parse_step(self, StateC* state,
int* token_ids, float* scores, int* is_valid, const float* feat_weights,
const float* feat_weights, int nr_class, int nr_feat) nogil: int nr_class, int nr_feat) nogil:
token_ids = <int*>calloc(nr_feat, sizeof(int))
scores = <float*>calloc(nr_class, sizeof(float))
is_valid = <int*>calloc(nr_class, sizeof(int))
state.set_context_tokens(token_ids, nr_feat) state.set_context_tokens(token_ids, nr_feat)
sum_state_features(scores, sum_state_features(scores,
feat_weights, token_ids, 1, nr_feat, nr_class) feat_weights, token_ids, 1, nr_feat, nr_class)
@ -368,90 +359,66 @@ cdef class Parser:
action = self.moves.c[guess] action = self.moves.c[guess]
action.do(state, action.label) action.do(state, action.label)
def update(self, docs_tokvecs, golds, drop=0., sgd=None): free(is_valid)
cdef: free(scores)
precompute_hiddens state2vec free(token_ids)
StateClass state
const float* feat_weights
StateC* st
vector[step_t] next_step, this_step
cdef int[:, ::1] is_valid, token_ids
cdef float[:, ::1] scores, d_scores, costs
int nr_state, nr_feat, nr_class
def update(self, docs_tokvecs, golds, drop=0., sgd=None):
docs, tokvec_lists = docs_tokvecs docs, tokvec_lists = docs_tokvecs
tokvecs = self.model[0].ops.flatten(tokvec_lists)
if isinstance(docs, Doc) and isinstance(golds, GoldParse): if isinstance(docs, Doc) and isinstance(golds, GoldParse):
docs = [docs] docs = [docs]
golds = [golds] golds = [golds]
assert len(docs) == len(golds) == len(tokvec_lists)
nr_state = len(docs)
nr_feat = self.nr_feature
nr_class = self.moves.n_moves
token_ids = numpy.zeros((nr_state, nr_feat), dtype='i')
is_valid = numpy.zeros((nr_state, nr_class), dtype='i')
scores = numpy.zeros((nr_state, nr_class), dtype='f')
d_scores = numpy.zeros((nr_state, nr_class), dtype='f')
costs = numpy.zeros((nr_state, nr_class), dtype='f')
tokvecs = self.model[0].ops.flatten(tokvec_lists)
cuda_stream = get_cuda_stream() cuda_stream = get_cuda_stream()
state2vec, vec2scores = self.get_batch_model(nr_state, tokvecs,
cuda_stream, drop)
golds = [self.moves.preprocess_gold(g) for g in golds] golds = [self.moves.preprocess_gold(g) for g in golds]
states = self.moves.init_batch(docs) states = self.moves.init_batch(docs)
cdef step_t step state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream,
cdef int i drop)
for i, state in enumerate(states):
if not state.c.is_final(): todo = [(s, g) for (s, g) in zip(states, golds)
step.first = i if not s.is_final() and g is not None]
step.second = state.c
next_step.push_back(step)
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0], state, golds[i])
feat_weights = state2vec.get_feat_weights()
bp_hiddens = state2vec.get_bp_hiddens()
d_tokvecs = self.model[0].ops.allocate(tokvecs.shape)
backprops = [] backprops = []
cdef float loss = 0.
while len(todo) >= 3:
states, golds = zip(*todo)
while next_step.size(): token_ids = self.get_token_ids(states)
# Allocate these each step, so copy an be async vector, bp_vector = state2vec.begin_update(token_ids, drop=drop)
np_token_ids = numpy.zeros((nr_state, nr_feat), dtype='i') scores, bp_scores = vec2scores.begin_update(vector, drop=drop)
np_d_scores = numpy.zeros((nr_state, nr_class), dtype='f')
token_ids = np_token_ids
d_scores = np_d_scores
for step in next_step:
i = step.first
st = step.second
self._parse_step(st, &token_ids[i, 0],
&scores[i, 0], &is_valid[i, 0],
feat_weights, nr_class, nr_feat)
cpu_log_loss(&d_scores[i, 0],
&costs[i, 0], &is_valid[i, 0], &scores[i, 0], nr_class)
backprops.append((
get_async(cuda_stream, np_token_ids),
get_async(cuda_stream, np_d_scores)))
this_step, next_step = next_step, this_step
next_step.clear()
for step in this_step:
i = step.first
st = step.second
if not st.is_final():
next_step.push_back(step)
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0],
states[i], golds[i])
cuda_stream.synchronize()
for gpu_token_ids, gpu_d_scores in backprops:
d_features = bp_hiddens((gpu_d_scores, gpu_token_ids), sgd)
d_features *= (gpu_token_ids >= 0).reshape((nr_state, nr_feat, 1))
xp = self.model[0].ops.xp d_scores = self.get_batch_loss(states, golds, scores)
if hasattr(xp, 'scatter_add'): d_vector = bp_scores(d_scores, sgd=sgd)
xp.scatter_add(d_tokvecs, gpu_token_ids, d_features)
if isinstance(self.model[0].ops, CupyOps) \
and not isinstance(token_ids, state2vec.ops.xp.ndarray):
# Move token_ids and d_vector to CPU, asynchronously
backprops.append((
get_async(cuda_stream, token_ids),
get_async(cuda_stream, d_vector),
bp_vector
))
else: else:
xp.add.at(d_tokvecs, gpu_token_ids, d_features) backprops.append((token_ids, d_vector, bp_vector))
self.transition_batch(states, scores)
todo = [st for st in todo if not st[0].is_final()]
# Tells CUDA to block, so our async copies complete.
if cuda_stream is not None:
cuda_stream.synchronize()
d_tokvecs = state2vec.ops.allocate(tokvecs.shape)
xp = state2vec.ops.xp # Handle for numpy/cupy
for token_ids, d_vector, bp_vector in backprops:
d_state_features = bp_vector(d_vector, sgd=sgd)
active_feats = token_ids * (token_ids >= 0)
active_feats = active_feats.reshape((token_ids.shape[0], token_ids.shape[1], 1))
if hasattr(xp, 'scatter_add'):
xp.scatter_add(d_tokvecs,
token_ids, d_state_features * active_feats)
else:
xp.add.at(d_tokvecs,
token_ids, d_state_features * active_feats)
return self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs]) return self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
def get_batch_model(self, batch_size, tokvecs, stream, dropout): def get_batch_model(self, batch_size, tokvecs, stream, dropout):