mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Roll back changes to parser update
This commit is contained in:
parent
3959d778ac
commit
3f725ff7b3
|
@ -15,7 +15,7 @@ cdef class Parser:
|
|||
cdef readonly object cfg
|
||||
|
||||
cdef void _parse_step(self, StateC* state,
|
||||
int* token_ids, float* scores, int* is_valid,
|
||||
const float* feat_weights, int nr_class, int nr_feat) nogil
|
||||
const float* feat_weights,
|
||||
int nr_class, int nr_feat) nogil
|
||||
|
||||
#cdef int parseC(self, TokenC* tokens, int length, int nr_feat) nogil
|
||||
|
|
|
@ -19,7 +19,6 @@ import numpy.random
|
|||
cimport numpy as np
|
||||
|
||||
from libcpp.vector cimport vector
|
||||
from libcpp.pair cimport pair
|
||||
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
|
||||
from cpython.exc cimport PyErr_CheckSignals
|
||||
from libc.stdint cimport uint32_t, uint64_t
|
||||
|
@ -69,9 +68,6 @@ def set_debug(val):
|
|||
DEBUG = val
|
||||
|
||||
|
||||
ctypedef pair[int, StateC*] step_t
|
||||
|
||||
|
||||
cdef class precompute_hiddens:
|
||||
'''Allow a model to be "primed" by pre-computing input features in bulk.
|
||||
|
||||
|
@ -123,9 +119,6 @@ cdef class precompute_hiddens:
|
|||
self._is_synchronized = True
|
||||
return <float*>self._cached.data
|
||||
|
||||
def get_bp_hiddens(self):
|
||||
return self._bp_hiddens
|
||||
|
||||
def __call__(self, X):
|
||||
return self.begin_update(X)[0]
|
||||
|
||||
|
@ -315,6 +308,7 @@ cdef class Parser:
|
|||
cdef:
|
||||
precompute_hiddens state2vec
|
||||
StateClass state
|
||||
Pool mem
|
||||
const float* feat_weights
|
||||
StateC* st
|
||||
vector[StateC*] next_step, this_step
|
||||
|
@ -342,14 +336,7 @@ cdef class Parser:
|
|||
cdef int i
|
||||
while not next_step.empty():
|
||||
for i in cython.parallel.prange(next_step.size(), num_threads=4, nogil=True):
|
||||
token_ids = <int*>calloc(nr_feat, sizeof(int))
|
||||
scores = <float*>calloc(nr_class, sizeof(float))
|
||||
is_valid = <int*>calloc(nr_class, sizeof(int))
|
||||
self._parse_step(next_step[i], token_ids, scores, is_valid,
|
||||
feat_weights, nr_class, nr_feat)
|
||||
free(is_valid)
|
||||
free(scores)
|
||||
free(token_ids)
|
||||
self._parse_step(next_step[i], feat_weights, nr_class, nr_feat)
|
||||
this_step, next_step = next_step, this_step
|
||||
next_step.clear()
|
||||
for st in this_step:
|
||||
|
@ -358,8 +345,12 @@ cdef class Parser:
|
|||
return states
|
||||
|
||||
cdef void _parse_step(self, StateC* state,
|
||||
int* token_ids, float* scores, int* is_valid,
|
||||
const float* feat_weights, int nr_class, int nr_feat) nogil:
|
||||
const float* feat_weights,
|
||||
int nr_class, int nr_feat) nogil:
|
||||
token_ids = <int*>calloc(nr_feat, sizeof(int))
|
||||
scores = <float*>calloc(nr_class, sizeof(float))
|
||||
is_valid = <int*>calloc(nr_class, sizeof(int))
|
||||
|
||||
state.set_context_tokens(token_ids, nr_feat)
|
||||
sum_state_features(scores,
|
||||
feat_weights, token_ids, 1, nr_feat, nr_class)
|
||||
|
@ -368,90 +359,66 @@ cdef class Parser:
|
|||
action = self.moves.c[guess]
|
||||
action.do(state, action.label)
|
||||
|
||||
def update(self, docs_tokvecs, golds, drop=0., sgd=None):
|
||||
cdef:
|
||||
precompute_hiddens state2vec
|
||||
StateClass state
|
||||
const float* feat_weights
|
||||
StateC* st
|
||||
vector[step_t] next_step, this_step
|
||||
cdef int[:, ::1] is_valid, token_ids
|
||||
cdef float[:, ::1] scores, d_scores, costs
|
||||
int nr_state, nr_feat, nr_class
|
||||
free(is_valid)
|
||||
free(scores)
|
||||
free(token_ids)
|
||||
|
||||
def update(self, docs_tokvecs, golds, drop=0., sgd=None):
|
||||
docs, tokvec_lists = docs_tokvecs
|
||||
tokvecs = self.model[0].ops.flatten(tokvec_lists)
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
docs = [docs]
|
||||
golds = [golds]
|
||||
assert len(docs) == len(golds) == len(tokvec_lists)
|
||||
|
||||
nr_state = len(docs)
|
||||
nr_feat = self.nr_feature
|
||||
nr_class = self.moves.n_moves
|
||||
|
||||
token_ids = numpy.zeros((nr_state, nr_feat), dtype='i')
|
||||
is_valid = numpy.zeros((nr_state, nr_class), dtype='i')
|
||||
scores = numpy.zeros((nr_state, nr_class), dtype='f')
|
||||
d_scores = numpy.zeros((nr_state, nr_class), dtype='f')
|
||||
costs = numpy.zeros((nr_state, nr_class), dtype='f')
|
||||
|
||||
tokvecs = self.model[0].ops.flatten(tokvec_lists)
|
||||
cuda_stream = get_cuda_stream()
|
||||
state2vec, vec2scores = self.get_batch_model(nr_state, tokvecs,
|
||||
cuda_stream, drop)
|
||||
|
||||
golds = [self.moves.preprocess_gold(g) for g in golds]
|
||||
|
||||
states = self.moves.init_batch(docs)
|
||||
cdef step_t step
|
||||
cdef int i
|
||||
for i, state in enumerate(states):
|
||||
if not state.c.is_final():
|
||||
step.first = i
|
||||
step.second = state.c
|
||||
next_step.push_back(step)
|
||||
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0], state, golds[i])
|
||||
state2vec, vec2scores = self.get_batch_model(len(states), tokvecs, cuda_stream,
|
||||
drop)
|
||||
|
||||
todo = [(s, g) for (s, g) in zip(states, golds)
|
||||
if not s.is_final() and g is not None]
|
||||
|
||||
feat_weights = state2vec.get_feat_weights()
|
||||
bp_hiddens = state2vec.get_bp_hiddens()
|
||||
d_tokvecs = self.model[0].ops.allocate(tokvecs.shape)
|
||||
backprops = []
|
||||
cdef float loss = 0.
|
||||
while len(todo) >= 3:
|
||||
states, golds = zip(*todo)
|
||||
|
||||
while next_step.size():
|
||||
# Allocate these each step, so copy an be async
|
||||
np_token_ids = numpy.zeros((nr_state, nr_feat), dtype='i')
|
||||
np_d_scores = numpy.zeros((nr_state, nr_class), dtype='f')
|
||||
token_ids = np_token_ids
|
||||
d_scores = np_d_scores
|
||||
for step in next_step:
|
||||
i = step.first
|
||||
st = step.second
|
||||
self._parse_step(st, &token_ids[i, 0],
|
||||
&scores[i, 0], &is_valid[i, 0],
|
||||
feat_weights, nr_class, nr_feat)
|
||||
cpu_log_loss(&d_scores[i, 0],
|
||||
&costs[i, 0], &is_valid[i, 0], &scores[i, 0], nr_class)
|
||||
backprops.append((
|
||||
get_async(cuda_stream, np_token_ids),
|
||||
get_async(cuda_stream, np_d_scores)))
|
||||
this_step, next_step = next_step, this_step
|
||||
next_step.clear()
|
||||
for step in this_step:
|
||||
i = step.first
|
||||
st = step.second
|
||||
if not st.is_final():
|
||||
next_step.push_back(step)
|
||||
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0],
|
||||
states[i], golds[i])
|
||||
cuda_stream.synchronize()
|
||||
for gpu_token_ids, gpu_d_scores in backprops:
|
||||
d_features = bp_hiddens((gpu_d_scores, gpu_token_ids), sgd)
|
||||
d_features *= (gpu_token_ids >= 0).reshape((nr_state, nr_feat, 1))
|
||||
token_ids = self.get_token_ids(states)
|
||||
vector, bp_vector = state2vec.begin_update(token_ids, drop=drop)
|
||||
scores, bp_scores = vec2scores.begin_update(vector, drop=drop)
|
||||
|
||||
xp = self.model[0].ops.xp
|
||||
if hasattr(xp, 'scatter_add'):
|
||||
xp.scatter_add(d_tokvecs, gpu_token_ids, d_features)
|
||||
d_scores = self.get_batch_loss(states, golds, scores)
|
||||
d_vector = bp_scores(d_scores, sgd=sgd)
|
||||
|
||||
if isinstance(self.model[0].ops, CupyOps) \
|
||||
and not isinstance(token_ids, state2vec.ops.xp.ndarray):
|
||||
# Move token_ids and d_vector to CPU, asynchronously
|
||||
backprops.append((
|
||||
get_async(cuda_stream, token_ids),
|
||||
get_async(cuda_stream, d_vector),
|
||||
bp_vector
|
||||
))
|
||||
else:
|
||||
xp.add.at(d_tokvecs, gpu_token_ids, d_features)
|
||||
backprops.append((token_ids, d_vector, bp_vector))
|
||||
self.transition_batch(states, scores)
|
||||
todo = [st for st in todo if not st[0].is_final()]
|
||||
# Tells CUDA to block, so our async copies complete.
|
||||
if cuda_stream is not None:
|
||||
cuda_stream.synchronize()
|
||||
d_tokvecs = state2vec.ops.allocate(tokvecs.shape)
|
||||
xp = state2vec.ops.xp # Handle for numpy/cupy
|
||||
for token_ids, d_vector, bp_vector in backprops:
|
||||
d_state_features = bp_vector(d_vector, sgd=sgd)
|
||||
active_feats = token_ids * (token_ids >= 0)
|
||||
active_feats = active_feats.reshape((token_ids.shape[0], token_ids.shape[1], 1))
|
||||
if hasattr(xp, 'scatter_add'):
|
||||
xp.scatter_add(d_tokvecs,
|
||||
token_ids, d_state_features * active_feats)
|
||||
else:
|
||||
xp.add.at(d_tokvecs,
|
||||
token_ids, d_state_features * active_feats)
|
||||
return self.model[0].ops.unflatten(d_tokvecs, [len(d) for d in docs])
|
||||
|
||||
def get_batch_model(self, batch_size, tokvecs, stream, dropout):
|
||||
|
|
Loading…
Reference in New Issue
Block a user