Checkpoint -- nearly finished reimpl

This commit is contained in:
Matthew Honnibal 2017-05-07 22:47:06 +02:00
parent bdf2dba9fb
commit 4441866f55

View File

@ -54,8 +54,69 @@ def set_debug(val):
DEBUG = val DEBUG = val
def get_templates(*args, **kwargs): def get_greedy_model_for_batch(tokvecs, TransitionSystem moves, feat_maps, upper_model):
return [] is_valid = model.ops.allocate((len(docs), system.n_moves), dtype='i')
costs = model.ops.allocate((len(docs), system.n_moves), dtype='f')
token_ids = model.ops.allocate((len(docs), StateClass.nr_context_tokens()),
dtype='uint64')
cached, backprops = zip(*[lyr.begin_update(tokvecs) for lyr in feat_maps)
def forward(states, drop=0.):
nonlocal is_valid, costs, token_ids, features
is_valid = is_valid[:len(states)]
costs = costs[:len(states)]
token_ids = token_ids[:len(states)]
is_valid = is_valid[:len(states)]
for state in states:
state.set_context_tokens(&token_ids[i])
moves.set_valid(&is_valid[i], state.c)
features = cached[token_ids].sum(axis=1)
scores, bp_scores = upper_model.begin_update(features, drop=drop)
softmaxed = model.ops.softmax(scores)
# Renormalize for invalid actions
softmaxed *= is_valid
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
def backward(golds, sgd=None):
nonlocal costs_, is_valid_, moves_
cdef TransitionSystem moves = moves_
cdef int[:, :] is_valid
cdef float[:, :] costs
for i, (state, gold) in enumerate(zip(states, golds)):
moves.set_costs(&costs[i], &is_valid[i],
state, gold)
set_log_loss(model.ops, d_scores,
scores, is_valid, costs)
d_tokens = bp_scores(d_scores, sgd)
return d_tokens
return softmaxed, backward
return layerize(forward)
def set_log_loss(ops, gradients, scores, is_valid, costs):
"""Do multi-label log loss"""
n = gradients.shape[0]
scores = scores * is_valid
g_scores = scores * is_valid * (costs <= 0.)
exps = ops.xp.exp(scores - scores.max(axis=1).reshape((n, 1)))
exps *= is_valid
g_exps = ops.xp.exp(g_scores - g_scores.max(axis=1).reshape((n, 1)))
g_exps *= costs <= 0.
g_exps *= is_valid
gradients[:] = exps / exps.sum(axis=1).reshape((n, 1))
gradients -= g_exps / g_exps.sum(axis=1).reshape((n, 1))
def transition_batch(TransitionSystem moves, states, scores):
cdef StateClass state
cdef int guess
for state, guess in zip(states, scores.argmax(axis=1)):
action = moves.c[guess]
action.do(state.c, action.label)
cdef class Parser: cdef class Parser:
@ -114,10 +175,8 @@ cdef class Parser:
def build_model(self, width=32, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_): def build_model(self, width=32, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR) nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
self.model = build_model(width*2, 2, self.moves.n_moves)
return build_model_precomputer( self.feature_maps = build_feature_maps(nr_context_tokens, width, nr_vector))
build_model(state2vec, width*2, 2, self.moves.n_moves)
build_feature_maps(nr_context_tokens, width, nr_vector))
def __call__(self, Doc tokens): def __call__(self, Doc tokens):
""" """
@ -129,7 +188,6 @@ cdef class Parser:
None None
""" """
self.parse_batch([tokens]) self.parse_batch([tokens])
self.moves.finalize_doc(tokens)
def pipe(self, stream, int batch_size=1000, int n_threads=2): def pipe(self, stream, int batch_size=1000, int n_threads=2):
""" """
@ -167,14 +225,20 @@ cdef class Parser:
def parse_batch(self, docs): def parse_batch(self, docs):
cdef Doc doc cdef Doc doc
cdef StateClass state cdef StateClass state
model, states = self.init_batch(docs) model = get_greedy_model_for_batch([d.tensor for d in docs],
self.moves, self.model, self.feat_maps)
states = [StateClass.init(doc.c, doc.length) for doc in docs]
todo = list(states) todo = list(states)
while todo: while todo:
todo = model(todo) scores = model(todo)
transition_batch(self.moves, todo, scores)
todo = [st for st in states if not st.is_final()]
for state, doc in zip(states, docs): for state, doc in zip(states, docs):
self.moves.finalize_state(state.c) self.moves.finalize_state(state.c)
for i in range(doc.length): for i in range(doc.length):
doc.c[i] = state.c._sent[i] doc.c[i] = state.c._sent[i]
for doc in docs:
self.moves.finalize_parse(doc)
def update(self, docs, golds, drop=0., sgd=None): def update(self, docs, golds, drop=0., sgd=None):
if isinstance(docs, Doc) and isinstance(golds, GoldParse): if isinstance(docs, Doc) and isinstance(golds, GoldParse):
@ -182,20 +246,19 @@ cdef class Parser:
for gold in golds: for gold in golds:
self.moves.preprocess_gold(gold) self.moves.preprocess_gold(gold)
model, states = self.init_batch(docs) model = get_greedy_model_for_batch([d.tensor for d in docs],
self.moves, self.model, self.feat_maps)
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs] d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
output = list(d_tokens) output = list(d_tokens)
todo = zip(states, golds, d_tokens) todo = zip(states, golds, d_tokens)
while todo: while todo:
states, golds, d_tokens = zip(*todo) states, golds, d_tokens = zip(*todo)
states, finish_update = model.begin_update(states) scores, finish_update = model.begin_update(token_ids)
d_state_features = finish_update(golds, sgd=sgd) d_state_features = finish_update(golds, sgd=sgd)
for i, tok_ids in enumerate(token_ids): for i, token_ids in enumerate(token_ids):
for j, tok_i in enumerate(tok_ids): d_tokens[i][token_ids] += d_state_features[i]
if tok_i >= 0: transition_batch(self.moves, states)
d_tokens[i][tok_i] += d_state_features[i, j]
# Get unfinished states (and their matching gold and token gradients) # Get unfinished states (and their matching gold and token gradients)
todo = filter(lambda sp: not sp[0].py_is_final(), todo) todo = filter(lambda sp: not sp[0].py_is_final(), todo)
return output, sum(losses) return output, sum(losses)
@ -245,28 +308,6 @@ cdef class Parser:
self.cfg.setdefault('extra_labels', []).append(label) self.cfg.setdefault('extra_labels', []).append(label)
def _transition_batch(self, states, scores):
cdef StateClass state
cdef int guess
for state, guess in zip(states, scores.argmax(axis=1)):
action = self.moves.c[guess]
action.do(state.c, action.label)
def _set_gradient(self, gradients, scores, is_valid, costs):
"""Do multi-label log loss"""
cdef double Z, gZ, max_, g_max
n = gradients.shape[0]
scores = scores * is_valid
g_scores = scores * is_valid * (costs <= 0.)
exps = numpy.exp(scores - scores.max(axis=1).reshape((n, 1)))
exps *= is_valid
g_exps = numpy.exp(g_scores - g_scores.max(axis=1).reshape((n, 1)))
g_exps *= costs <= 0.
g_exps *= is_valid
gradients[:] = exps / exps.sum(axis=1).reshape((n, 1))
gradients -= g_exps / g_exps.sum(axis=1).reshape((n, 1))
def _begin_update(self, model, states, tokvecs, drop=0.): def _begin_update(self, model, states, tokvecs, drop=0.):
nr_class = self.moves.n_moves nr_class = self.moves.n_moves
attr_names = self.model.ops.allocate((2,), dtype='i') attr_names = self.model.ops.allocate((2,), dtype='i')