mirror of
https://github.com/explosion/spaCy.git
synced 2025-03-31 07:14:13 +03:00
obtain sentence for each mention
This commit is contained in:
parent
97241a3ed7
commit
4392c01b7b
examples/pipeline/wiki_entity_linking
|
@ -70,7 +70,7 @@ def is_dev(file_name):
|
|||
return file_name.endswith("3.txt")
|
||||
|
||||
|
||||
def evaluate(predictions, golds, to_print=True):
|
||||
def evaluate(predictions, golds, to_print=True, times_hundred=True):
|
||||
if len(predictions) != len(golds):
|
||||
raise ValueError("predictions and gold entities should have the same length")
|
||||
|
||||
|
@ -101,8 +101,11 @@ def evaluate(predictions, golds, to_print=True):
|
|||
print("fp", fp)
|
||||
print("fn", fn)
|
||||
|
||||
precision = 100 * tp / (tp + fp + 0.0000001)
|
||||
recall = 100 * tp / (tp + fn + 0.0000001)
|
||||
precision = tp / (tp + fp + 0.0000001)
|
||||
recall = tp / (tp + fn + 0.0000001)
|
||||
if times_hundred:
|
||||
precision = precision*100
|
||||
recall = recall*100
|
||||
fscore = 2 * recall * precision / (recall + precision + 0.0000001)
|
||||
|
||||
accuracy = corrects / (corrects + incorrects)
|
||||
|
|
|
@ -20,6 +20,7 @@ from thinc.t2t import ParametricAttention
|
|||
from thinc.misc import Residual
|
||||
from thinc.misc import LayerNorm as LN
|
||||
|
||||
from spacy.matcher import PhraseMatcher
|
||||
from spacy.tokens import Doc
|
||||
|
||||
""" TODO: this code needs to be implemented in pipes.pyx"""
|
||||
|
@ -27,13 +28,16 @@ from spacy.tokens import Doc
|
|||
|
||||
class EL_Model:
|
||||
|
||||
PRINT_INSPECT = False
|
||||
PRINT_TRAIN = False
|
||||
EPS = 0.0000000005
|
||||
CUTOFF = 0.5
|
||||
|
||||
BATCH_SIZE = 5
|
||||
|
||||
INPUT_DIM = 300
|
||||
DOC_CUTOFF = 300 # number of characters from the doc context
|
||||
INPUT_DIM = 300 # dimension of pre-trained vectors
|
||||
|
||||
HIDDEN_1_WIDTH = 32 # 10
|
||||
HIDDEN_2_WIDTH = 32 # 6
|
||||
DESC_WIDTH = 64 # 4
|
||||
|
@ -58,11 +62,20 @@ class EL_Model:
|
|||
# raise errors instead of runtime warnings in case of int/float overflow
|
||||
np.seterr(all='raise')
|
||||
|
||||
train_ent, train_gold, train_desc, train_article, train_texts = self._get_training_data(training_dir,
|
||||
entity_descr_output,
|
||||
False,
|
||||
trainlimit,
|
||||
to_print=False)
|
||||
train_ent, train_gold, train_desc, train_art, train_art_texts, train_sent, train_sent_texts = \
|
||||
self._get_training_data(training_dir, entity_descr_output, False, trainlimit, to_print=False)
|
||||
|
||||
# inspect data
|
||||
if self.PRINT_INSPECT:
|
||||
for entity in train_ent:
|
||||
print("entity", entity)
|
||||
print("gold", train_gold[entity])
|
||||
print("desc", train_desc[entity])
|
||||
print("sentence ID", train_sent[entity])
|
||||
print("sentence text", train_sent_texts[train_sent[entity]])
|
||||
print("article ID", train_art[entity])
|
||||
print("article text", train_art_texts[train_art[entity]])
|
||||
print()
|
||||
|
||||
train_pos_entities = [k for k,v in train_gold.items() if v]
|
||||
train_neg_entities = [k for k,v in train_gold.items() if not v]
|
||||
|
@ -70,6 +83,10 @@ class EL_Model:
|
|||
train_pos_count = len(train_pos_entities)
|
||||
train_neg_count = len(train_neg_entities)
|
||||
|
||||
if to_print:
|
||||
print()
|
||||
print("Upsampling, original training instances pos/neg:", train_pos_count, train_neg_count)
|
||||
|
||||
# upsample positives to 50-50 distribution
|
||||
while train_pos_count < train_neg_count:
|
||||
train_ent.append(random.choice(train_pos_entities))
|
||||
|
@ -82,11 +99,8 @@ class EL_Model:
|
|||
|
||||
shuffle(train_ent)
|
||||
|
||||
dev_ent, dev_gold, dev_desc, dev_article, dev_texts = self._get_training_data(training_dir,
|
||||
entity_descr_output,
|
||||
True,
|
||||
devlimit,
|
||||
to_print=False)
|
||||
dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts = \
|
||||
self._get_training_data(training_dir, entity_descr_output, True, devlimit, to_print=False)
|
||||
shuffle(dev_ent)
|
||||
|
||||
dev_pos_count = len([g for g in dev_gold.values() if g])
|
||||
|
@ -94,20 +108,16 @@ class EL_Model:
|
|||
|
||||
self._begin_training()
|
||||
|
||||
print()
|
||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_article, dev_texts, print_string="dev_random", calc_random=True)
|
||||
print()
|
||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_article, dev_texts, print_string="dev_pre", avg=True)
|
||||
|
||||
if to_print:
|
||||
print()
|
||||
print("Training on", len(train_ent), "entities in", len(train_texts), "articles")
|
||||
print("Training instances pos/neg", train_pos_count, train_neg_count)
|
||||
print("Training on", len(train_ent), "entities in", len(train_art_texts), "articles")
|
||||
print("Training instances pos/neg:", train_pos_count, train_neg_count)
|
||||
print()
|
||||
print("Dev test on", len(dev_ent), "entities in", len(dev_texts), "articles")
|
||||
print("Dev instances pos/neg", dev_pos_count, dev_neg_count)
|
||||
print("Dev test on", len(dev_ent), "entities in", len(dev_art_texts), "articles")
|
||||
print("Dev instances pos/neg:", dev_pos_count, dev_neg_count)
|
||||
print()
|
||||
print(" CUTOFF", self.CUTOFF)
|
||||
print(" DOC_CUTOFF", self.DOC_CUTOFF)
|
||||
print(" INPUT_DIM", self.INPUT_DIM)
|
||||
print(" HIDDEN_1_WIDTH", self.HIDDEN_1_WIDTH)
|
||||
print(" DESC_WIDTH", self.DESC_WIDTH)
|
||||
|
@ -116,6 +126,10 @@ class EL_Model:
|
|||
print(" DROP", self.DROP)
|
||||
print()
|
||||
|
||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, print_string="dev_random", calc_random=True)
|
||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, print_string="dev_pre", avg=True)
|
||||
print()
|
||||
|
||||
start = 0
|
||||
stop = min(self.BATCH_SIZE, len(train_ent))
|
||||
processed = 0
|
||||
|
@ -125,10 +139,10 @@ class EL_Model:
|
|||
|
||||
golds = [train_gold[e] for e in next_batch]
|
||||
descs = [train_desc[e] for e in next_batch]
|
||||
articles = [train_texts[train_article[e]] for e in next_batch]
|
||||
articles = [train_art_texts[train_art[e]] for e in next_batch]
|
||||
|
||||
self.update(entities=next_batch, golds=golds, descs=descs, texts=articles)
|
||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_article, dev_texts, print_string="dev_inter", avg=True)
|
||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, print_string="dev_inter", avg=True)
|
||||
|
||||
processed += len(next_batch)
|
||||
|
||||
|
@ -151,7 +165,7 @@ class EL_Model:
|
|||
predictions = self._predict(entities=entities, article_docs=article_docs, desc_docs=desc_docs, avg=avg)
|
||||
|
||||
# TODO: combine with prior probability
|
||||
p, r, f, acc = run_el.evaluate(predictions, golds, to_print=False)
|
||||
p, r, f, acc = run_el.evaluate(predictions, golds, to_print=False, times_hundred=False)
|
||||
loss, gradient = self.get_loss(self.model.ops.asarray(predictions), self.model.ops.asarray(golds))
|
||||
|
||||
print("p/r/F/acc/loss", print_string, round(p, 1), round(r, 1), round(f, 1), round(acc, 2), round(loss, 5))
|
||||
|
@ -288,14 +302,18 @@ class EL_Model:
|
|||
collect_incorrect=True)
|
||||
|
||||
local_vectors = list() # TODO: local vectors
|
||||
text_by_article = dict()
|
||||
|
||||
entities = set()
|
||||
gold_by_entity = dict()
|
||||
desc_by_entity = dict()
|
||||
article_by_entity = dict()
|
||||
entities = list()
|
||||
text_by_article = dict()
|
||||
sentence_by_entity = dict()
|
||||
text_by_sentence = dict()
|
||||
|
||||
cnt = 0
|
||||
next_entity_nr = 0
|
||||
next_entity_nr = 1
|
||||
next_sent_nr = 1
|
||||
files = listdir(training_dir)
|
||||
shuffle(files)
|
||||
for f in files:
|
||||
|
@ -305,33 +323,81 @@ class EL_Model:
|
|||
if cnt % 500 == 0 and to_print:
|
||||
print(datetime.datetime.now(), "processed", cnt, "files in the training dataset")
|
||||
cnt += 1
|
||||
if article_id not in text_by_article:
|
||||
with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file:
|
||||
text = file.read()
|
||||
text_by_article[article_id] = text
|
||||
|
||||
# parse the article text
|
||||
with open(os.path.join(training_dir, f), mode="r", encoding='utf8') as file:
|
||||
text = file.read()
|
||||
article_doc = self.nlp(text)
|
||||
truncated_text = text[0:min(self.DOC_CUTOFF, len(text))]
|
||||
text_by_article[article_id] = truncated_text
|
||||
|
||||
# process all positive and negative entities, collect all relevant mentions in this article
|
||||
article_terms = set()
|
||||
entities_by_mention = dict()
|
||||
|
||||
for mention, entity_pos in correct_entries[article_id].items():
|
||||
descr = id_to_descr.get(entity_pos)
|
||||
if descr:
|
||||
entities.append(next_entity_nr)
|
||||
gold_by_entity[next_entity_nr] = 1
|
||||
desc_by_entity[next_entity_nr] = descr
|
||||
article_by_entity[next_entity_nr] = article_id
|
||||
entity = "E_" + str(next_entity_nr) + "_" + article_id + "_" + mention
|
||||
next_entity_nr += 1
|
||||
gold_by_entity[entity] = 1
|
||||
desc_by_entity[entity] = descr
|
||||
article_terms.add(mention)
|
||||
mention_entities = entities_by_mention.get(mention, set())
|
||||
mention_entities.add(entity)
|
||||
entities_by_mention[mention] = mention_entities
|
||||
|
||||
for mention, entity_negs in incorrect_entries[article_id].items():
|
||||
for entity_neg in entity_negs:
|
||||
descr = id_to_descr.get(entity_neg)
|
||||
if descr:
|
||||
entities.append(next_entity_nr)
|
||||
gold_by_entity[next_entity_nr] = 0
|
||||
desc_by_entity[next_entity_nr] = descr
|
||||
article_by_entity[next_entity_nr] = article_id
|
||||
entity = "E_" + str(next_entity_nr) + "_" + article_id + "_" + mention
|
||||
next_entity_nr += 1
|
||||
gold_by_entity[entity] = 0
|
||||
desc_by_entity[entity] = descr
|
||||
article_terms.add(mention)
|
||||
mention_entities = entities_by_mention.get(mention, set())
|
||||
mention_entities.add(entity)
|
||||
entities_by_mention[mention] = mention_entities
|
||||
|
||||
# find all matches in the doc for the mentions
|
||||
# TODO: fix this - doesn't look like all entities are found
|
||||
matcher = PhraseMatcher(self.nlp.vocab)
|
||||
patterns = list(self.nlp.tokenizer.pipe(article_terms))
|
||||
|
||||
matcher.add("TerminologyList", None, *patterns)
|
||||
matches = matcher(article_doc)
|
||||
|
||||
# store sentences
|
||||
sentence_to_id = dict()
|
||||
for match_id, start, end in matches:
|
||||
span = article_doc[start:end]
|
||||
sent_text = span.sent
|
||||
sent_nr = sentence_to_id.get(sent_text, None)
|
||||
if sent_nr is None:
|
||||
sent_nr = "S_" + str(next_sent_nr) + article_id
|
||||
next_sent_nr += 1
|
||||
text_by_sentence[sent_nr] = sent_text
|
||||
sentence_to_id[sent_text] = sent_nr
|
||||
mention_entities = entities_by_mention[span.text]
|
||||
for entity in mention_entities:
|
||||
entities.add(entity)
|
||||
sentence_by_entity[entity] = sent_nr
|
||||
article_by_entity[entity] = article_id
|
||||
|
||||
# remove entities that didn't have all data
|
||||
gold_by_entity = {k: v for k, v in gold_by_entity.items() if k in entities}
|
||||
desc_by_entity = {k: v for k, v in desc_by_entity.items() if k in entities}
|
||||
|
||||
article_by_entity = {k: v for k, v in article_by_entity.items() if k in entities}
|
||||
text_by_article = {k: v for k, v in text_by_article.items() if k in article_by_entity.values()}
|
||||
|
||||
sentence_by_entity = {k: v for k, v in sentence_by_entity.items() if k in entities}
|
||||
text_by_sentence = {k: v for k, v in text_by_sentence.items() if k in sentence_by_entity.values()}
|
||||
|
||||
if to_print:
|
||||
print()
|
||||
print("Processed", cnt, "training articles, dev=" + str(dev))
|
||||
print()
|
||||
return entities, gold_by_entity, desc_by_entity, article_by_entity, text_by_article
|
||||
return list(entities), gold_by_entity, desc_by_entity, article_by_entity, text_by_article, sentence_by_entity, text_by_sentence
|
||||
|
||||
|
|
|
@ -111,7 +111,7 @@ if __name__ == "__main__":
|
|||
print("STEP 6: training", datetime.datetime.now())
|
||||
my_nlp = spacy.load('en_core_web_md')
|
||||
trainer = EL_Model(kb=my_kb, nlp=my_nlp)
|
||||
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=400, devlimit=50)
|
||||
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=100, devlimit=20)
|
||||
print()
|
||||
|
||||
# STEP 7: apply the EL algorithm on the dev dataset
|
||||
|
|
Loading…
Reference in New Issue
Block a user