spaCy/spacy/syntax/parser.pyx
2017-05-07 02:02:43 +02:00

482 lines
16 KiB
Cython

"""
MALT-style dependency parser
"""
# coding: utf-8
# cython: infer_types=True
from __future__ import unicode_literals
from collections import Counter
import ujson
cimport cython
cimport cython.parallel
import numpy.random
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from cpython.exc cimport PyErr_CheckSignals
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memset, memcpy
from libc.stdlib cimport malloc, calloc, free
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.linalg cimport VecVec
from thinc.structs cimport SparseArrayC, FeatureC, ExampleC
from thinc.extra.eg cimport Example
from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from preshed.maps cimport MapStruct
from preshed.maps cimport map_get
from numpy import exp
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from ._state cimport StateC
from .nonproj import PseudoProjectivity
from .transition_system import OracleError
from .transition_system cimport TransitionSystem, Transition
from ..structs cimport TokenC
from ..tokens.doc cimport Doc
from ..strings cimport StringStore
from ..gold cimport GoldParse
from ..attrs cimport TAG, DEP
from .._ml import build_state2vec, build_model, precompute_hiddens
USE_FTRL = True
DEBUG = False
def set_debug(val):
global DEBUG
DEBUG = val
def get_templates(*args, **kwargs):
return []
cdef class Parser:
"""
Base class of the DependencyParser and EntityRecognizer.
"""
@classmethod
def load(cls, path, Vocab vocab, TransitionSystem=None, require=False, **cfg):
"""
Load the statistical model from the supplied path.
Arguments:
path (Path):
The path to load from.
vocab (Vocab):
The vocabulary. Must be shared by the documents to be processed.
require (bool):
Whether to raise an error if the files are not found.
Returns (Parser):
The newly constructed object.
"""
with (path / 'config.json').open() as file_:
cfg = ujson.load(file_)
self = cls(vocab, TransitionSystem=TransitionSystem, model=None, **cfg)
if (path / 'model').exists():
self.model.load(str(path / 'model'))
elif require:
raise IOError(
"Required file %s/model not found when loading" % str(path))
return self
def __init__(self, Vocab vocab, TransitionSystem=None, model=None, **cfg):
"""
Create a Parser.
Arguments:
vocab (Vocab):
The vocabulary object. Must be shared with documents to be processed.
model (thinc Model):
The statistical model.
Returns (Parser):
The newly constructed object.
"""
if TransitionSystem is None:
TransitionSystem = self.TransitionSystem
self.vocab = vocab
cfg['actions'] = TransitionSystem.get_actions(**cfg)
self.moves = TransitionSystem(vocab.strings, cfg['actions'])
if model is None:
model = self.build_model(**cfg)
self.model = model
self.cfg = cfg
def __reduce__(self):
return (Parser, (self.vocab, self.moves, self.model), None, None)
def build_model(self, width=32, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
nr_context_tokens = StateClass.nr_context_tokens(nF, nB, nS, nL, nR)
return build_model_precomputer(
build_model(state2vec, width*2, 2, self.moves.n_moves)
build_feature_maps(nr_context_tokens, width, nr_vector))
def __call__(self, Doc tokens):
"""
Apply the parser or entity recognizer, setting the annotations onto the Doc object.
Arguments:
doc (Doc): The document to be processed.
Returns:
None
"""
self.parse_batch([tokens])
self.moves.finalize_doc(tokens)
def pipe(self, stream, int batch_size=1000, int n_threads=2):
"""
Process a stream of documents.
Arguments:
stream: The sequence of documents to process.
batch_size (int):
The number of documents to accumulate into a working set.
n_threads (int):
The number of threads with which to work on the buffer in parallel.
Yields (Doc): Documents, in order.
"""
cdef Pool mem = Pool()
cdef int* lengths = <int*>mem.alloc(batch_size, sizeof(int))
cdef Doc doc
cdef int i
cdef int nr_feat = self.model.nr_feat
cdef int status
queue = []
for doc in stream:
queue.append(doc)
if len(queue) == batch_size:
self.parse_batch(queue)
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
queue = []
if queue:
self.parse_batch(queue)
for doc in queue:
self.moves.finalize_doc(doc)
yield doc
def parse_batch(self, docs):
cdef Doc doc
cdef StateClass state
model, states = self.init_batch(docs)
todo = list(states)
while todo:
todo = model(todo)
for state, doc in zip(states, docs):
self.moves.finalize_state(state.c)
for i in range(doc.length):
doc.c[i] = state.c._sent[i]
def update(self, docs, golds, drop=0., sgd=None):
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
return self.update([docs], [golds], drop=drop)
for gold in golds:
self.moves.preprocess_gold(gold)
model, states = self.init_batch(docs)
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
output = list(d_tokens)
todo = zip(states, golds, d_tokens)
while todo:
states, golds, d_tokens = zip(*todo)
states, finish_update = model.begin_update(states)
d_state_features = finish_update(golds, sgd=sgd)
for i, tok_ids in enumerate(token_ids):
for j, tok_i in enumerate(tok_ids):
if tok_i >= 0:
d_tokens[i][tok_i] += d_state_features[i, j]
# Get unfinished states (and their matching gold and token gradients)
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
return output, sum(losses)
def begin_training(self, docs, golds):
for gold in golds:
self.moves.preprocess_gold(gold)
states = self._init_states(docs)
tokvecs = [d.tensor for d in docs]
features = self._get_features(states, tokvecs)
self.model.begin_training(features)
def step_through(self, Doc doc, GoldParse gold=None):
"""
Set up a stepwise state, to introspect and control the transition sequence.
Arguments:
doc (Doc): The document to step through.
gold (GoldParse): Optional gold parse
Returns (StepwiseState):
A state object, to step through the annotation process.
"""
return StepwiseState(self, doc, gold=gold)
def from_transition_sequence(self, Doc doc, sequence):
"""Control the annotations on a document by specifying a transition sequence
to follow.
Arguments:
doc (Doc): The document to annotate.
sequence: A sequence of action names, as unicode strings.
Returns: None
"""
with self.step_through(doc) as stepwise:
for transition in sequence:
stepwise.transition(transition)
def add_label(self, label):
# Doesn't set label into serializer -- subclasses override it to do that.
for action in self.moves.action_types:
added = self.moves.add_action(action, label)
if added:
# Important that the labels be stored as a list! We need the
# order, or the model goes out of synch
self.cfg.setdefault('extra_labels', []).append(label)
def _transition_batch(self, states, scores):
cdef StateClass state
cdef int guess
for state, guess in zip(states, scores.argmax(axis=1)):
action = self.moves.c[guess]
action.do(state.c, action.label)
def _set_gradient(self, gradients, scores, is_valid, costs):
"""Do multi-label log loss"""
cdef double Z, gZ, max_, g_max
n = gradients.shape[0]
scores = scores * is_valid
g_scores = scores * is_valid * (costs <= 0.)
exps = numpy.exp(scores - scores.max(axis=1).reshape((n, 1)))
exps *= is_valid
g_exps = numpy.exp(g_scores - g_scores.max(axis=1).reshape((n, 1)))
g_exps *= costs <= 0.
g_exps *= is_valid
gradients[:] = exps / exps.sum(axis=1).reshape((n, 1))
gradients -= g_exps / g_exps.sum(axis=1).reshape((n, 1))
def _begin_update(self, model, states, tokvecs, drop=0.):
nr_class = self.moves.n_moves
attr_names = self.model.ops.allocate((2,), dtype='i')
attr_names[0] = TAG
attr_names[1] = DEP
features = self._get_features(states, tokvecs, attr_names)
scores, finish_update = self.model.begin_update(features, drop=drop)
assert scores.shape[0] == len(states), (len(states), scores.shape)
assert len(scores.shape) == 2
is_valid = self.model.ops.allocate((len(states), nr_class), dtype='i')
self._validate_batch(is_valid, states)
softmaxed = self.model.ops.softmax(scores)
softmaxed *= is_valid
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
def backward(golds, sgd=None, losses=[], force_gold=False):
nonlocal softmaxed
costs = self.model.ops.allocate((len(states), nr_class), dtype='f')
d_scores = self.model.ops.allocate((len(states), nr_class), dtype='f')
self._cost_batch(costs, is_valid, states, golds)
self._set_gradient(d_scores, scores, is_valid, costs)
losses.append(numpy.abs(d_scores).sum())
if force_gold:
softmaxed *= costs <= 0
return finish_update(d_scores, sgd=sgd)
return softmaxed, backward
def _init_states(self, docs):
states = []
cdef Doc doc
cdef StateClass state
for i, doc in enumerate(docs):
state = StateClass.init(doc.c, doc.length)
self.moves.initialize_state(state.c)
states.append(state)
return states
def _validate_batch(self, int[:, ::1] is_valid, states):
cdef StateClass state
cdef int i
for i, state in enumerate(states):
self.moves.set_valid(&is_valid[i, 0], state.c)
def _cost_batch(self, weight_t[:, ::1] costs, int[:, ::1] is_valid,
states, golds):
cdef int i
cdef StateClass state
cdef GoldParse gold
for i, (state, gold) in enumerate(zip(states, golds)):
self.moves.set_costs(&is_valid[i, 0], &costs[i, 0], state, gold)
def _get_features(self, states, all_tokvecs, attr_names,
nF=1, nB=0, nS=2, nL=2, nR=2):
n_tokens = states[0].nr_context_tokens(nF, nB, nS, nL, nR)
vector_length = all_tokvecs[0].shape[1]
tokens = self.model.ops.allocate((len(states), n_tokens), dtype='int32')
features = self.model.ops.allocate((len(states), n_tokens, attr_names.shape[0]), dtype='uint64')
tokvecs = self.model.ops.allocate((len(states), n_tokens, vector_length), dtype='f')
for i, state in enumerate(states):
state.set_context_tokens(tokens[i], nF, nB, nS, nL, nR)
state.set_attributes(features[i], tokens[i], attr_names)
state.set_token_vectors(tokvecs[i], all_tokvecs[i], tokens[i])
return (tokens, features, tokvecs)
cdef int dropout(FeatureC* feats, int nr_feat, float prob) except -1:
if prob <= 0 or prob >= 1.:
return 0
cdef double[::1] py_probs = numpy.random.uniform(0., 1., nr_feat)
cdef double* probs = &py_probs[0]
for i in range(nr_feat):
if probs[i] >= prob:
feats[i].value /= prob
else:
feats[i].value = 0.
cdef class StepwiseState:
cdef readonly StateClass stcls
cdef readonly Example eg
cdef readonly Doc doc
cdef readonly GoldParse gold
cdef readonly Parser parser
def __init__(self, Parser parser, Doc doc, GoldParse gold=None):
self.parser = parser
self.doc = doc
if gold is not None:
self.gold = gold
self.parser.moves.preprocess_gold(self.gold)
else:
self.gold = GoldParse(doc)
self.stcls = StateClass.init(doc.c, doc.length)
self.parser.moves.initialize_state(self.stcls.c)
self.eg = Example(
nr_class=self.parser.moves.n_moves,
nr_atom=CONTEXT_SIZE,
nr_feat=self.parser.model.nr_feat)
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.finish()
@property
def is_final(self):
return self.stcls.is_final()
@property
def stack(self):
return self.stcls.stack
@property
def queue(self):
return self.stcls.queue
@property
def heads(self):
return [self.stcls.H(i) for i in range(self.stcls.c.length)]
@property
def deps(self):
return [self.doc.vocab.strings[self.stcls.c._sent[i].dep]
for i in range(self.stcls.c.length)]
@property
def costs(self):
"""
Find the action-costs for the current state.
"""
if not self.gold:
raise ValueError("Can't set costs: No GoldParse provided")
self.parser.moves.set_costs(self.eg.c.is_valid, self.eg.c.costs,
self.stcls, self.gold)
costs = {}
for i in range(self.parser.moves.n_moves):
if not self.eg.c.is_valid[i]:
continue
transition = self.parser.moves.c[i]
name = self.parser.moves.move_name(transition.move, transition.label)
costs[name] = self.eg.c.costs[i]
return costs
def predict(self):
self.eg.reset()
#self.eg.c.nr_feat = self.parser.model.set_featuresC(self.eg.c.atoms, self.eg.c.features,
# self.stcls.c)
self.parser.moves.set_valid(self.eg.c.is_valid, self.stcls.c)
#self.parser.model.set_scoresC(self.eg.c.scores,
# self.eg.c.features, self.eg.c.nr_feat)
cdef Transition action = self.parser.moves.c[self.eg.guess]
return self.parser.moves.move_name(action.move, action.label)
def transition(self, action_name=None):
if action_name is None:
action_name = self.predict()
moves = {'S': 0, 'D': 1, 'L': 2, 'R': 3}
if action_name == '_':
action_name = self.predict()
action = self.parser.moves.lookup_transition(action_name)
elif action_name == 'L' or action_name == 'R':
self.predict()
move = moves[action_name]
clas = _arg_max_clas(self.eg.c.scores, move, self.parser.moves.c,
self.eg.c.nr_class)
action = self.parser.moves.c[clas]
else:
action = self.parser.moves.lookup_transition(action_name)
action.do(self.stcls.c, action.label)
def finish(self):
if self.stcls.is_final():
self.parser.moves.finalize_state(self.stcls.c)
self.doc.set_parse(self.stcls.c._sent)
self.parser.moves.finalize_doc(self.doc)
class ParserStateError(ValueError):
def __init__(self, doc):
ValueError.__init__(self,
"Error analysing doc -- no valid actions available. This should "
"never happen, so please report the error on the issue tracker. "
"Here's the thread to do so --- reopen it if it's closed:\n"
"https://github.com/spacy-io/spaCy/issues/429\n"
"Please include the text that the parser failed on, which is:\n"
"%s" % repr(doc.text))
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs, int n) nogil:
cdef int best = -1
for i in range(n):
if costs[i] <= 0:
if best == -1 or scores[i] > scores[best]:
best = i
return best
cdef int _arg_max_clas(const weight_t* scores, int move, const Transition* actions,
int nr_class) except -1:
cdef weight_t score = 0
cdef int mode = -1
cdef int i
for i in range(nr_class):
if actions[i].move == move and (mode == -1 or scores[i] >= score):
mode = i
score = scores[i]
return mode