mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
Clean up
This commit is contained in:
parent
9c8b2524fe
commit
42f0e4c946
|
@ -8,7 +8,7 @@ from contextlib import contextmanager
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import warnings
|
import warnings
|
||||||
from thinc.api import Model, get_current_ops, Config, require_gpu, Optimizer
|
from thinc.api import Model, get_current_ops, Config, Optimizer
|
||||||
import srsly
|
import srsly
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
from itertools import chain, cycle
|
from itertools import chain, cycle
|
||||||
|
@ -1153,10 +1153,9 @@ class Language:
|
||||||
get_examples: Optional[Callable[[], Iterable[Example]]] = None,
|
get_examples: Optional[Callable[[], Iterable[Example]]] = None,
|
||||||
*,
|
*,
|
||||||
sgd: Optional[Optimizer] = None,
|
sgd: Optional[Optimizer] = None,
|
||||||
device: int = -1,
|
|
||||||
) -> Optimizer:
|
) -> Optimizer:
|
||||||
warnings.warn(Warnings.W089, DeprecationWarning)
|
warnings.warn(Warnings.W089, DeprecationWarning)
|
||||||
return self.initialize(get_examples, sgd=sgd, device=device)
|
return self.initialize(get_examples, sgd=sgd)
|
||||||
|
|
||||||
def initialize(
|
def initialize(
|
||||||
self,
|
self,
|
||||||
|
@ -1220,7 +1219,6 @@ class Language:
|
||||||
proc.initialize, p_settings, section="components", name=name
|
proc.initialize, p_settings, section="components", name=name
|
||||||
)
|
)
|
||||||
proc.initialize(
|
proc.initialize(
|
||||||
get_examples, pipeline=self.pipeline
|
|
||||||
get_examples,
|
get_examples,
|
||||||
pipeline=self.pipeline,
|
pipeline=self.pipeline,
|
||||||
**p_settings,
|
**p_settings,
|
||||||
|
|
|
@ -132,7 +132,7 @@ cdef class DependencyParser(Parser):
|
||||||
labeller.model.set_dim("nO", len(self.labels))
|
labeller.model.set_dim("nO", len(self.labels))
|
||||||
if labeller.model.has_ref("output_layer"):
|
if labeller.model.has_ref("output_layer"):
|
||||||
labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
|
labeller.model.get_ref("output_layer").set_dim("nO", len(self.labels))
|
||||||
labeller.initialize(get_examples, pipeline=pipeline, sgd=sgd)
|
labeller.initialize(get_examples, pipeline=pipeline)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def labels(self):
|
def labels(self):
|
||||||
|
|
|
@ -58,7 +58,7 @@ class Sentencizer(Pipe):
|
||||||
else:
|
else:
|
||||||
self.punct_chars = set(self.default_punct_chars)
|
self.punct_chars = set(self.default_punct_chars)
|
||||||
|
|
||||||
def initialize(self, get_examples, pipeline=None, sgd=None):
|
def initialize(self, get_examples, pipeline=None):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def __call__(self, doc):
|
def __call__(self, doc):
|
||||||
|
|
|
@ -107,7 +107,7 @@ def validate_init_settings(
|
||||||
*,
|
*,
|
||||||
section: Optional[str] = None,
|
section: Optional[str] = None,
|
||||||
name: str = "",
|
name: str = "",
|
||||||
exclude: Iterable[str] = ("get_examples", "nlp", "pipeline", "sgd"),
|
exclude: Iterable[str] = ("get_examples", "nlp", "pipeline"),
|
||||||
) -> Dict[str, Any]:
|
) -> Dict[str, Any]:
|
||||||
"""Validate initialization settings against the expected arguments in
|
"""Validate initialization settings against the expected arguments in
|
||||||
the method signature. Will parse values if possible (e.g. int to string)
|
the method signature. Will parse values if possible (e.g. int to string)
|
||||||
|
|
|
@ -55,7 +55,7 @@ def init_nlp(config: Config, *, use_gpu: int = -1, silent: bool = True) -> Langu
|
||||||
msg.info(f"Resuming training for: {resume_components}")
|
msg.info(f"Resuming training for: {resume_components}")
|
||||||
nlp.resume_training(sgd=optimizer)
|
nlp.resume_training(sgd=optimizer)
|
||||||
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
|
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
|
||||||
nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer, settings=I)
|
nlp.initialize(lambda: train_corpus(nlp), settings=I)
|
||||||
msg.good("Initialized pipeline components")
|
msg.good("Initialized pipeline components")
|
||||||
# Verify the config after calling 'initialize' to ensure labels
|
# Verify the config after calling 'initialize' to ensure labels
|
||||||
# are properly initialized
|
# are properly initialized
|
||||||
|
|
Loading…
Reference in New Issue
Block a user