mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
WIP on refactor, with hidde pre-computing
This commit is contained in:
parent
b439e04f8d
commit
bdf2dba9fb
|
@ -82,6 +82,7 @@ def organize_data(vocab, train_sents):
|
|||
def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
||||
LangClass = spacy.util.get_lang_class(lang_name)
|
||||
train_sents = list(read_conllx(train_loc))
|
||||
dev_sents = list(read_conllx(dev_loc))
|
||||
train_sents = PseudoProjectivity.preprocess_training_data(train_sents)
|
||||
|
||||
actions = ArcEager.get_actions(gold_parses=train_sents)
|
||||
|
@ -136,6 +137,7 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|||
parser = DependencyParser(vocab, actions=actions, features=features, L1=0.0)
|
||||
|
||||
Xs, ys = organize_data(vocab, train_sents)
|
||||
dev_Xs, dev_ys = organize_data(vocab, dev_sents)
|
||||
Xs = Xs[:100]
|
||||
ys = ys[:100]
|
||||
with encoder.model.begin_training(Xs[:100], ys[:100]) as (trainer, optimizer):
|
||||
|
@ -145,13 +147,13 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|||
parser.begin_training(docs, ys)
|
||||
nn_loss = [0.]
|
||||
def track_progress():
|
||||
scorer = score_model(vocab, encoder, tagger, parser, Xs, ys)
|
||||
scorer = score_model(vocab, encoder, tagger, parser, dev_Xs, dev_ys)
|
||||
itn = len(nn_loss)
|
||||
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, nn_loss[-1], scorer.uas, scorer.tags_acc))
|
||||
nn_loss.append(0.)
|
||||
trainer.each_epoch.append(track_progress)
|
||||
trainer.batch_size = 6
|
||||
trainer.nb_epoch = 10000
|
||||
trainer.batch_size = 12
|
||||
trainer.nb_epoch = 2
|
||||
for docs, golds in trainer.iterate(Xs, ys, progress_bar=False):
|
||||
docs = [Doc(vocab, words=[w.text for w in doc]) for doc in docs]
|
||||
tokvecs, upd_tokvecs = encoder.begin_update(docs)
|
||||
|
@ -163,10 +165,20 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|||
upd_tokvecs(d_tokvecs, sgd=optimizer)
|
||||
nn_loss[-1] += loss
|
||||
nlp = LangClass(vocab=vocab, tagger=tagger, parser=parser)
|
||||
nlp.end_training(model_dir)
|
||||
scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))
|
||||
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.las, scorer.tags_acc))
|
||||
#nlp.end_training(model_dir)
|
||||
#scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))
|
||||
#print('%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.las, scorer.tags_acc))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import cProfile
|
||||
import pstats
|
||||
if 0:
|
||||
plac.call(main)
|
||||
else:
|
||||
cProfile.runctx("plac.call(main)", globals(), locals(), "Profile.prof")
|
||||
s = pstats.Stats("Profile.prof")
|
||||
s.strip_dirs().sort_stats("time").print_stats()
|
||||
|
||||
|
||||
plac.call(main)
|
||||
|
|
236
spacy/_ml.py
236
spacy/_ml.py
|
@ -21,181 +21,23 @@ def get_col(idx):
|
|||
return layerize(forward)
|
||||
|
||||
|
||||
def build_model(state2vec, width, depth, nr_class):
|
||||
with Model.define_operators({'>>': chain, '**': clone}):
|
||||
model = (
|
||||
state2vec
|
||||
>> Maxout(width, 1344)
|
||||
>> Maxout(width, width)
|
||||
>> Affine(nr_class, width)
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def build_debug_model(state2vec, width, depth, nr_class):
|
||||
with Model.define_operators({'>>': chain, '**': clone}):
|
||||
model = (
|
||||
state2vec
|
||||
>> Maxout(width)
|
||||
>> Affine(nr_class)
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def build_debug_state2vec(width, nr_vector=1000, nF=1, nB=0, nS=1, nL=2, nR=2):
|
||||
ops = Model.ops
|
||||
def forward(tokens_attrs_vectors, drop=0.):
|
||||
tokens, attr_vals, tokvecs = tokens_attrs_vectors
|
||||
|
||||
orig_tokvecs_shape = tokvecs.shape
|
||||
tokvecs = tokvecs.reshape((tokvecs.shape[0], tokvecs.shape[1] *
|
||||
tokvecs.shape[2]))
|
||||
|
||||
vector = tokvecs
|
||||
|
||||
def backward(d_vector, sgd=None):
|
||||
d_tokvecs = vector.reshape(orig_tokvecs_shape)
|
||||
return (tokens, d_tokvecs)
|
||||
return vector, backward
|
||||
model = layerize(forward)
|
||||
return model
|
||||
|
||||
|
||||
def build_state2vec(nr_context_tokens, width, nr_vector=1000):
|
||||
ops = Model.ops
|
||||
with Model.define_operators({'|': concatenate, '+': add, '>>': chain}):
|
||||
|
||||
hiddens = [get_col(i) >> Affine(width) for i in range(nr_context_tokens)]
|
||||
model = (
|
||||
get_token_vectors
|
||||
>> add(*hiddens)
|
||||
>> Maxout(width)
|
||||
)
|
||||
return model
|
||||
|
||||
|
||||
def print_shape(prefix):
|
||||
def forward(X, drop=0.):
|
||||
return X, lambda dX, **kwargs: dX
|
||||
return layerize(forward)
|
||||
|
||||
|
||||
@layerize
|
||||
def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
||||
ops = Model.ops
|
||||
tokens, attrs, vectors = tokens_attrs_vectors
|
||||
def backward(d_output, sgd=None):
|
||||
return (tokens, d_output)
|
||||
return vectors, backward
|
||||
|
||||
|
||||
def build_parser_state2vec(width, nr_vector=1000, nF=1, nB=0, nS=1, nL=2, nR=2):
|
||||
embed_tags = _reshape(chain(get_col(0), HashEmbed(16, nr_vector)))
|
||||
embed_deps = _reshape(chain(get_col(1), HashEmbed(16, nr_vector)))
|
||||
ops = embed_tags.ops
|
||||
def forward(tokens_attrs_vectors, drop=0.):
|
||||
tokens, attr_vals, tokvecs = tokens_attrs_vectors
|
||||
tagvecs, bp_tagvecs = embed_deps.begin_update(attr_vals, drop=drop)
|
||||
depvecs, bp_depvecs = embed_tags.begin_update(attr_vals, drop=drop)
|
||||
orig_tokvecs_shape = tokvecs.shape
|
||||
tokvecs = tokvecs.reshape((tokvecs.shape[0], tokvecs.shape[1] *
|
||||
tokvecs.shape[2]))
|
||||
|
||||
shapes = (tagvecs.shape, depvecs.shape, tokvecs.shape)
|
||||
assert tagvecs.shape[0] == depvecs.shape[0] == tokvecs.shape[0], shapes
|
||||
vector = ops.xp.hstack((tagvecs, depvecs, tokvecs))
|
||||
|
||||
def backward(d_vector, sgd=None):
|
||||
d_tagvecs, d_depvecs, d_tokvecs = backprop_concatenate(d_vector, shapes)
|
||||
assert d_tagvecs.shape == shapes[0], (d_tagvecs.shape, shapes)
|
||||
assert d_depvecs.shape == shapes[1], (d_depvecs.shape, shapes)
|
||||
assert d_tokvecs.shape == shapes[2], (d_tokvecs.shape, shapes)
|
||||
bp_tagvecs(d_tagvecs)
|
||||
bp_depvecs(d_depvecs)
|
||||
d_tokvecs = d_tokvecs.reshape(orig_tokvecs_shape)
|
||||
|
||||
return (tokens, d_tokvecs)
|
||||
return vector, backward
|
||||
model = layerize(forward)
|
||||
model._layers = [embed_tags, embed_deps]
|
||||
return model
|
||||
|
||||
|
||||
def backprop_concatenate(gradient, shapes):
|
||||
grads = []
|
||||
start = 0
|
||||
for shape in shapes:
|
||||
end = start + shape[1]
|
||||
grads.append(gradient[:, start : end])
|
||||
start = end
|
||||
return grads
|
||||
|
||||
|
||||
def _reshape(layer):
|
||||
'''Transforms input with shape
|
||||
(states, tokens, features)
|
||||
into input with shape:
|
||||
(states * tokens, features)
|
||||
So that it can be used with a token-wise feature extraction layer, e.g.
|
||||
an embedding layer. The embedding layer outputs:
|
||||
(states * tokens, ndim)
|
||||
But we want to concatenate the vectors for the tokens, so we produce:
|
||||
(states, tokens * ndim)
|
||||
We then need to reverse the transforms to do the backward pass. Recall
|
||||
the simple rule here: each layer is a map:
|
||||
inputs -> (outputs, (d_outputs->d_inputs))
|
||||
So the shapes must match like this:
|
||||
shape of forward input == shape of backward output
|
||||
shape of backward input == shape of forward output
|
||||
'''
|
||||
def forward(X__bfm, drop=0.):
|
||||
b, f, m = X__bfm.shape
|
||||
B = b*f
|
||||
M = f*m
|
||||
X__Bm = X__bfm.reshape((B, m))
|
||||
y__Bn, bp_yBn = layer.begin_update(X__Bm, drop=drop)
|
||||
n = y__Bn.shape[1]
|
||||
N = f * n
|
||||
y__bN = y__Bn.reshape((b, N))
|
||||
def backward(dy__bN, sgd=None):
|
||||
dy__Bn = dy__bN.reshape((B, n))
|
||||
dX__Bm = bp_yBn(dy__Bn, sgd)
|
||||
if dX__Bm is None:
|
||||
return None
|
||||
else:
|
||||
return dX__Bm.reshape((b, f, m))
|
||||
return y__bN, backward
|
||||
model = layerize(forward)
|
||||
model._layers.append(layer)
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def flatten(seqs, drop=0.):
|
||||
ops = Model.ops
|
||||
def finish_update(d_X, sgd=None):
|
||||
return d_X
|
||||
X = ops.xp.concatenate([ops.asarray(seq) for seq in seqs])
|
||||
return X, finish_update
|
||||
|
||||
|
||||
def build_tok2vec(lang, width, depth=2, embed_size=1000):
|
||||
cols = [ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG]
|
||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone}):
|
||||
#static = get_col(cols.index(ID)) >> StaticVectors(lang, width)
|
||||
lower = get_col(cols.index(LOWER)) >> HashEmbed(width, embed_size)
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size)
|
||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size)
|
||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size)
|
||||
tag = get_col(cols.index(TAG)) >> HashEmbed(width, embed_size)
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width//4, embed_size)
|
||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width//4, embed_size)
|
||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width//4, embed_size)
|
||||
tag = get_col(cols.index(TAG)) >> HashEmbed(width//2, embed_size)
|
||||
tok2vec = (
|
||||
doc2feats(cols)
|
||||
>> with_flatten(
|
||||
#(static | prefix | suffix | shape)
|
||||
(lower | prefix | suffix | shape | tag)
|
||||
>> Maxout(width, width*5)
|
||||
#>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
#>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Maxout(width)
|
||||
>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
)
|
||||
)
|
||||
return tok2vec
|
||||
|
@ -208,3 +50,67 @@ def doc2feats(cols):
|
|||
return feats, None
|
||||
model = layerize(forward)
|
||||
return model
|
||||
|
||||
|
||||
def build_feature_precomputer(model, feat_maps):
|
||||
'''Allow a model to be "primed" by pre-computing input features in bulk.
|
||||
|
||||
This is used for the parser, where we want to take a batch of documents,
|
||||
and compute vectors for each (token, position) pair. These vectors can then
|
||||
be reused, especially for beam-search.
|
||||
|
||||
Let's say we're using 12 features for each state, e.g. word at start of
|
||||
buffer, three words on stack, their children, etc. In the normal arc-eager
|
||||
system, a document of length N is processed in 2*N states. This means we'll
|
||||
create 2*N*12 feature vectors --- but if we pre-compute, we only need
|
||||
N*12 vector computations. The saving for beam-search is much better:
|
||||
if we have a beam of k, we'll normally make 2*N*12*K computations --
|
||||
so we can save the factor k. This also gives a nice CPU/GPU division:
|
||||
we can do all our hard maths up front, packed into large multiplications,
|
||||
and do the hard-to-program parsing on the CPU.
|
||||
'''
|
||||
def precompute(input_vectors):
|
||||
cached, backprops = zip(*[lyr.begin_update(input_vectors)
|
||||
for lyr in feat_maps)
|
||||
def forward(batch_token_ids, drop=0.):
|
||||
output = ops.allocate((batch_size, output_width))
|
||||
# i: batch index
|
||||
# j: position index (i.e. N0, S0, etc
|
||||
# tok_i: Index of the token within its document
|
||||
for i, token_ids in enumerate(batch_token_ids):
|
||||
for j, tok_i in enumerate(token_ids):
|
||||
output[i] += cached[j][tok_i]
|
||||
def backward(d_vector, sgd=None):
|
||||
d_inputs = ops.allocate((batch_size, n_feat, vec_width))
|
||||
for i, token_ids in enumerate(batch_token_ids):
|
||||
for j in range(len(token_ids)):
|
||||
d_inputs[i][j] = backprops[j](d_vector, sgd)
|
||||
# Return the IDs, so caller can associate to correct token
|
||||
return (batch_token_ids, d_inputs)
|
||||
return vector, backward
|
||||
return chain(layerize(forward), model)
|
||||
return precompute
|
||||
|
||||
|
||||
def print_shape(prefix):
|
||||
def forward(X, drop=0.):
|
||||
return X, lambda dX, **kwargs: dX
|
||||
return layerize(forward)
|
||||
|
||||
|
||||
@layerize
|
||||
def get_token_vectors(tokens_attrs_vectors, drop=0.):
|
||||
ops = Model.ops
|
||||
tokens, attrs, vectors = tokens_attrs_vectors
|
||||
def backward(d_output, sgd=None):
|
||||
return (tokens, d_output)
|
||||
return vectors, backward
|
||||
|
||||
|
||||
@layerize
|
||||
def flatten(seqs, drop=0.):
|
||||
ops = Model.ops
|
||||
def finish_update(d_X, sgd=None):
|
||||
return d_X
|
||||
X = ops.xp.concatenate([ops.asarray(seq) for seq in seqs])
|
||||
return X, finish_update
|
||||
|
|
|
@ -44,9 +44,7 @@ from ..strings cimport StringStore
|
|||
from ..gold cimport GoldParse
|
||||
from ..attrs cimport TAG, DEP
|
||||
|
||||
from .._ml import build_parser_state2vec, build_model
|
||||
from .._ml import build_state2vec, build_model
|
||||
from .._ml import build_debug_state2vec, build_debug_model
|
||||
from .._ml import build_state2vec, build_model, precompute_hiddens
|
||||
|
||||
|
||||
USE_FTRL = True
|
||||
|
@ -114,12 +112,12 @@ cdef class Parser:
|
|||
def __reduce__(self):
|
||||
return (Parser, (self.vocab, self.moves, self.model), None, None)
|
||||
|
||||
def build_model(self, width=64, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
|
||||
def build_model(self, width=32, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
|
||||
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
state2vec = build_state2vec(nr_context_tokens, width, nr_vector)
|
||||
#state2vec = build_debug_state2vec(width, nr_vector)
|
||||
model = build_debug_model(state2vec, width*2, 2, self.moves.n_moves)
|
||||
return model
|
||||
|
||||
return build_model_precomputer(
|
||||
build_model(state2vec, width*2, 2, self.moves.n_moves)
|
||||
build_feature_maps(nr_context_tokens, width, nr_vector))
|
||||
|
||||
def __call__(self, Doc tokens):
|
||||
"""
|
||||
|
@ -132,7 +130,7 @@ cdef class Parser:
|
|||
"""
|
||||
self.parse_batch([tokens])
|
||||
self.moves.finalize_doc(tokens)
|
||||
|
||||
|
||||
def pipe(self, stream, int batch_size=1000, int n_threads=2):
|
||||
"""
|
||||
Process a stream of documents.
|
||||
|
@ -167,158 +165,50 @@ cdef class Parser:
|
|||
yield doc
|
||||
|
||||
def parse_batch(self, docs):
|
||||
states = self._init_states(docs)
|
||||
nr_class = self.moves.n_moves
|
||||
cdef Doc doc
|
||||
cdef StateClass state
|
||||
cdef int guess
|
||||
tokvecs = [d.tensor for d in docs]
|
||||
all_states = list(states)
|
||||
todo = zip(states, tokvecs)
|
||||
model, states = self.init_batch(docs)
|
||||
todo = list(states)
|
||||
while todo:
|
||||
states, tokvecs = zip(*todo)
|
||||
scores, _ = self._begin_update(states, tokvecs)
|
||||
for state, guess in zip(states, scores.argmax(axis=1)):
|
||||
action = self.moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
for state, doc in zip(all_states, docs):
|
||||
todo = model(todo)
|
||||
for state, doc in zip(states, docs):
|
||||
self.moves.finalize_state(state.c)
|
||||
for i in range(doc.length):
|
||||
doc.c[i] = state.c._sent[i]
|
||||
|
||||
def begin_training(self, docs, golds):
|
||||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
states = self._init_states(docs)
|
||||
tokvecs = [d.tensor for d in docs]
|
||||
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
|
||||
nr_class = self.moves.n_moves
|
||||
costs = self.model.ops.allocate((len(docs), nr_class), dtype='f')
|
||||
gradients = self.model.ops.allocate((len(docs), nr_class), dtype='f')
|
||||
is_valid = self.model.ops.allocate((len(docs), nr_class), dtype='i')
|
||||
attr_names = self.model.ops.allocate((2,), dtype='i')
|
||||
attr_names[0] = TAG
|
||||
attr_names[1] = DEP
|
||||
|
||||
features = self._get_features(states, tokvecs, attr_names)
|
||||
self.model.begin_training(features)
|
||||
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None):
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
return self.update([docs], [golds], drop=drop)
|
||||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
states = self._init_states(docs)
|
||||
tokvecs = [d.tensor for d in docs]
|
||||
|
||||
model, states = self.init_batch(docs)
|
||||
|
||||
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
|
||||
nr_class = self.moves.n_moves
|
||||
output = list(d_tokens)
|
||||
todo = zip(states, tokvecs, golds, d_tokens)
|
||||
assert len(states) == len(todo)
|
||||
losses = []
|
||||
todo = zip(states, golds, d_tokens)
|
||||
while todo:
|
||||
states, tokvecs, golds, d_tokens = zip(*todo)
|
||||
scores, finish_update = self._begin_update(states, tokvecs)
|
||||
token_ids, batch_token_grads = finish_update(golds, sgd=sgd, losses=losses,
|
||||
force_gold=False)
|
||||
states, golds, d_tokens = zip(*todo)
|
||||
states, finish_update = model.begin_update(states)
|
||||
d_state_features = finish_update(golds, sgd=sgd)
|
||||
for i, tok_ids in enumerate(token_ids):
|
||||
for j, tok_i in enumerate(tok_ids):
|
||||
if tok_i >= 0:
|
||||
d_tokens[i][tok_i] += batch_token_grads[i, j]
|
||||
|
||||
self._transition_batch(states, scores)
|
||||
d_tokens[i][tok_i] += d_state_features[i, j]
|
||||
|
||||
# Get unfinished states (and their matching gold and token gradients)
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
return output, sum(losses)
|
||||
|
||||
def _begin_update(self, states, tokvecs, drop=0.):
|
||||
nr_class = self.moves.n_moves
|
||||
attr_names = self.model.ops.allocate((2,), dtype='i')
|
||||
attr_names[0] = TAG
|
||||
attr_names[1] = DEP
|
||||
def begin_training(self, docs, golds):
|
||||
for gold in golds:
|
||||
self.moves.preprocess_gold(gold)
|
||||
states = self._init_states(docs)
|
||||
tokvecs = [d.tensor for d in docs]
|
||||
|
||||
features = self._get_features(states, tokvecs, attr_names)
|
||||
scores, finish_update = self.model.begin_update(features, drop=drop)
|
||||
assert scores.shape[0] == len(states), (len(states), scores.shape)
|
||||
assert len(scores.shape) == 2
|
||||
is_valid = self.model.ops.allocate((len(states), nr_class), dtype='i')
|
||||
self._validate_batch(is_valid, states)
|
||||
softmaxed = self.model.ops.softmax(scores)
|
||||
softmaxed *= is_valid
|
||||
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
|
||||
def backward(golds, sgd=None, losses=[], force_gold=False):
|
||||
nonlocal softmaxed
|
||||
costs = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
||||
d_scores = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
||||
features = self._get_features(states, tokvecs)
|
||||
self.model.begin_training(features)
|
||||
|
||||
self._cost_batch(costs, is_valid, states, golds)
|
||||
self._set_gradient(d_scores, scores, is_valid, costs)
|
||||
losses.append(numpy.abs(d_scores).sum())
|
||||
if force_gold:
|
||||
softmaxed *= costs <= 0
|
||||
return finish_update(d_scores, sgd=sgd)
|
||||
return softmaxed, backward
|
||||
|
||||
def _init_states(self, docs):
|
||||
states = []
|
||||
cdef Doc doc
|
||||
cdef StateClass state
|
||||
for i, doc in enumerate(docs):
|
||||
state = StateClass.init(doc.c, doc.length)
|
||||
self.moves.initialize_state(state.c)
|
||||
states.append(state)
|
||||
return states
|
||||
|
||||
def _get_features(self, states, all_tokvecs, attr_names,
|
||||
nF=1, nB=0, nS=2, nL=2, nR=2):
|
||||
n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
vector_length = all_tokvecs[0].shape[1]
|
||||
tokens = self.model.ops.allocate((len(states), n_tokens), dtype='int32')
|
||||
features = self.model.ops.allocate((len(states), n_tokens, attr_names.shape[0]), dtype='uint64')
|
||||
tokvecs = self.model.ops.allocate((len(states), n_tokens, vector_length), dtype='f')
|
||||
for i, state in enumerate(states):
|
||||
state.set_context_tokens(tokens[i], nF, nB, nS, nL, nR)
|
||||
state.set_attributes(features[i], tokens[i], attr_names)
|
||||
state.set_token_vectors(tokvecs[i], all_tokvecs[i], tokens[i])
|
||||
return (tokens, features, tokvecs)
|
||||
|
||||
def _validate_batch(self, int[:, ::1] is_valid, states):
|
||||
cdef StateClass state
|
||||
cdef int i
|
||||
for i, state in enumerate(states):
|
||||
self.moves.set_valid(&is_valid[i, 0], state.c)
|
||||
|
||||
def _cost_batch(self, weight_t[:, ::1] costs, int[:, ::1] is_valid,
|
||||
states, golds):
|
||||
cdef int i
|
||||
cdef StateClass state
|
||||
cdef GoldParse gold
|
||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0], state, gold)
|
||||
|
||||
def _transition_batch(self, states, scores):
|
||||
cdef StateClass state
|
||||
cdef int guess
|
||||
for state, guess in zip(states, scores.argmax(axis=1)):
|
||||
action = self.moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
|
||||
def _set_gradient(self, gradients, scores, is_valid, costs):
|
||||
"""Do multi-label log loss"""
|
||||
cdef double Z, gZ, max_, g_max
|
||||
n = gradients.shape[0]
|
||||
scores = scores * is_valid
|
||||
g_scores = scores * is_valid * (costs <= 0.)
|
||||
exps = numpy.exp(scores - scores.max(axis=1).reshape((n, 1)))
|
||||
exps *= is_valid
|
||||
g_exps = numpy.exp(g_scores - g_scores.max(axis=1).reshape((n, 1)))
|
||||
g_exps *= costs <= 0.
|
||||
g_exps *= is_valid
|
||||
gradients[:] = exps / exps.sum(axis=1).reshape((n, 1))
|
||||
gradients -= g_exps / g_exps.sum(axis=1).reshape((n, 1))
|
||||
|
||||
def step_through(self, Doc doc, GoldParse gold=None):
|
||||
"""
|
||||
|
@ -355,6 +245,97 @@ cdef class Parser:
|
|||
self.cfg.setdefault('extra_labels', []).append(label)
|
||||
|
||||
|
||||
def _transition_batch(self, states, scores):
|
||||
cdef StateClass state
|
||||
cdef int guess
|
||||
for state, guess in zip(states, scores.argmax(axis=1)):
|
||||
action = self.moves.c[guess]
|
||||
action.do(state.c, action.label)
|
||||
|
||||
def _set_gradient(self, gradients, scores, is_valid, costs):
|
||||
"""Do multi-label log loss"""
|
||||
cdef double Z, gZ, max_, g_max
|
||||
n = gradients.shape[0]
|
||||
scores = scores * is_valid
|
||||
g_scores = scores * is_valid * (costs <= 0.)
|
||||
exps = numpy.exp(scores - scores.max(axis=1).reshape((n, 1)))
|
||||
exps *= is_valid
|
||||
g_exps = numpy.exp(g_scores - g_scores.max(axis=1).reshape((n, 1)))
|
||||
g_exps *= costs <= 0.
|
||||
g_exps *= is_valid
|
||||
gradients[:] = exps / exps.sum(axis=1).reshape((n, 1))
|
||||
gradients -= g_exps / g_exps.sum(axis=1).reshape((n, 1))
|
||||
|
||||
|
||||
def _begin_update(self, model, states, tokvecs, drop=0.):
|
||||
nr_class = self.moves.n_moves
|
||||
attr_names = self.model.ops.allocate((2,), dtype='i')
|
||||
attr_names[0] = TAG
|
||||
attr_names[1] = DEP
|
||||
|
||||
features = self._get_features(states, tokvecs, attr_names)
|
||||
scores, finish_update = self.model.begin_update(features, drop=drop)
|
||||
assert scores.shape[0] == len(states), (len(states), scores.shape)
|
||||
assert len(scores.shape) == 2
|
||||
is_valid = self.model.ops.allocate((len(states), nr_class), dtype='i')
|
||||
self._validate_batch(is_valid, states)
|
||||
softmaxed = self.model.ops.softmax(scores)
|
||||
softmaxed *= is_valid
|
||||
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
|
||||
def backward(golds, sgd=None, losses=[], force_gold=False):
|
||||
nonlocal softmaxed
|
||||
costs = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
||||
d_scores = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
||||
|
||||
self._cost_batch(costs, is_valid, states, golds)
|
||||
self._set_gradient(d_scores, scores, is_valid, costs)
|
||||
losses.append(numpy.abs(d_scores).sum())
|
||||
if force_gold:
|
||||
softmaxed *= costs <= 0
|
||||
return finish_update(d_scores, sgd=sgd)
|
||||
return softmaxed, backward
|
||||
|
||||
def _init_states(self, docs):
|
||||
states = []
|
||||
cdef Doc doc
|
||||
cdef StateClass state
|
||||
for i, doc in enumerate(docs):
|
||||
state = StateClass.init(doc.c, doc.length)
|
||||
self.moves.initialize_state(state.c)
|
||||
states.append(state)
|
||||
return states
|
||||
|
||||
def _validate_batch(self, int[:, ::1] is_valid, states):
|
||||
cdef StateClass state
|
||||
cdef int i
|
||||
for i, state in enumerate(states):
|
||||
self.moves.set_valid(&is_valid[i, 0], state.c)
|
||||
|
||||
def _cost_batch(self, weight_t[:, ::1] costs, int[:, ::1] is_valid,
|
||||
states, golds):
|
||||
cdef int i
|
||||
cdef StateClass state
|
||||
cdef GoldParse gold
|
||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0], state, gold)
|
||||
|
||||
|
||||
|
||||
def _get_features(self, states, all_tokvecs, attr_names,
|
||||
nF=1, nB=0, nS=2, nL=2, nR=2):
|
||||
n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR)
|
||||
vector_length = all_tokvecs[0].shape[1]
|
||||
tokens = self.model.ops.allocate((len(states), n_tokens), dtype='int32')
|
||||
features = self.model.ops.allocate((len(states), n_tokens, attr_names.shape[0]), dtype='uint64')
|
||||
tokvecs = self.model.ops.allocate((len(states), n_tokens, vector_length), dtype='f')
|
||||
for i, state in enumerate(states):
|
||||
state.set_context_tokens(tokens[i], nF, nB, nS, nL, nR)
|
||||
state.set_attributes(features[i], tokens[i], attr_names)
|
||||
state.set_token_vectors(tokvecs[i], all_tokvecs[i], tokens[i])
|
||||
return (tokens, features, tokvecs)
|
||||
|
||||
|
||||
|
||||
cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1:
|
||||
if prob <= 0 or prob >= 1.:
|
||||
return 0
|
||||
|
|
|
@ -48,7 +48,7 @@ cdef class StateClass:
|
|||
|
||||
@classmethod
|
||||
def nr_context_tokens(cls, int nF, int nB, int nS, int nL, int nR):
|
||||
return 4
|
||||
return 5
|
||||
|
||||
def set_context_tokens(self, int[:] output, nF=1, nB=0, nS=2,
|
||||
nL=2, nR=2):
|
||||
|
@ -56,14 +56,15 @@ cdef class StateClass:
|
|||
output[1] = self.B(1)
|
||||
output[2] = self.S(0)
|
||||
output[3] = self.S(1)
|
||||
#output[4] = self.L(self.S(0), 1)
|
||||
#output[5] = self.L(self.S(0), 2)
|
||||
#output[6] = self.R(self.S(0), 1)
|
||||
#output[7] = self.R(self.S(0), 2)
|
||||
#output[7] = self.L(self.S(1), 1)
|
||||
#output[8] = self.L(self.S(1), 2)
|
||||
#output[9] = self.R(self.S(1), 1)
|
||||
#output[10] = self.R(self.S(1), 2)
|
||||
output[4] = self.S(2)
|
||||
#output[5] = self.L(self.S(0), 1)
|
||||
#output[6] = self.L(self.S(0), 2)
|
||||
#output[7] = self.R(self.S(0), 1)
|
||||
#output[8] = self.R(self.S(0), 2)
|
||||
#output[10] = self.L(self.S(1), 1)
|
||||
#output[11] = self.L(self.S(1), 2)
|
||||
#output[12] = self.R(self.S(1), 1)
|
||||
#output[13] = self.R(self.S(1), 2)
|
||||
|
||||
def set_attributes(self, uint64_t[:, :] vals, int[:] tokens, int[:] names):
|
||||
cdef int i, j, tok_i
|
||||
|
|
Loading…
Reference in New Issue
Block a user