Tidy up docs

This commit is contained in:
Adriane Boyd 2021-06-28 11:48:11 +02:00
parent 5eeb25f043
commit 4d1ef8f695
18 changed files with 185 additions and 180 deletions

View File

@ -285,8 +285,8 @@ Encode context using bidirectional LSTM layers. Requires
Embed [`Doc`](/api/doc) objects with their vocab's vectors table, applying a
learned linear projection to control the dimensionality. Unknown tokens are
mapped to a zero vector. See the documentation on [static
vectors](/usage/embeddings-transformers#static-vectors) for details.
mapped to a zero vector. See the documentation on
[static vectors](/usage/embeddings-transformers#static-vectors) for details.
| Name |  Description |
| ----------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
@ -449,7 +449,7 @@ For more information, see the section on
> ```ini
> [pretraining]
> component = "tok2vec"
>
>
> [initialize]
> vectors = "en_core_web_lg"
> ...
@ -462,8 +462,8 @@ For more information, see the section on
> ```
Predict the word's vector from a static embeddings table as pretraining
objective for a Tok2Vec layer. To use this objective, make sure that the
`initialize.vectors` section in the config refers to a model with static
objective for a Tok2Vec layer. To use this objective, make sure that the
`initialize.vectors` section in the config refers to a model with static
vectors.
| Name | Description |
@ -649,8 +649,8 @@ from the linear model, where it is stored in `model.attrs["multi_label"]`.
<Accordion title="spacy.TextCatEnsemble.v1 definition" spaced>
[TextCatEnsemble.v1](/api/legacy#TextCatEnsemble_v1) was functionally similar, but used an internal `tok2vec` instead of
taking it as argument:
[TextCatEnsemble.v1](/api/legacy#TextCatEnsemble_v1) was functionally similar,
but used an internal `tok2vec` instead of taking it as argument:
| Name | Description |
| -------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
@ -701,8 +701,9 @@ architecture is usually less accurate than the ensemble, but runs faster.
<Accordion title="spacy.TextCatCNN.v1 definition" spaced>
[TextCatCNN.v1](/api/legacy#TextCatCNN_v1) had the exact same signature, but was not yet resizable.
Since v2, new labels can be added to this component, even after training.
[TextCatCNN.v1](/api/legacy#TextCatCNN_v1) had the exact same signature, but was
not yet resizable. Since v2, new labels can be added to this component, even
after training.
</Accordion>
@ -732,8 +733,9 @@ the others, but may not be as accurate, especially if texts are short.
<Accordion title="spacy.TextCatBOW.v1 definition" spaced>
[TextCatBOW.v1](/api/legacy#TextCatBOW_v1) had the exact same signature, but was not yet resizable.
Since v2, new labels can be added to this component, even after training.
[TextCatBOW.v1](/api/legacy#TextCatBOW_v1) had the exact same signature, but was
not yet resizable. Since v2, new labels can be added to this component, even
after training.
</Accordion>
@ -747,7 +749,7 @@ Since v2, new labels can be added to this component, even after training.
> [model]
> @architectures = "spacy.SpanCategorizer.v1"
> scorer = {"@layers": "spacy.LinearLogistic.v1"}
>
>
> [model.reducer]
> @layers = spacy.mean_max_reducer.v1"
> hidden_size = 128

View File

@ -231,14 +231,14 @@ model. Delegates to [`predict`](/api/dependencyparser#predict) and
> losses = parser.update(examples, sgd=optimizer)
> ```
| Name | Description |
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## DependencyParser.get_loss {#get_loss tag="method"}

View File

@ -35,11 +35,11 @@ how the component should be configured. You can override its settings via the
> ```
| Setting | Description |
| --------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| --------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --- | ----------- |
| `phrase_matcher_attr` | Optional attribute name match on for the internal [`PhraseMatcher`](/api/phrasematcher), e.g. `LOWER` to match on the lowercase token text. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
| `validate` | Whether patterns should be validated (passed to the `Matcher` and `PhraseMatcher`). Defaults to `False`. ~~bool~~ |
| `overwrite_ents` | If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. Defaults to `False`. ~~bool~~ |
| `ent_id_sep` | Separator used internally for entity IDs. Defaults to `"||"`. ~~str~~ |
| `ent_id_sep` | Separator used internally for entity IDs. Defaults to `" | | "`. ~~str~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/entityruler.py
@ -64,14 +64,14 @@ be a token pattern (list) or a phrase pattern (string). For example:
> ```
| Name | Description |
| --------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| --------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --- | ----------- |
| `nlp` | The shared nlp object to pass the vocab to the matchers and process phrase patterns. ~~Language~~ |
| `name` <Tag variant="new">3</Tag> | Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. Used to disable the current entity ruler while creating phrase patterns with the nlp object. ~~str~~ |
| _keyword-only_ | |
| `phrase_matcher_attr` | Optional attribute name match on for the internal [`PhraseMatcher`](/api/phrasematcher), e.g. `LOWER` to match on the lowercase token text. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
| `overwrite_ents` | If existing entities are present, e.g. entities added by the model, overwrite them by matches if necessary. Defaults to `False`. ~~bool~~ |
| `ent_id_sep` | Separator used internally for entity IDs. Defaults to `"||"`. ~~str~~ |
| `ent_id_sep` | Separator used internally for entity IDs. Defaults to `" | | "`. ~~str~~ |
| `patterns` | Optional patterns to load in on initialization. ~~Optional[List[Dict[str, Union[str, List[dict]]]]]~~ |
## EntityRuler.initialize {#initialize tag="method" new="3"}

View File

@ -245,8 +245,8 @@ certain prior probability.
### Candidate.\_\_init\_\_ {#candidate-init tag="method"}
Construct a `Candidate` object. Usually this constructor is not called directly,
but instead these objects are returned by the
`get_candidates` method of the [`entity_linker`](/api/entitylinker) pipe.
but instead these objects are returned by the `get_candidates` method of the
[`entity_linker`](/api/entitylinker) pipe.
> #### Example
>

View File

@ -178,8 +178,9 @@ added to an existing vectors table. See more details in
### spacy.TextCatCNN.v1 {#TextCatCNN_v1}
Since `spacy.TextCatCNN.v2`, this architecture has become resizable, which means that you can add
labels to a previously trained textcat. `TextCatCNN` v1 did not yet support that.
Since `spacy.TextCatCNN.v2`, this architecture has become resizable, which means
that you can add labels to a previously trained textcat. `TextCatCNN` v1 did not
yet support that.
> #### Example Config
>
@ -213,8 +214,9 @@ architecture is usually less accurate than the ensemble, but runs faster.
### spacy.TextCatBOW.v1 {#TextCatBOW_v1}
Since `spacy.TextCatBOW.v2`, this architecture has become resizable, which means that you can add
labels to a previously trained textcat. `TextCatBOW` v1 did not yet support that.
Since `spacy.TextCatBOW.v2`, this architecture has become resizable, which means
that you can add labels to a previously trained textcat. `TextCatBOW` v1 did not
yet support that.
> #### Example Config
>

View File

@ -120,14 +120,14 @@ Find all token sequences matching the supplied patterns on the `Doc` or `Span`.
> matches = matcher(doc)
> ```
| Name | Description |
| ---------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doclike` | The `Doc` or `Span` to match over. ~~Union[Doc, Span]~~ |
| _keyword-only_ | |
| `as_spans` <Tag variant="new">3</Tag> | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ |
| `allow_missing` <Tag variant="new">3</Tag> | Whether to skip checks for missing annotation for attributes included in patterns. Defaults to `False`. ~~bool~~ |
| `with_alignments` <Tag variant="new">3.0.6</Tag> | Return match alignment information as part of the match tuple as `List[int]` with the same length as the matched span. Each entry denotes the corresponding index of the token pattern. If `as_spans` is set to `True`, this setting is ignored. Defaults to `False`. ~~bool~~ |
| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ |
| Name | Description |
| ------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doclike` | The `Doc` or `Span` to match over. ~~Union[Doc, Span]~~ |
| _keyword-only_ | |
| `as_spans` <Tag variant="new">3</Tag> | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ |
| `allow_missing` <Tag variant="new">3</Tag> | Whether to skip checks for missing annotation for attributes included in patterns. Defaults to `False`. ~~bool~~ |
| `with_alignments` <Tag variant="new">3.0.6</Tag> | Return match alignment information as part of the match tuple as `List[int]` with the same length as the matched span. Each entry denotes the corresponding index of the token pattern. If `as_spans` is set to `True`, this setting is ignored. Defaults to `False`. ~~bool~~ |
| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ |
## Matcher.\_\_len\_\_ {#len tag="method" new="2"}

View File

@ -61,11 +61,11 @@ shortcut for this and instantiate the component using its string name and
> morphologizer = Morphologizer(nlp.vocab, model)
> ```
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| Name | Description |
| ------- | -------------------------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
## Morphologizer.\_\_call\_\_ {#call tag="method"}
@ -200,14 +200,14 @@ Delegates to [`predict`](/api/morphologizer#predict) and
> losses = morphologizer.update(examples, sgd=optimizer)
> ```
| Name | Description |
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## Morphologizer.get_loss {#get_loss tag="method"}

View File

@ -98,18 +98,18 @@ representation.
> assert f == "Feat1=Val1|Feat2=Val2"
> ```
| Name | Description |
| ------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `feats_dict` | The morphological features as a dictionary. ~~Dict[str, str]~~ |
| Name | Description |
| ------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------- |
| `feats_dict` | The morphological features as a dictionary. ~~Dict[str, str]~~ |
| **RETURNS** | The morphological features in Universal Dependencies [FEATS](https://universaldependencies.org/format.html#morphological-annotation) format. ~~str~~ |
## Attributes {#attributes}
| Name | Description |
| ------------- | ------------------------------------------------------------------------------------------------------------------------------ |
| `FEATURE_SEP` | The [FEATS](https://universaldependencies.org/format.html#morphological-annotation) feature separator. Default is `|`. ~~str~~ |
| `FIELD_SEP` | The [FEATS](https://universaldependencies.org/format.html#morphological-annotation) field separator. Default is `=`. ~~str~~ |
| `VALUE_SEP` | The [FEATS](https://universaldependencies.org/format.html#morphological-annotation) value separator. Default is `,`. ~~str~~ |
| Name | Description |
| ------------- | ---------------------------------------------------------------------------------------------------------------------------- | ---------- |
| `FEATURE_SEP` | The [FEATS](https://universaldependencies.org/format.html#morphological-annotation) feature separator. Default is ` | `. ~~str~~ |
| `FIELD_SEP` | The [FEATS](https://universaldependencies.org/format.html#morphological-annotation) field separator. Default is `=`. ~~str~~ |
| `VALUE_SEP` | The [FEATS](https://universaldependencies.org/format.html#morphological-annotation) value separator. Default is `,`. ~~str~~ |
## MorphAnalysis {#morphanalysis tag="class" source="spacy/tokens/morphanalysis.pyx"}

View File

@ -59,7 +59,7 @@ Find all token sequences matching the supplied patterns on the `Doc` or `Span`.
| Name | Description |
| ------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doclike` | The `Doc` or `Span` to match over. ~~Union[Doc, Span]~~ |
| `doclike` | The `Doc` or `Span` to match over. ~~Union[Doc, Span]~~ |
| _keyword-only_ | |
| `as_spans` <Tag variant="new">3</Tag> | Instead of tuples, return a list of [`Span`](/api/span) objects of the matches, with the `match_id` assigned as the span label. Defaults to `False`. ~~bool~~ |
| **RETURNS** | A list of `(match_id, start, end)` tuples, describing the matches. A match tuple describes a span `doc[start:end`]. The `match_id` is the ID of the added match pattern. If `as_spans` is set to `True`, a list of `Span` objects is returned instead. ~~Union[List[Tuple[int, int, int]], List[Span]]~~ |
@ -149,8 +149,8 @@ patterns = [nlp("health care reform"), nlp("healthcare reform")]
</Infobox>
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `match_id` | An ID for the thing you're matching. ~~str~~ | |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- | --- |
| `match_id` | An ID for the thing you're matching. ~~str~~ | |
| `docs` | `Doc` objects of the phrases to match. ~~List[Doc]~~ |
| _keyword-only_ | |
| `on_match` | Callback function to act on matches. Takes the arguments `matcher`, `doc`, `i` and `matches`. ~~Optional[Callable[[Matcher, Doc, int, List[tuple], Any]]~~ |

View File

@ -187,14 +187,14 @@ Delegates to [`predict`](/api/sentencerecognizer#predict) and
> losses = senter.update(examples, sgd=optimizer)
> ```
| Name | Description |
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## SentenceRecognizer.rehearse {#rehearse tag="method,experimental" new="3"}

View File

@ -28,7 +28,7 @@ how the component should be configured. You can override its settings via the
> ```
| Setting | Description |
| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ | ------ |
| `punct_chars` | Optional custom list of punctuation characters that mark sentence ends. See below for defaults if not set. Defaults to `None`. ~~Optional[List[str]]~~ | `None` |
```python

View File

@ -491,8 +491,8 @@ document by the `parser`, `senter`, `sentencizer` or some custom function. It
will raise an error otherwise.
If the span happens to cross sentence boundaries, only the first sentence will
be returned. If it is required that the sentence always includes the
full span, the result can be adjusted as such:
be returned. If it is required that the sentence always includes the full span,
the result can be adjusted as such:
```python
sent = span.sent

View File

@ -213,14 +213,14 @@ Delegates to [`predict`](/api/spancategorizer#predict) and
> losses = spancat.update(examples, sgd=optimizer)
> ```
| Name | Description |
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## SpanCategorizer.get_loss {#get_loss tag="method"}

View File

@ -25,9 +25,9 @@ architectures and their arguments and hyperparameters.
> nlp.add_pipe("tagger", config=config)
> ```
| Setting | Description |
| ---------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
| Setting | Description |
| ------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/tagger.pyx
@ -54,11 +54,11 @@ Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe`](/api/language#add_pipe).
| Name | Description |
| ---------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). ~~Model[List[Doc], List[Floats2d]]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| Name | Description |
| ------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). ~~Model[List[Doc], List[Floats2d]]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
## Tagger.\_\_call\_\_ {#call tag="method"}
@ -198,14 +198,14 @@ Delegates to [`predict`](/api/tagger#predict) and
> losses = tagger.update(examples, sgd=optimizer)
> ```
| Name | Description |
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## Tagger.rehearse {#rehearse tag="method,experimental" new="3"}

View File

@ -196,14 +196,14 @@ Delegates to [`predict`](/api/tok2vec#predict).
> losses = tok2vec.update(examples, sgd=optimizer)
> ```
| Name | Description |
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## Tok2Vec.create_optimizer {#create_optimizer tag="method"}

View File

@ -362,8 +362,8 @@ unknown. Defaults to `True` for the first token in the `Doc`.
> assert not doc[5].is_sent_start
> ```
| Name | Description |
| ----------- | --------------------------------------------- |
| Name | Description |
| ----------- | ------------------------------------------------------- |
| **RETURNS** | Whether the token starts a sentence. ~~Optional[bool]~~ |
## Token.has_vector {#has_vector tag="property" model="vectors"}
@ -420,73 +420,73 @@ The L2 norm of the token's vector representation.
## Attributes {#attributes}
| Name | Description |
| -------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | The parent document. ~~Doc~~ |
| `lex` <Tag variant="new">3</Tag> | The underlying lexeme. ~~Lexeme~~ |
| `sent` <Tag variant="new">2.0.12</Tag> | The sentence span that this token is a part of. ~~Span~~ |
| `text` | Verbatim text content. ~~str~~ |
| `text_with_ws` | Text content, with trailing space character if present. ~~str~~ |
| `whitespace_` | Trailing space character if present. ~~str~~ |
| `orth` | ID of the verbatim text content. ~~int~~ |
| `orth_` | Verbatim text content (identical to `Token.text`). Exists mostly for consistency with the other attributes. ~~str~~ |
| `vocab` | The vocab object of the parent `Doc`. ~~vocab~~ |
| `tensor` <Tag variant="new">2.1.7</Tag> | The token's slice of the parent `Doc`'s tensor. ~~numpy.ndarray~~ |
| `head` | The syntactic parent, or "governor", of this token. ~~Token~~ |
| `left_edge` | The leftmost token of this token's syntactic descendants. ~~Token~~ |
| `right_edge` | The rightmost token of this token's syntactic descendants. ~~Token~~ |
| `i` | The index of the token within the parent document. ~~int~~ |
| `ent_type` | Named entity type. ~~int~~ |
| `ent_type_` | Named entity type. ~~str~~ |
| `ent_iob` | IOB code of named entity tag. `3` means the token begins an entity, `2` means it is outside an entity, `1` means it is inside an entity, and `0` means no entity tag is set. ~~int~~ |
| `ent_iob_` | IOB code of named entity tag. "B" means the token begins an entity, "I" means it is inside an entity, "O" means it is outside an entity, and "" means no entity tag is set. ~~str~~ |
| `ent_kb_id` <Tag variant="new">2.2</Tag> | Knowledge base ID that refers to the named entity this token is a part of, if any. ~~int~~ |
| `ent_kb_id_` <Tag variant="new">2.2</Tag> | Knowledge base ID that refers to the named entity this token is a part of, if any. ~~str~~ |
| `ent_id` | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. ~~int~~ |
| `ent_id_` | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. ~~str~~ |
| `lemma` | Base form of the token, with no inflectional suffixes. ~~int~~ |
| `lemma_` | Base form of the token, with no inflectional suffixes. ~~str~~ |
| `norm` | The token's norm, i.e. a normalized form of the token text. Can be set in the language's [tokenizer exceptions](/usage/linguistic-features#language-data). ~~int~~ |
| `norm_` | The token's norm, i.e. a normalized form of the token text. Can be set in the language's [tokenizer exceptions](/usage/linguistic-features#language-data). ~~str~~ |
| `lower` | Lowercase form of the token. ~~int~~ |
| `lower_` | Lowercase form of the token text. Equivalent to `Token.text.lower()`. ~~str~~ |
| `shape` | Transform of the token's string to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~int~~ |
| `shape_` | Transform of the token's string to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~str~~ |
| `prefix` | Hash value of a length-N substring from the start of the token. Defaults to `N=1`. ~~int~~ |
| `prefix_` | A length-N substring from the start of the token. Defaults to `N=1`. ~~str~~ |
| `suffix` | Hash value of a length-N substring from the end of the token. Defaults to `N=3`. ~~int~~ |
| `suffix_` | Length-N substring from the end of the token. Defaults to `N=3`. ~~str~~ |
| `is_alpha` | Does the token consist of alphabetic characters? Equivalent to `token.text.isalpha()`. ~~bool~~ |
| `is_ascii` | Does the token consist of ASCII characters? Equivalent to `all(ord(c) < 128 for c in token.text)`. ~~bool~~ |
| `is_digit` | Does the token consist of digits? Equivalent to `token.text.isdigit()`. ~~bool~~ |
| `is_lower` | Is the token in lowercase? Equivalent to `token.text.islower()`. ~~bool~~ |
| `is_upper` | Is the token in uppercase? Equivalent to `token.text.isupper()`. ~~bool~~ |
| `is_title` | Is the token in titlecase? Equivalent to `token.text.istitle()`. ~~bool~~ |
| `is_punct` | Is the token punctuation? ~~bool~~ |
| `is_left_punct` | Is the token a left punctuation mark, e.g. `"("` ? ~~bool~~ |
| `is_right_punct` | Is the token a right punctuation mark, e.g. `")"` ? ~~bool~~ |
| `is_space` | Does the token consist of whitespace characters? Equivalent to `token.text.isspace()`. ~~bool~~ |
| `is_bracket` | Is the token a bracket? ~~bool~~ |
| `is_quote` | Is the token a quotation mark? ~~bool~~ |
| `is_currency` <Tag variant="new">2.0.8</Tag> | Is the token a currency symbol? ~~bool~~ |
| `like_url` | Does the token resemble a URL? ~~bool~~ |
| `like_num` | Does the token represent a number? e.g. "10.9", "10", "ten", etc. ~~bool~~ |
| `like_email` | Does the token resemble an email address? ~~bool~~ |
| `is_oov` | Is the token out-of-vocabulary (i.e. does it not have a word vector)? ~~bool~~ |
| `is_stop` | Is the token part of a "stop list"? ~~bool~~ |
| `pos` | Coarse-grained part-of-speech from the [Universal POS tag set](https://universaldependencies.org/docs/u/pos/). ~~int~~ |
| `pos_` | Coarse-grained part-of-speech from the [Universal POS tag set](https://universaldependencies.org/docs/u/pos/). ~~str~~ |
| `tag` | Fine-grained part-of-speech. ~~int~~ |
| `tag_` | Fine-grained part-of-speech. ~~str~~ |
| `morph` <Tag variant="new">3</Tag> | Morphological analysis. ~~MorphAnalysis~~ |
| `dep` | Syntactic dependency relation. ~~int~~ |
| `dep_` | Syntactic dependency relation. ~~str~~ |
| `lang` | Language of the parent document's vocabulary. ~~int~~ |
| `lang_` | Language of the parent document's vocabulary. ~~str~~ |
| `prob` | Smoothed log probability estimate of token's word type (context-independent entry in the vocabulary). ~~float~~ |
| `idx` | The character offset of the token within the parent document. ~~int~~ |
| `sentiment` | A scalar value indicating the positivity or negativity of the token. ~~float~~ |
| `lex_id` | Sequential ID of the token's lexical type, used to index into tables, e.g. for word vectors. ~~int~~ |
| `rank` | Sequential ID of the token's lexical type, used to index into tables, e.g. for word vectors. ~~int~~ |
| `cluster` | Brown cluster ID. ~~int~~ |
| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |
| Name | Description |
| -------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | The parent document. ~~Doc~~ |
| `lex` <Tag variant="new">3</Tag> | The underlying lexeme. ~~Lexeme~~ |
| `sent` <Tag variant="new">2.0.12</Tag> | The sentence span that this token is a part of. ~~Span~~ |
| `text` | Verbatim text content. ~~str~~ |
| `text_with_ws` | Text content, with trailing space character if present. ~~str~~ |
| `whitespace_` | Trailing space character if present. ~~str~~ |
| `orth` | ID of the verbatim text content. ~~int~~ |
| `orth_` | Verbatim text content (identical to `Token.text`). Exists mostly for consistency with the other attributes. ~~str~~ |
| `vocab` | The vocab object of the parent `Doc`. ~~vocab~~ |
| `tensor` <Tag variant="new">2.1.7</Tag> | The token's slice of the parent `Doc`'s tensor. ~~numpy.ndarray~~ |
| `head` | The syntactic parent, or "governor", of this token. ~~Token~~ |
| `left_edge` | The leftmost token of this token's syntactic descendants. ~~Token~~ |
| `right_edge` | The rightmost token of this token's syntactic descendants. ~~Token~~ |
| `i` | The index of the token within the parent document. ~~int~~ |
| `ent_type` | Named entity type. ~~int~~ |
| `ent_type_` | Named entity type. ~~str~~ |
| `ent_iob` | IOB code of named entity tag. `3` means the token begins an entity, `2` means it is outside an entity, `1` means it is inside an entity, and `0` means no entity tag is set. ~~int~~ |
| `ent_iob_` | IOB code of named entity tag. "B" means the token begins an entity, "I" means it is inside an entity, "O" means it is outside an entity, and "" means no entity tag is set. ~~str~~ |
| `ent_kb_id` <Tag variant="new">2.2</Tag> | Knowledge base ID that refers to the named entity this token is a part of, if any. ~~int~~ |
| `ent_kb_id_` <Tag variant="new">2.2</Tag> | Knowledge base ID that refers to the named entity this token is a part of, if any. ~~str~~ |
| `ent_id` | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. ~~int~~ |
| `ent_id_` | ID of the entity the token is an instance of, if any. Currently not used, but potentially for coreference resolution. ~~str~~ |
| `lemma` | Base form of the token, with no inflectional suffixes. ~~int~~ |
| `lemma_` | Base form of the token, with no inflectional suffixes. ~~str~~ |
| `norm` | The token's norm, i.e. a normalized form of the token text. Can be set in the language's [tokenizer exceptions](/usage/linguistic-features#language-data). ~~int~~ |
| `norm_` | The token's norm, i.e. a normalized form of the token text. Can be set in the language's [tokenizer exceptions](/usage/linguistic-features#language-data). ~~str~~ |
| `lower` | Lowercase form of the token. ~~int~~ |
| `lower_` | Lowercase form of the token text. Equivalent to `Token.text.lower()`. ~~str~~ |
| `shape` | Transform of the token's string to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~int~~ |
| `shape_` | Transform of the token's string to show orthographic features. Alphabetic characters are replaced by `x` or `X`, and numeric characters are replaced by `d`, and sequences of the same character are truncated after length 4. For example,`"Xxxx"`or`"dd"`. ~~str~~ |
| `prefix` | Hash value of a length-N substring from the start of the token. Defaults to `N=1`. ~~int~~ |
| `prefix_` | A length-N substring from the start of the token. Defaults to `N=1`. ~~str~~ |
| `suffix` | Hash value of a length-N substring from the end of the token. Defaults to `N=3`. ~~int~~ |
| `suffix_` | Length-N substring from the end of the token. Defaults to `N=3`. ~~str~~ |
| `is_alpha` | Does the token consist of alphabetic characters? Equivalent to `token.text.isalpha()`. ~~bool~~ |
| `is_ascii` | Does the token consist of ASCII characters? Equivalent to `all(ord(c) < 128 for c in token.text)`. ~~bool~~ |
| `is_digit` | Does the token consist of digits? Equivalent to `token.text.isdigit()`. ~~bool~~ |
| `is_lower` | Is the token in lowercase? Equivalent to `token.text.islower()`. ~~bool~~ |
| `is_upper` | Is the token in uppercase? Equivalent to `token.text.isupper()`. ~~bool~~ |
| `is_title` | Is the token in titlecase? Equivalent to `token.text.istitle()`. ~~bool~~ |
| `is_punct` | Is the token punctuation? ~~bool~~ |
| `is_left_punct` | Is the token a left punctuation mark, e.g. `"("` ? ~~bool~~ |
| `is_right_punct` | Is the token a right punctuation mark, e.g. `")"` ? ~~bool~~ |
| `is_space` | Does the token consist of whitespace characters? Equivalent to `token.text.isspace()`. ~~bool~~ |
| `is_bracket` | Is the token a bracket? ~~bool~~ |
| `is_quote` | Is the token a quotation mark? ~~bool~~ |
| `is_currency` <Tag variant="new">2.0.8</Tag> | Is the token a currency symbol? ~~bool~~ |
| `like_url` | Does the token resemble a URL? ~~bool~~ |
| `like_num` | Does the token represent a number? e.g. "10.9", "10", "ten", etc. ~~bool~~ |
| `like_email` | Does the token resemble an email address? ~~bool~~ |
| `is_oov` | Is the token out-of-vocabulary (i.e. does it not have a word vector)? ~~bool~~ |
| `is_stop` | Is the token part of a "stop list"? ~~bool~~ |
| `pos` | Coarse-grained part-of-speech from the [Universal POS tag set](https://universaldependencies.org/docs/u/pos/). ~~int~~ |
| `pos_` | Coarse-grained part-of-speech from the [Universal POS tag set](https://universaldependencies.org/docs/u/pos/). ~~str~~ |
| `tag` | Fine-grained part-of-speech. ~~int~~ |
| `tag_` | Fine-grained part-of-speech. ~~str~~ |
| `morph` <Tag variant="new">3</Tag> | Morphological analysis. ~~MorphAnalysis~~ |
| `dep` | Syntactic dependency relation. ~~int~~ |
| `dep_` | Syntactic dependency relation. ~~str~~ |
| `lang` | Language of the parent document's vocabulary. ~~int~~ |
| `lang_` | Language of the parent document's vocabulary. ~~str~~ |
| `prob` | Smoothed log probability estimate of token's word type (context-independent entry in the vocabulary). ~~float~~ |
| `idx` | The character offset of the token within the parent document. ~~int~~ |
| `sentiment` | A scalar value indicating the positivity or negativity of the token. ~~float~~ |
| `lex_id` | Sequential ID of the token's lexical type, used to index into tables, e.g. for word vectors. ~~int~~ |
| `rank` | Sequential ID of the token's lexical type, used to index into tables, e.g. for word vectors. ~~int~~ |
| `cluster` | Brown cluster ID. ~~int~~ |
| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |

View File

@ -239,6 +239,7 @@ it.
| `infix_finditer` | A function to find internal segment separators, e.g. hyphens. Returns a (possibly empty) sequence of `re.MatchObject` objects. ~~Optional[Callable[[str], Iterator[Match]]]~~ |
| `token_match` | A function matching the signature of `re.compile(string).match` to find token matches. Returns an `re.MatchObject` or `None`. ~~Optional[Callable[[str], Optional[Match]]]~~ |
| `rules` | A dictionary of tokenizer exceptions and special cases. ~~Optional[Dict[str, List[Dict[int, str]]]]~~ |
## Serialization fields {#serialization-fields}
During serialization, spaCy will export several data fields used to restore

View File

@ -290,8 +290,8 @@ If a table is full, it can be resized using
## Vectors.n_keys {#n_keys tag="property"}
Get the number of keys in the table. Note that this is the number of _all_ keys,
not just unique vectors. If several keys are mapped to the same
vectors, they will be counted individually.
not just unique vectors. If several keys are mapped to the same vectors, they
will be counted individually.
> #### Example
>
@ -321,7 +321,7 @@ performed in chunks to avoid consuming too much memory. You can set the
> ```
| Name | Description |
| -------------- | --------------------------------------------------------------------------- |
| -------------- | --------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------- |
| `queries` | An array with one or more vectors. ~~numpy.ndarray~~ |
| _keyword-only_ | |
| `batch_size` | The batch size to use. Default to `1024`. ~~int~~ |