mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Clean up
This commit is contained in:
parent
9c8b2524fe
commit
42f0e4c946
|
@ -8,7 +8,7 @@ from contextlib import contextmanager
|
|||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import warnings
|
||||
from thinc.api import Model, get_current_ops, Config, require_gpu, Optimizer
|
||||
from thinc.api import Model, get_current_ops, Config, Optimizer
|
||||
import srsly
|
||||
import multiprocessing as mp
|
||||
from itertools import chain, cycle
|
||||
|
@ -1153,10 +1153,9 @@ class Language:
|
|||
get_examples: Optional[Callable[[], Iterable[Example]]] = None,
|
||||
*,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
device: int = -1,
|
||||
) -> Optimizer:
|
||||
warnings.warn(Warnings.W089, DeprecationWarning)
|
||||
return self.initialize(get_examples, sgd=sgd, device=device)
|
||||
return self.initialize(get_examples, sgd=sgd)
|
||||
|
||||
def initialize(
|
||||
self,
|
||||
|
@ -1169,7 +1168,7 @@ class Language:
|
|||
|
||||
get_examples (Callable[[], Iterable[Example]]): Optional function that
|
||||
returns gold-standard Example objects.
|
||||
sgd (Optional[Optimizer]): An optimizer to use for updates. If not
|
||||
sgd (Optional[Optimizer]): An optimizer to use for updates. If not
|
||||
provided, will be created using the .create_optimizer() method.
|
||||
RETURNS (thinc.api.Optimizer): The optimizer.
|
||||
|
||||
|
@ -1220,7 +1219,6 @@ class Language:
|
|||
proc.initialize, p_settings, section="components", name=name
|
||||
)
|
||||
proc.initialize(
|
||||
get_examples, pipeline=self.pipeline
|
||||
get_examples,
|
||||
pipeline=self.pipeline,
|
||||
**p_settings,
|
||||
|
@ -1315,7 +1313,7 @@ class Language:
|
|||
n_words = sum(len(doc) for doc in docs)
|
||||
results["speed"] = n_words / (end_time - start_time)
|
||||
return results
|
||||
|
||||
|
||||
def create_optimizer(self):
|
||||
"""Create an optimizer, usually using the [training.optimizer] config."""
|
||||
subconfig = {"optimizer": self.config["training"]["optimizer"]}
|
||||
|
|
|
@ -132,7 +132,7 @@ cdef class DependencyParser(Parser):
|
|||
labeller.model.set_dim("nO", len(self.labels))
|
||||
if labeller.model.has_ref("output_layer"):
|
||||
labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
|
||||
labeller.initialize(get_examples, pipeline=pipeline, sgd=sgd)
|
||||
labeller.initialize(get_examples, pipeline=pipeline)
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
|
|
|
@ -58,7 +58,7 @@ class Sentencizer(Pipe):
|
|||
else:
|
||||
self.punct_chars = set(self.default_punct_chars)
|
||||
|
||||
def initialize(self, get_examples, pipeline=None, sgd=None):
|
||||
def initialize(self, get_examples, pipeline=None):
|
||||
pass
|
||||
|
||||
def __call__(self, doc):
|
||||
|
|
|
@ -107,7 +107,7 @@ def validate_init_settings(
|
|||
*,
|
||||
section: Optional[str] = None,
|
||||
name: str = "",
|
||||
exclude: Iterable[str] = ("get_examples", "nlp", "pipeline", "sgd"),
|
||||
exclude: Iterable[str] = ("get_examples", "nlp", "pipeline"),
|
||||
) -> Dict[str, Any]:
|
||||
"""Validate initialization settings against the expected arguments in
|
||||
the method signature. Will parse values if possible (e.g. int to string)
|
||||
|
|
|
@ -55,7 +55,7 @@ def init_nlp(config: Config, *, use_gpu: int = -1, silent: bool = True) -> Langu
|
|||
msg.info(f"Resuming training for: {resume_components}")
|
||||
nlp.resume_training(sgd=optimizer)
|
||||
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
|
||||
nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer, settings=I)
|
||||
nlp.initialize(lambda: train_corpus(nlp), settings=I)
|
||||
msg.good("Initialized pipeline components")
|
||||
# Verify the config after calling 'initialize' to ensure labels
|
||||
# are properly initialized
|
||||
|
|
Loading…
Reference in New Issue
Block a user