mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Merge branch 'develop' into nightly.spacy.io
This commit is contained in:
		
						commit
						4f47f33793
					
				
							
								
								
									
										2
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										2
									
								
								Makefile
									
									
									
									
									
								
							| 
						 | 
				
			
			@ -29,7 +29,7 @@ dist/$(SPACY_BIN) : $(WHEELHOUSE)/spacy-$(PYVER)-$(version).stamp
 | 
			
		|||
		--disable-cache \
 | 
			
		||||
		-o $@ \
 | 
			
		||||
		$(package)==$(version) \
 | 
			
		||||
		$(SPACY_EXTRAS)
 | 
			
		||||
		"$(SPACY_EXTRAS)"
 | 
			
		||||
	chmod a+rx $@
 | 
			
		||||
	cp $@ dist/spacy.pex
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -65,9 +65,11 @@ console_scripts =
 | 
			
		|||
 | 
			
		||||
[options.extras_require]
 | 
			
		||||
lookups =
 | 
			
		||||
    spacy_lookups_data==1.0.0rc0
 | 
			
		||||
    spacy_lookups_data>=1.0.0rc0,<1.0.0
 | 
			
		||||
transformers =
 | 
			
		||||
    spacy_transformers>=1.0.0a17,<1.0.0
 | 
			
		||||
ray =
 | 
			
		||||
    spacy_ray>=0.1.0,<1.0.0
 | 
			
		||||
cuda =
 | 
			
		||||
    cupy>=5.0.0b4,<9.0.0
 | 
			
		||||
cuda80 =
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -843,7 +843,7 @@ class Language:
 | 
			
		|||
        *,
 | 
			
		||||
        config: Dict[str, Any] = SimpleFrozenDict(),
 | 
			
		||||
        validate: bool = True,
 | 
			
		||||
    ) -> None:
 | 
			
		||||
    ) -> Callable[[Doc], Doc]:
 | 
			
		||||
        """Replace a component in the pipeline.
 | 
			
		||||
 | 
			
		||||
        name (str): Name of the component to replace.
 | 
			
		||||
| 
						 | 
				
			
			@ -852,6 +852,7 @@ class Language:
 | 
			
		|||
            component. Will be merged with default config, if available.
 | 
			
		||||
        validate (bool): Whether to validate the component config against the
 | 
			
		||||
            arguments and types expected by the factory.
 | 
			
		||||
        RETURNS (Callable[[Doc], Doc]): The new pipeline component.
 | 
			
		||||
 | 
			
		||||
        DOCS: https://nightly.spacy.io/api/language#replace_pipe
 | 
			
		||||
        """
 | 
			
		||||
| 
						 | 
				
			
			@ -866,9 +867,11 @@ class Language:
 | 
			
		|||
        self.remove_pipe(name)
 | 
			
		||||
        if not len(self._components) or pipe_index == len(self._components):
 | 
			
		||||
            # we have no components to insert before/after, or we're replacing the last component
 | 
			
		||||
            self.add_pipe(factory_name, name=name, config=config, validate=validate)
 | 
			
		||||
            return self.add_pipe(
 | 
			
		||||
                factory_name, name=name, config=config, validate=validate
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            self.add_pipe(
 | 
			
		||||
            return self.add_pipe(
 | 
			
		||||
                factory_name,
 | 
			
		||||
                name=name,
 | 
			
		||||
                before=pipe_index,
 | 
			
		||||
| 
						 | 
				
			
			@ -1300,7 +1303,11 @@ class Language:
 | 
			
		|||
            kwargs.setdefault("batch_size", batch_size)
 | 
			
		||||
            # non-trainable components may have a pipe() implementation that refers to dummy
 | 
			
		||||
            # predict and set_annotations methods
 | 
			
		||||
            if not hasattr(pipe, "pipe") or not hasattr(pipe, "is_trainable") or not pipe.is_trainable():
 | 
			
		||||
            if (
 | 
			
		||||
                not hasattr(pipe, "pipe")
 | 
			
		||||
                or not hasattr(pipe, "is_trainable")
 | 
			
		||||
                or not pipe.is_trainable()
 | 
			
		||||
            ):
 | 
			
		||||
                docs = _pipe(docs, pipe, kwargs)
 | 
			
		||||
            else:
 | 
			
		||||
                docs = pipe.pipe(docs, **kwargs)
 | 
			
		||||
| 
						 | 
				
			
			@ -1412,7 +1419,11 @@ class Language:
 | 
			
		|||
            kwargs.setdefault("batch_size", batch_size)
 | 
			
		||||
            # non-trainable components may have a pipe() implementation that refers to dummy
 | 
			
		||||
            # predict and set_annotations methods
 | 
			
		||||
            if hasattr(proc, "pipe") and hasattr(proc, "is_trainable") and proc.is_trainable():
 | 
			
		||||
            if (
 | 
			
		||||
                hasattr(proc, "pipe")
 | 
			
		||||
                and hasattr(proc, "is_trainable")
 | 
			
		||||
                and proc.is_trainable()
 | 
			
		||||
            ):
 | 
			
		||||
                f = functools.partial(proc.pipe, **kwargs)
 | 
			
		||||
            else:
 | 
			
		||||
                # Apply the function, but yield the doc
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -53,10 +53,18 @@ class AttributeRuler(Pipe):
 | 
			
		|||
        self.name = name
 | 
			
		||||
        self.vocab = vocab
 | 
			
		||||
        self.matcher = Matcher(self.vocab, validate=validate)
 | 
			
		||||
        self.validate = validate
 | 
			
		||||
        self.attrs = []
 | 
			
		||||
        self._attrs_unnormed = []  # store for reference
 | 
			
		||||
        self.indices = []
 | 
			
		||||
 | 
			
		||||
    def clear(self) -> None:
 | 
			
		||||
        """Reset all patterns."""
 | 
			
		||||
        self.matcher = Matcher(self.vocab, validate=self.validate)
 | 
			
		||||
        self.attrs = []
 | 
			
		||||
        self._attrs_unnormed = []
 | 
			
		||||
        self.indices = []
 | 
			
		||||
 | 
			
		||||
    def initialize(
 | 
			
		||||
        self,
 | 
			
		||||
        get_examples: Optional[Callable[[], Iterable[Example]]],
 | 
			
		||||
| 
						 | 
				
			
			@ -65,13 +73,14 @@ class AttributeRuler(Pipe):
 | 
			
		|||
        patterns: Optional[Iterable[AttributeRulerPatternType]] = None,
 | 
			
		||||
        tag_map: Optional[TagMapType] = None,
 | 
			
		||||
        morph_rules: Optional[MorphRulesType] = None,
 | 
			
		||||
    ):
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        """Initialize the attribute ruler by adding zero or more patterns.
 | 
			
		||||
 | 
			
		||||
        Rules can be specified as a sequence of dicts using the `patterns`
 | 
			
		||||
        keyword argument. You can also provide rules using the "tag map" or
 | 
			
		||||
        "morph rules" formats supported by spaCy prior to v3.
 | 
			
		||||
        """
 | 
			
		||||
        self.clear()
 | 
			
		||||
        if patterns:
 | 
			
		||||
            self.add_patterns(patterns)
 | 
			
		||||
        if tag_map:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -8,6 +8,7 @@ from thinc.api import set_dropout_rate
 | 
			
		|||
import warnings
 | 
			
		||||
 | 
			
		||||
from ..kb import KnowledgeBase, Candidate
 | 
			
		||||
from ..ml import empty_kb
 | 
			
		||||
from ..tokens import Doc
 | 
			
		||||
from .pipe import Pipe, deserialize_config
 | 
			
		||||
from ..language import Language
 | 
			
		||||
| 
						 | 
				
			
			@ -41,11 +42,11 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
 | 
			
		|||
    requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
 | 
			
		||||
    assigns=["token.ent_kb_id"],
 | 
			
		||||
    default_config={
 | 
			
		||||
        "kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 64},
 | 
			
		||||
        "model": DEFAULT_NEL_MODEL,
 | 
			
		||||
        "labels_discard": [],
 | 
			
		||||
        "incl_prior": True,
 | 
			
		||||
        "incl_context": True,
 | 
			
		||||
        "entity_vector_length": 64,
 | 
			
		||||
        "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
 | 
			
		||||
    },
 | 
			
		||||
    default_score_weights={
 | 
			
		||||
| 
						 | 
				
			
			@ -58,11 +59,11 @@ def make_entity_linker(
 | 
			
		|||
    nlp: Language,
 | 
			
		||||
    name: str,
 | 
			
		||||
    model: Model,
 | 
			
		||||
    kb_loader: Callable[[Vocab], KnowledgeBase],
 | 
			
		||||
    *,
 | 
			
		||||
    labels_discard: Iterable[str],
 | 
			
		||||
    incl_prior: bool,
 | 
			
		||||
    incl_context: bool,
 | 
			
		||||
    entity_vector_length: int,
 | 
			
		||||
    get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]],
 | 
			
		||||
):
 | 
			
		||||
    """Construct an EntityLinker component.
 | 
			
		||||
| 
						 | 
				
			
			@ -70,19 +71,21 @@ def make_entity_linker(
 | 
			
		|||
    model (Model[List[Doc], Floats2d]): A model that learns document vector
 | 
			
		||||
        representations. Given a batch of Doc objects, it should return a single
 | 
			
		||||
        array, with one row per item in the batch.
 | 
			
		||||
    kb (KnowledgeBase): The knowledge-base to link entities to.
 | 
			
		||||
    labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
 | 
			
		||||
    incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | 
			
		||||
    incl_context (bool): Whether or not to include the local context in the model.
 | 
			
		||||
    entity_vector_length (int): Size of encoding vectors in the KB.
 | 
			
		||||
    get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that
 | 
			
		||||
        produces a list of candidates, given a certain knowledge base and a textual mention.
 | 
			
		||||
    """
 | 
			
		||||
    return EntityLinker(
 | 
			
		||||
        nlp.vocab,
 | 
			
		||||
        model,
 | 
			
		||||
        name,
 | 
			
		||||
        kb_loader=kb_loader,
 | 
			
		||||
        labels_discard=labels_discard,
 | 
			
		||||
        incl_prior=incl_prior,
 | 
			
		||||
        incl_context=incl_context,
 | 
			
		||||
        entity_vector_length=entity_vector_length,
 | 
			
		||||
        get_candidates=get_candidates,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -101,10 +104,10 @@ class EntityLinker(Pipe):
 | 
			
		|||
        model: Model,
 | 
			
		||||
        name: str = "entity_linker",
 | 
			
		||||
        *,
 | 
			
		||||
        kb_loader: Callable[[Vocab], KnowledgeBase],
 | 
			
		||||
        labels_discard: Iterable[str],
 | 
			
		||||
        incl_prior: bool,
 | 
			
		||||
        incl_context: bool,
 | 
			
		||||
        entity_vector_length: int,
 | 
			
		||||
        get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]],
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        """Initialize an entity linker.
 | 
			
		||||
| 
						 | 
				
			
			@ -113,10 +116,12 @@ class EntityLinker(Pipe):
 | 
			
		|||
        model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | 
			
		||||
        name (str): The component instance name, used to add entries to the
 | 
			
		||||
            losses during training.
 | 
			
		||||
        kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance.
 | 
			
		||||
        labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction.
 | 
			
		||||
        incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
 | 
			
		||||
        incl_context (bool): Whether or not to include the local context in the model.
 | 
			
		||||
        entity_vector_length (int): Size of encoding vectors in the KB.
 | 
			
		||||
        get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that
 | 
			
		||||
            produces a list of candidates, given a certain knowledge base and a textual mention.
 | 
			
		||||
 | 
			
		||||
        DOCS: https://nightly.spacy.io/api/entitylinker#init
 | 
			
		||||
        """
 | 
			
		||||
| 
						 | 
				
			
			@ -127,15 +132,23 @@ class EntityLinker(Pipe):
 | 
			
		|||
            "labels_discard": list(labels_discard),
 | 
			
		||||
            "incl_prior": incl_prior,
 | 
			
		||||
            "incl_context": incl_context,
 | 
			
		||||
            "entity_vector_length": entity_vector_length,
 | 
			
		||||
        }
 | 
			
		||||
        self.kb = kb_loader(self.vocab)
 | 
			
		||||
        self.get_candidates = get_candidates
 | 
			
		||||
        self.cfg = dict(cfg)
 | 
			
		||||
        self.distance = CosineDistance(normalize=False)
 | 
			
		||||
        # how many neightbour sentences to take into account
 | 
			
		||||
        self.n_sents = cfg.get("n_sents", 0)
 | 
			
		||||
        # create an empty KB by default. If you want to load a predefined one, specify it in 'initialize'.
 | 
			
		||||
        self.kb = empty_kb(entity_vector_length)(self.vocab)
 | 
			
		||||
 | 
			
		||||
    def _require_kb(self) -> None:
 | 
			
		||||
    def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]):
 | 
			
		||||
        """Define the KB of this pipe by providing a function that will
 | 
			
		||||
        create it using this object's vocab."""
 | 
			
		||||
        self.kb = kb_loader(self.vocab)
 | 
			
		||||
        self.cfg["entity_vector_length"] = self.kb.entity_vector_length
 | 
			
		||||
 | 
			
		||||
    def validate_kb(self) -> None:
 | 
			
		||||
        # Raise an error if the knowledge base is not initialized.
 | 
			
		||||
        if len(self.kb) == 0:
 | 
			
		||||
            raise ValueError(Errors.E139.format(name=self.name))
 | 
			
		||||
| 
						 | 
				
			
			@ -145,6 +158,7 @@ class EntityLinker(Pipe):
 | 
			
		|||
        get_examples: Callable[[], Iterable[Example]],
 | 
			
		||||
        *,
 | 
			
		||||
        nlp: Optional[Language] = None,
 | 
			
		||||
        kb_loader: Callable[[Vocab], KnowledgeBase] = None,
 | 
			
		||||
    ):
 | 
			
		||||
        """Initialize the pipe for training, using a representative set
 | 
			
		||||
        of data examples.
 | 
			
		||||
| 
						 | 
				
			
			@ -152,11 +166,16 @@ class EntityLinker(Pipe):
 | 
			
		|||
        get_examples (Callable[[], Iterable[Example]]): Function that
 | 
			
		||||
            returns a representative sample of gold-standard Example objects.
 | 
			
		||||
        nlp (Language): The current nlp object the component is part of.
 | 
			
		||||
        kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance.
 | 
			
		||||
            Note that providing this argument, will overwrite all data accumulated in the current KB.
 | 
			
		||||
            Use this only when loading a KB as-such from file.
 | 
			
		||||
 | 
			
		||||
        DOCS: https://nightly.spacy.io/api/entitylinker#initialize
 | 
			
		||||
        """
 | 
			
		||||
        self._ensure_examples(get_examples)
 | 
			
		||||
        self._require_kb()
 | 
			
		||||
        if kb_loader is not None:
 | 
			
		||||
            self.set_kb(kb_loader)
 | 
			
		||||
        self.validate_kb()
 | 
			
		||||
        nO = self.kb.entity_vector_length
 | 
			
		||||
        doc_sample = []
 | 
			
		||||
        vector_sample = []
 | 
			
		||||
| 
						 | 
				
			
			@ -192,7 +211,7 @@ class EntityLinker(Pipe):
 | 
			
		|||
 | 
			
		||||
        DOCS: https://nightly.spacy.io/api/entitylinker#update
 | 
			
		||||
        """
 | 
			
		||||
        self._require_kb()
 | 
			
		||||
        self.validate_kb()
 | 
			
		||||
        if losses is None:
 | 
			
		||||
            losses = {}
 | 
			
		||||
        losses.setdefault(self.name, 0.0)
 | 
			
		||||
| 
						 | 
				
			
			@ -303,7 +322,7 @@ class EntityLinker(Pipe):
 | 
			
		|||
 | 
			
		||||
        DOCS: https://nightly.spacy.io/api/entitylinker#predict
 | 
			
		||||
        """
 | 
			
		||||
        self._require_kb()
 | 
			
		||||
        self.validate_kb()
 | 
			
		||||
        entity_count = 0
 | 
			
		||||
        final_kb_ids = []
 | 
			
		||||
        if not docs:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -201,10 +201,10 @@ class EntityRuler(Pipe):
 | 
			
		|||
 | 
			
		||||
        DOCS: https://nightly.spacy.io/api/entityruler#initialize
 | 
			
		||||
        """
 | 
			
		||||
        self.clear()
 | 
			
		||||
        if patterns:
 | 
			
		||||
            self.add_patterns(patterns)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def ent_ids(self) -> Tuple[str, ...]:
 | 
			
		||||
        """All entity ids present in the match patterns `id` properties
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -136,6 +136,16 @@ def test_attributeruler_init_patterns(nlp, pattern_dicts):
 | 
			
		|||
    assert doc.has_annotation("MORPH")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_attributeruler_init_clear(nlp, pattern_dicts):
 | 
			
		||||
    """Test that initialization clears patterns."""
 | 
			
		||||
    ruler = nlp.add_pipe("attribute_ruler")
 | 
			
		||||
    assert not len(ruler.matcher)
 | 
			
		||||
    ruler.add_patterns(pattern_dicts)
 | 
			
		||||
    assert len(ruler.matcher)
 | 
			
		||||
    ruler.initialize(lambda: [])
 | 
			
		||||
    assert not len(ruler.matcher)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_attributeruler_score(nlp, pattern_dicts):
 | 
			
		||||
    # initialize with patterns
 | 
			
		||||
    ruler = nlp.add_pipe("attribute_ruler")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -110,7 +110,7 @@ def test_kb_invalid_entity_vector(nlp):
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
def test_kb_default(nlp):
 | 
			
		||||
    """Test that the default (empty) KB is loaded when not providing a config"""
 | 
			
		||||
    """Test that the default (empty) KB is loaded upon construction"""
 | 
			
		||||
    entity_linker = nlp.add_pipe("entity_linker", config={})
 | 
			
		||||
    assert len(entity_linker.kb) == 0
 | 
			
		||||
    assert entity_linker.kb.get_size_entities() == 0
 | 
			
		||||
| 
						 | 
				
			
			@ -122,7 +122,7 @@ def test_kb_default(nlp):
 | 
			
		|||
def test_kb_custom_length(nlp):
 | 
			
		||||
    """Test that the default (empty) KB can be configured with a custom entity length"""
 | 
			
		||||
    entity_linker = nlp.add_pipe(
 | 
			
		||||
        "entity_linker", config={"kb_loader": {"entity_vector_length": 35}}
 | 
			
		||||
        "entity_linker", config={"entity_vector_length": 35}
 | 
			
		||||
    )
 | 
			
		||||
    assert len(entity_linker.kb) == 0
 | 
			
		||||
    assert entity_linker.kb.get_size_entities() == 0
 | 
			
		||||
| 
						 | 
				
			
			@ -130,18 +130,9 @@ def test_kb_custom_length(nlp):
 | 
			
		|||
    assert entity_linker.kb.entity_vector_length == 35
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_kb_undefined(nlp):
 | 
			
		||||
    """Test that the EL can't train without defining a KB"""
 | 
			
		||||
    entity_linker = nlp.add_pipe("entity_linker", config={})
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        entity_linker.initialize(lambda: [])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_kb_empty(nlp):
 | 
			
		||||
    """Test that the EL can't train with an empty KB"""
 | 
			
		||||
    config = {"kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 342}}
 | 
			
		||||
    entity_linker = nlp.add_pipe("entity_linker", config=config)
 | 
			
		||||
    assert len(entity_linker.kb) == 0
 | 
			
		||||
def test_kb_initialize_empty(nlp):
 | 
			
		||||
    """Test that the EL can't initialize without examples"""
 | 
			
		||||
    entity_linker = nlp.add_pipe("entity_linker")
 | 
			
		||||
    with pytest.raises(ValueError):
 | 
			
		||||
        entity_linker.initialize(lambda: [])
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -201,8 +192,6 @@ def test_el_pipe_configuration(nlp):
 | 
			
		|||
    ruler = nlp.add_pipe("entity_ruler")
 | 
			
		||||
    ruler.add_patterns([pattern])
 | 
			
		||||
 | 
			
		||||
    @registry.misc.register("myAdamKB.v1")
 | 
			
		||||
    def mykb() -> Callable[["Vocab"], KnowledgeBase]:
 | 
			
		||||
    def create_kb(vocab):
 | 
			
		||||
        kb = KnowledgeBase(vocab, entity_vector_length=1)
 | 
			
		||||
        kb.add_entity(entity="Q2", freq=12, entity_vector=[2])
 | 
			
		||||
| 
						 | 
				
			
			@ -212,13 +201,12 @@ def test_el_pipe_configuration(nlp):
 | 
			
		|||
        )
 | 
			
		||||
        return kb
 | 
			
		||||
 | 
			
		||||
        return create_kb
 | 
			
		||||
 | 
			
		||||
    # run an EL pipe without a trained context encoder, to check the candidate generation step only
 | 
			
		||||
    nlp.add_pipe(
 | 
			
		||||
    entity_linker = nlp.add_pipe(
 | 
			
		||||
        "entity_linker",
 | 
			
		||||
        config={"kb_loader": {"@misc": "myAdamKB.v1"}, "incl_context": False},
 | 
			
		||||
        config={"incl_context": False},
 | 
			
		||||
    )
 | 
			
		||||
    entity_linker.set_kb(create_kb)
 | 
			
		||||
    # With the default get_candidates function, matching is case-sensitive
 | 
			
		||||
    text = "Douglas and douglas are not the same."
 | 
			
		||||
    doc = nlp(text)
 | 
			
		||||
| 
						 | 
				
			
			@ -234,15 +222,15 @@ def test_el_pipe_configuration(nlp):
 | 
			
		|||
        return get_lowercased_candidates
 | 
			
		||||
 | 
			
		||||
    # replace the pipe with a new one with with a different candidate generator
 | 
			
		||||
    nlp.replace_pipe(
 | 
			
		||||
    entity_linker = nlp.replace_pipe(
 | 
			
		||||
        "entity_linker",
 | 
			
		||||
        "entity_linker",
 | 
			
		||||
        config={
 | 
			
		||||
            "kb_loader": {"@misc": "myAdamKB.v1"},
 | 
			
		||||
            "incl_context": False,
 | 
			
		||||
            "get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
 | 
			
		||||
        },
 | 
			
		||||
    )
 | 
			
		||||
    entity_linker.set_kb(create_kb)
 | 
			
		||||
    doc = nlp(text)
 | 
			
		||||
    assert doc[0].ent_kb_id_ == "Q2"
 | 
			
		||||
    assert doc[1].ent_kb_id_ == ""
 | 
			
		||||
| 
						 | 
				
			
			@ -334,8 +322,6 @@ def test_preserving_links_asdoc(nlp):
 | 
			
		|||
    """Test that Span.as_doc preserves the existing entity links"""
 | 
			
		||||
    vector_length = 1
 | 
			
		||||
 | 
			
		||||
    @registry.misc.register("myLocationsKB.v1")
 | 
			
		||||
    def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
 | 
			
		||||
    def create_kb(vocab):
 | 
			
		||||
        mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
 | 
			
		||||
        # adding entities
 | 
			
		||||
| 
						 | 
				
			
			@ -346,8 +332,6 @@ def test_preserving_links_asdoc(nlp):
 | 
			
		|||
        mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
 | 
			
		||||
        return mykb
 | 
			
		||||
 | 
			
		||||
        return create_kb
 | 
			
		||||
 | 
			
		||||
    # set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
 | 
			
		||||
    nlp.add_pipe("sentencizer")
 | 
			
		||||
    patterns = [
 | 
			
		||||
| 
						 | 
				
			
			@ -356,8 +340,9 @@ def test_preserving_links_asdoc(nlp):
 | 
			
		|||
    ]
 | 
			
		||||
    ruler = nlp.add_pipe("entity_ruler")
 | 
			
		||||
    ruler.add_patterns(patterns)
 | 
			
		||||
    el_config = {"kb_loader": {"@misc": "myLocationsKB.v1"}, "incl_prior": False}
 | 
			
		||||
    entity_linker = nlp.add_pipe("entity_linker", config=el_config, last=True)
 | 
			
		||||
    config = {"incl_prior": False}
 | 
			
		||||
    entity_linker = nlp.add_pipe("entity_linker", config=config, last=True)
 | 
			
		||||
    entity_linker.set_kb(create_kb)
 | 
			
		||||
    nlp.initialize()
 | 
			
		||||
    assert entity_linker.model.get_dim("nO") == vector_length
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -435,8 +420,6 @@ def test_overfitting_IO():
 | 
			
		|||
        doc = nlp(text)
 | 
			
		||||
        train_examples.append(Example.from_dict(doc, annotation))
 | 
			
		||||
 | 
			
		||||
    @registry.misc.register("myOverfittingKB.v1")
 | 
			
		||||
    def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
 | 
			
		||||
    def create_kb(vocab):
 | 
			
		||||
        # create artificial KB - assign same prior weight to the two russ cochran's
 | 
			
		||||
        # Q2146908 (Russ Cochran): American golfer
 | 
			
		||||
| 
						 | 
				
			
			@ -451,14 +434,12 @@ def test_overfitting_IO():
 | 
			
		|||
        )
 | 
			
		||||
        return mykb
 | 
			
		||||
 | 
			
		||||
        return create_kb
 | 
			
		||||
 | 
			
		||||
    # Create the Entity Linker component and add it to the pipeline
 | 
			
		||||
    entity_linker = nlp.add_pipe(
 | 
			
		||||
        "entity_linker",
 | 
			
		||||
        config={"kb_loader": {"@misc": "myOverfittingKB.v1"}},
 | 
			
		||||
        last=True,
 | 
			
		||||
    )
 | 
			
		||||
    entity_linker.set_kb(create_kb)
 | 
			
		||||
 | 
			
		||||
    # train the NEL pipe
 | 
			
		||||
    optimizer = nlp.initialize(get_examples=lambda: train_examples)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -68,6 +68,15 @@ def test_entity_ruler_init_patterns(nlp, patterns):
 | 
			
		|||
    assert doc.ents[1].label_ == "BYE"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_entity_ruler_init_clear(nlp, patterns):
 | 
			
		||||
    """Test that initialization clears patterns."""
 | 
			
		||||
    ruler = nlp.add_pipe("entity_ruler")
 | 
			
		||||
    ruler.add_patterns(patterns)
 | 
			
		||||
    assert len(ruler.labels) == 4
 | 
			
		||||
    ruler.initialize(lambda: [])
 | 
			
		||||
    assert len(ruler.labels) == 0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_entity_ruler_existing(nlp, patterns):
 | 
			
		||||
    ruler = nlp.add_pipe("entity_ruler")
 | 
			
		||||
    ruler.add_patterns(patterns)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -71,17 +71,13 @@ def tagger():
 | 
			
		|||
def entity_linker():
 | 
			
		||||
    nlp = Language()
 | 
			
		||||
 | 
			
		||||
    @registry.misc.register("TestIssue5230KB.v1")
 | 
			
		||||
    def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]:
 | 
			
		||||
    def create_kb(vocab):
 | 
			
		||||
        kb = KnowledgeBase(vocab, entity_vector_length=1)
 | 
			
		||||
        kb.add_entity("test", 0.0, zeros((1, 1), dtype="f"))
 | 
			
		||||
        return kb
 | 
			
		||||
 | 
			
		||||
        return create_kb
 | 
			
		||||
 | 
			
		||||
    config = {"kb_loader": {"@misc": "TestIssue5230KB.v1"}}
 | 
			
		||||
    entity_linker = nlp.add_pipe("entity_linker", config=config)
 | 
			
		||||
    entity_linker = nlp.add_pipe("entity_linker")
 | 
			
		||||
    entity_linker.set_kb(create_kb)
 | 
			
		||||
    # need to add model for two reasons:
 | 
			
		||||
    # 1. no model leads to error in serialization,
 | 
			
		||||
    # 2. the affected line is the one for model serialization
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,11 +1,12 @@
 | 
			
		|||
from typing import Callable
 | 
			
		||||
 | 
			
		||||
from spacy import util
 | 
			
		||||
from spacy.lang.en import English
 | 
			
		||||
from spacy.util import ensure_path, registry
 | 
			
		||||
from spacy.util import ensure_path, registry, load_model_from_config
 | 
			
		||||
from spacy.kb import KnowledgeBase
 | 
			
		||||
from thinc.api import Config
 | 
			
		||||
 | 
			
		||||
from ..util import make_tempdir
 | 
			
		||||
from numpy import zeros
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_serialize_kb_disk(en_vocab):
 | 
			
		||||
| 
						 | 
				
			
			@ -80,6 +81,28 @@ def _check_kb(kb):
 | 
			
		|||
def test_serialize_subclassed_kb():
 | 
			
		||||
    """Check that IO of a custom KB works fine as part of an EL pipe."""
 | 
			
		||||
 | 
			
		||||
    config_string = """
 | 
			
		||||
    [nlp]
 | 
			
		||||
    lang = "en"
 | 
			
		||||
    pipeline = ["entity_linker"]
 | 
			
		||||
 | 
			
		||||
    [components]
 | 
			
		||||
 | 
			
		||||
    [components.entity_linker]
 | 
			
		||||
    factory = "entity_linker"
 | 
			
		||||
 | 
			
		||||
    [initialize]
 | 
			
		||||
 | 
			
		||||
    [initialize.components]
 | 
			
		||||
 | 
			
		||||
    [initialize.components.entity_linker]
 | 
			
		||||
 | 
			
		||||
    [initialize.components.entity_linker.kb_loader]
 | 
			
		||||
    @misc = "spacy.CustomKB.v1"
 | 
			
		||||
    entity_vector_length = 342
 | 
			
		||||
    custom_field = 666
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    class SubKnowledgeBase(KnowledgeBase):
 | 
			
		||||
        def __init__(self, vocab, entity_vector_length, custom_field):
 | 
			
		||||
            super().__init__(vocab, entity_vector_length)
 | 
			
		||||
| 
						 | 
				
			
			@ -90,23 +113,21 @@ def test_serialize_subclassed_kb():
 | 
			
		|||
        entity_vector_length: int, custom_field: int
 | 
			
		||||
    ) -> Callable[["Vocab"], KnowledgeBase]:
 | 
			
		||||
        def custom_kb_factory(vocab):
 | 
			
		||||
            return SubKnowledgeBase(
 | 
			
		||||
            kb = SubKnowledgeBase(
 | 
			
		||||
                vocab=vocab,
 | 
			
		||||
                entity_vector_length=entity_vector_length,
 | 
			
		||||
                custom_field=custom_field,
 | 
			
		||||
            )
 | 
			
		||||
            kb.add_entity("random_entity", 0.0, zeros(entity_vector_length))
 | 
			
		||||
            return kb
 | 
			
		||||
 | 
			
		||||
        return custom_kb_factory
 | 
			
		||||
 | 
			
		||||
    nlp = English()
 | 
			
		||||
    config = {
 | 
			
		||||
        "kb_loader": {
 | 
			
		||||
            "@misc": "spacy.CustomKB.v1",
 | 
			
		||||
            "entity_vector_length": 342,
 | 
			
		||||
            "custom_field": 666,
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    entity_linker = nlp.add_pipe("entity_linker", config=config)
 | 
			
		||||
    config = Config().from_str(config_string)
 | 
			
		||||
    nlp = load_model_from_config(config, auto_fill=True)
 | 
			
		||||
    nlp.initialize()
 | 
			
		||||
 | 
			
		||||
    entity_linker = nlp.get_pipe("entity_linker")
 | 
			
		||||
    assert type(entity_linker.kb) == SubKnowledgeBase
 | 
			
		||||
    assert entity_linker.kb.entity_vector_length == 342
 | 
			
		||||
    assert entity_linker.kb.custom_field == 666
 | 
			
		||||
| 
						 | 
				
			
			@ -116,6 +137,7 @@ def test_serialize_subclassed_kb():
 | 
			
		|||
        nlp.to_disk(tmp_dir)
 | 
			
		||||
        nlp2 = util.load_model_from_path(tmp_dir)
 | 
			
		||||
        entity_linker2 = nlp2.get_pipe("entity_linker")
 | 
			
		||||
        assert type(entity_linker2.kb) == SubKnowledgeBase
 | 
			
		||||
        # After IO, the KB is the standard one
 | 
			
		||||
        assert type(entity_linker2.kb) == KnowledgeBase
 | 
			
		||||
        assert entity_linker2.kb.entity_vector_length == 342
 | 
			
		||||
        assert entity_linker2.kb.custom_field == 666
 | 
			
		||||
        assert not hasattr(entity_linker2.kb, "custom_field")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -524,7 +524,7 @@ Get a pipeline component for a given component name.
 | 
			
		|||
 | 
			
		||||
## Language.replace_pipe {#replace_pipe tag="method" new="2"}
 | 
			
		||||
 | 
			
		||||
Replace a component in the pipeline.
 | 
			
		||||
Replace a component in the pipeline and return the new component.
 | 
			
		||||
 | 
			
		||||
<Infobox title="Changed in v3.0" variant="warning">
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -538,7 +538,7 @@ and instead expects the **name of a component factory** registered using
 | 
			
		|||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> nlp.replace_pipe("parser", my_custom_parser)
 | 
			
		||||
> new_parser = nlp.replace_pipe("parser", "my_custom_parser")
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name                                  | Description                                                                                                                                                        |
 | 
			
		||||
| 
						 | 
				
			
			@ -548,6 +548,7 @@ and instead expects the **name of a component factory** registered using
 | 
			
		|||
| _keyword-only_                        |                                                                                                                                                                    |
 | 
			
		||||
| `config` <Tag variant="new">3</Tag>   | Optional config parameters to use for the new component. Will be merged with the `default_config` specified by the component factory. ~~Optional[Dict[str, Any]]~~ |
 | 
			
		||||
| `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~                                     |
 | 
			
		||||
| **RETURNS**                           | The new pipeline component. ~~Callable[[Doc], Doc]~~                                                                                                               |
 | 
			
		||||
 | 
			
		||||
## Language.rename_pipe {#rename_pipe tag="method" new="2"}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -11,7 +11,7 @@ api_string_name: transformer
 | 
			
		|||
> #### Installation
 | 
			
		||||
>
 | 
			
		||||
> ```bash
 | 
			
		||||
> $ pip install spacy-transformers
 | 
			
		||||
> $ pip install -U %%SPACY_PKG_NAME[transformers] %%SPACY_PKG_FLAGS
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
<Infobox title="Important note" variant="warning">
 | 
			
		||||
| 
						 | 
				
			
			@ -386,7 +386,7 @@ by this class. Instances of this class are typically assigned to the
 | 
			
		|||
[`Doc._.trf_data`](/api/transformer#custom-attributes) extension attribute.
 | 
			
		||||
 | 
			
		||||
| Name      | Description                                                                                                                                                                                                                                                                                                                                               |
 | 
			
		||||
| --------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| --------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| `tokens`  | A slice of the tokens data produced by the tokenizer. This may have several fields, including the token IDs, the texts and the attention mask. See the [`transformers.BatchEncoding`](https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.BatchEncoding) object for details. ~~dict~~                                            |
 | 
			
		||||
| `tensors` | The activations for the `Doc` from the transformer. Usually the last tensor that is 3-dimensional will be the most important, as that will provide the final hidden state. Generally activations that are 2-dimensional will be attention weights. Details of this variable will differ depending on the underlying transformer model. ~~List[FloatsXd]~~ |
 | 
			
		||||
| `align`   | Alignment from the `Doc`'s tokenization to the wordpieces. This is a ragged array, where `align.lengths[i]` indicates the number of wordpiece tokens that token `i` aligns against. The actual indices are provided at `align[i].dataXd`. ~~Ragged~~                                                                                                      |
 | 
			
		||||
| 
						 | 
				
			
			@ -407,7 +407,7 @@ then be split to a list of [`TransformerData`](/api/transformer#transformerdata)
 | 
			
		|||
objects to associate the outputs to each [`Doc`](/api/doc) in the batch.
 | 
			
		||||
 | 
			
		||||
| Name       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
 | 
			
		||||
| ---------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
 | 
			
		||||
| ---------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| `spans`    | The batch of input spans. The outer list refers to the Doc objects in the batch, and the inner list are the spans for that `Doc`. Note that spans are allowed to overlap or exclude tokens, but each `Span` can only refer to one `Doc` (by definition). This means that within a `Doc`, the regions of the output tensors that correspond to each `Span` may overlap or have gaps, but for each `Doc`, there is a non-overlapping contiguous slice of the outputs. ~~List[List[Span]]~~ |
 | 
			
		||||
| `tokens`   | The output of the tokenizer. ~~transformers.BatchEncoding~~                                                                                                                                                                                                                                                                                                                                                                                                                              |
 | 
			
		||||
| `tensors`  | The output of the transformer model. ~~List[torch.Tensor]~~                                                                                                                                                                                                                                                                                                                                                                                                                              |
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -216,8 +216,7 @@ in `/opt/nvidia/cuda`, you would run:
 | 
			
		|||
```bash
 | 
			
		||||
### Installation with CUDA
 | 
			
		||||
$ export CUDA_PATH="/opt/nvidia/cuda"
 | 
			
		||||
$ pip install cupy-cuda102
 | 
			
		||||
$ pip install spacy-transformers
 | 
			
		||||
$ pip install -U %%SPACY_PKG_NAME[cud102,transformers]%%SPACY_PKG_FLAGS
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Runtime usage {#transformers-runtime}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -47,7 +47,7 @@ Before you install spaCy and its dependencies, make sure that your `pip`,
 | 
			
		|||
 | 
			
		||||
```bash
 | 
			
		||||
$ pip install -U pip setuptools wheel
 | 
			
		||||
$ pip install -U spacy
 | 
			
		||||
$ pip install -U %%SPACY_PKG_NAME%%SPACY_PKG_FLAGS
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
When using pip it is generally recommended to install packages in a virtual
 | 
			
		||||
| 
						 | 
				
			
			@ -57,7 +57,7 @@ environment to avoid modifying system state:
 | 
			
		|||
$ python -m venv .env
 | 
			
		||||
$ source .env/bin/activate
 | 
			
		||||
$ pip install -U pip setuptools wheel
 | 
			
		||||
$ pip install spacy
 | 
			
		||||
$ pip install -U %%SPACY_PKG_NAME%%SPACY_PKG_FLAGS
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
spaCy also lets you install extra dependencies by specifying the following
 | 
			
		||||
| 
						 | 
				
			
			@ -68,15 +68,16 @@ spaCy's [`setup.cfg`](%%GITHUB_SPACY/setup.cfg) for details on what's included.
 | 
			
		|||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```bash
 | 
			
		||||
> $ pip install spacy[lookups,transformers]
 | 
			
		||||
> $ pip install %%SPACY_PKG_NAME[lookups,transformers]%%SPACY_PKG_FLAGS
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
| Name                   | Description                                                                                                                                                                                                                                                    |
 | 
			
		||||
| ---------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| ---------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | 
			
		||||
| `lookups`              | Install [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) for data tables for lemmatization and lexeme normalization. The data is serialized with trained pipelines, so you only need this package if you want to train your own models. |
 | 
			
		||||
| `transformers`         | Install [`spacy-transformers`](https://github.com/explosion/spacy-transformers). The package will be installed automatically when you install a transformer-based pipeline.                                                                                    |
 | 
			
		||||
| `ray`                  | Install [`spacy-ray`](https://github.com/explosion/spacy-ray) to add CLI commands for [parallel training](/usage/training#parallel-training).                                                                                                                  |
 | 
			
		||||
| `cuda`, ...            | Install spaCy with GPU support provided by [CuPy](https://cupy.chainer.org) for your given CUDA version. See the GPU [installation instructions](#gpu) for details and options.                                                                                |
 | 
			
		||||
| `ja`, `ko`, `th` | Install additional dependencies required for tokenization for the [languages](/usage/models#languages).                                                                                                                                                        |
 | 
			
		||||
| `ja`, `ko`, `th`, `zh` | Install additional dependencies required for tokenization for the [languages](/usage/models#languages).                                                                                                                                                        |
 | 
			
		||||
 | 
			
		||||
### conda {#conda}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -88,8 +89,8 @@ $ conda install -c conda-forge spacy
 | 
			
		|||
```
 | 
			
		||||
 | 
			
		||||
For the feedstock including the build recipe and configuration, check out
 | 
			
		||||
[this repository](https://github.com/conda-forge/spacy-feedstock). Improvements
 | 
			
		||||
and pull requests to the recipe and setup are always appreciated.
 | 
			
		||||
[this repository](https://github.com/conda-forge/spacy-feedstock). Note that we
 | 
			
		||||
currently don't publish any [pre-releases](#changelog-pre) on conda.
 | 
			
		||||
 | 
			
		||||
### Upgrading spaCy {#upgrading}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -116,7 +117,7 @@ are printed. It's recommended to run the command with `python -m` to make sure
 | 
			
		|||
you're executing the correct version of spaCy.
 | 
			
		||||
 | 
			
		||||
```cli
 | 
			
		||||
$ pip install -U spacy
 | 
			
		||||
$ pip install -U %%SPACY_PKG_NAME%%SPACY_PKG_FLAGS
 | 
			
		||||
$ python -m spacy validate
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -134,7 +135,7 @@ specifier allows cupy to be installed via wheel, saving some compilation time.
 | 
			
		|||
The specifiers should install [`cupy`](https://cupy.chainer.org).
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
$ pip install -U spacy[cuda92]
 | 
			
		||||
$ pip install -U %%SPACY_PKG_NAME[cuda92]%%SPACY_PKG_FLAGS
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Once you have a GPU-enabled installation, the best way to activate it is to call
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -166,7 +166,7 @@ lookup lemmatizer looks up the token surface form in the lookup table without
 | 
			
		|||
reference to the token's part-of-speech or context.
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
# pip install spacy-lookups-data
 | 
			
		||||
# pip install -U %%SPACY_PKG_NAME[lookups]%%SPACY_PKG_FLAGS
 | 
			
		||||
import spacy
 | 
			
		||||
 | 
			
		||||
nlp = spacy.blank("sv")
 | 
			
		||||
| 
						 | 
				
			
			@ -181,7 +181,7 @@ rule-based lemmatizer can be added using rule tables from
 | 
			
		|||
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data):
 | 
			
		||||
 | 
			
		||||
```python
 | 
			
		||||
# pip install spacy-lookups-data
 | 
			
		||||
# pip install -U %%SPACY_PKG_NAME[lookups]%%SPACY_PKG_FLAGS
 | 
			
		||||
import spacy
 | 
			
		||||
 | 
			
		||||
nlp = spacy.blank("de")
 | 
			
		||||
| 
						 | 
				
			
			@ -1801,7 +1801,10 @@ print(doc2[5].tag_, doc2[5].pos_)  # WP PRON
 | 
			
		|||
 | 
			
		||||
<Infobox variant="warning" title="Migrating from spaCy v2.x">
 | 
			
		||||
 | 
			
		||||
The [`AttributeRuler`](/api/attributeruler) can import a **tag map and morph rules** in the v2.x format via its built-in methods or when the component is initialized before training. See the [migration guide](/usage/v3#migrating-training-mappings-exceptions) for details.
 | 
			
		||||
The [`AttributeRuler`](/api/attributeruler) can import a **tag map and morph
 | 
			
		||||
rules** in the v2.x format via its built-in methods or when the component is
 | 
			
		||||
initialized before training. See the
 | 
			
		||||
[migration guide](/usage/v3#migrating-training-mappings-exceptions) for details.
 | 
			
		||||
 | 
			
		||||
</Infobox>
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -54,7 +54,7 @@ contribute to development.
 | 
			
		|||
> separately in the same environment:
 | 
			
		||||
>
 | 
			
		||||
> ```bash
 | 
			
		||||
> $ pip install spacy[lookups]
 | 
			
		||||
> $ pip install -U %%SPACY_PKG_NAME[lookups]%%SPACY_PKG_FLAGS
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||
import Languages from 'widgets/languages.js'
 | 
			
		||||
| 
						 | 
				
			
			@ -287,7 +287,7 @@ The download command will [install the package](/usage/models#download-pip) via
 | 
			
		|||
pip and place the package in your `site-packages` directory.
 | 
			
		||||
 | 
			
		||||
```cli
 | 
			
		||||
$ pip install -U spacy
 | 
			
		||||
$ pip install -U %%SPACY_PKG_NAME%%SPACY_PKG_FLAGS
 | 
			
		||||
$ python -m spacy download en_core_web_sm
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -813,7 +813,7 @@ full embedded visualizer, as well as individual components.
 | 
			
		|||
> #### Installation
 | 
			
		||||
>
 | 
			
		||||
> ```bash
 | 
			
		||||
> $ pip install "spacy-streamlit>=1.0.0a0"
 | 
			
		||||
> $ pip install spacy-streamlit --pre
 | 
			
		||||
> ```
 | 
			
		||||
 | 
			
		||||

 | 
			
		||||
| 
						 | 
				
			
			@ -911,7 +911,7 @@ https://github.com/explosion/projects/blob/v3/integrations/fastapi/scripts/main.
 | 
			
		|||
> #### Installation
 | 
			
		||||
>
 | 
			
		||||
> ```cli
 | 
			
		||||
> $ pip install spacy-ray
 | 
			
		||||
> $ pip install -U %%SPACY_PKG_NAME[ray]%%SPACY_PKG_FLAGS
 | 
			
		||||
> # Check that the CLI is registered
 | 
			
		||||
> $ python -m spacy ray --help
 | 
			
		||||
> ```
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -297,7 +297,7 @@ packages. This lets one application easily customize the behavior of another, by
 | 
			
		|||
exposing an entry point in its `setup.py`. For a quick and fun intro to entry
 | 
			
		||||
points in Python, check out
 | 
			
		||||
[this excellent blog post](https://amir.rachum.com/blog/2017/07/28/python-entry-points/).
 | 
			
		||||
spaCy can load custom function from several different entry points to add
 | 
			
		||||
spaCy can load custom functions from several different entry points to add
 | 
			
		||||
pipeline component factories, language classes and other settings. To make spaCy
 | 
			
		||||
use your entry points, your package needs to expose them and it needs to be
 | 
			
		||||
installed in the same environment – that's it.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1249,7 +1249,7 @@ valid.
 | 
			
		|||
> #### Installation
 | 
			
		||||
>
 | 
			
		||||
> ```cli
 | 
			
		||||
> $ pip install spacy-ray
 | 
			
		||||
> $ pip install -U %%SPACY_PKG_NAME[ray]%%SPACY_PKG_FLAGS
 | 
			
		||||
> # Check that the CLI is registered
 | 
			
		||||
> $ python -m spacy ray --help
 | 
			
		||||
> ```
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -236,7 +236,7 @@ treebank.
 | 
			
		|||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```cli
 | 
			
		||||
> $ pip install spacy-ray
 | 
			
		||||
> $ pip install -U %%SPACY_PKG_NAME[ray]%%SPACY_PKG_FLAGS
 | 
			
		||||
> # Check that the CLI is registered
 | 
			
		||||
> $ python -m spacy ray --help
 | 
			
		||||
> # Train a pipeline
 | 
			
		||||
| 
						 | 
				
			
			@ -272,7 +272,7 @@ add to your pipeline and customize for your use case:
 | 
			
		|||
> #### Example
 | 
			
		||||
>
 | 
			
		||||
> ```python
 | 
			
		||||
> # pip install spacy-lookups-data
 | 
			
		||||
> # pip install -U %%SPACY_PKG_NAME[lookups]%%SPACY_PKG_FLAGS
 | 
			
		||||
> nlp = spacy.blank("en")
 | 
			
		||||
> nlp.add_pipe("lemmatizer")
 | 
			
		||||
> ```
 | 
			
		||||
| 
						 | 
				
			
			@ -395,7 +395,7 @@ type-check model definitions.
 | 
			
		|||
For data validation, spaCy v3.0 adopts
 | 
			
		||||
[`pydantic`](https://github.com/samuelcolvin/pydantic). It also powers the data
 | 
			
		||||
validation of Thinc's [config system](https://thinc.ai/docs/usage-config), which
 | 
			
		||||
lets you to register **custom functions with typed arguments**, reference them
 | 
			
		||||
lets you register **custom functions with typed arguments**, reference them
 | 
			
		||||
in your config and see validation errors if the argument values don't match.
 | 
			
		||||
 | 
			
		||||
<Infobox title="Details & Documentation" emoji="📖" list>
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -30,6 +30,8 @@ const branch = isNightly ? 'develop' : 'master'
 | 
			
		|||
const replacements = {
 | 
			
		||||
    GITHUB_SPACY: `https://github.com/explosion/spaCy/tree/${branch}`,
 | 
			
		||||
    GITHUB_PROJECTS: `https://github.com/${site.projectsRepo}`,
 | 
			
		||||
    SPACY_PKG_NAME: isNightly ? 'spacy-nightly' : 'spacy',
 | 
			
		||||
    SPACY_PKG_FLAGS: isNightly ? ' --pre' : '',
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -97,7 +97,10 @@ const Changelog = () => {
 | 
			
		|||
            <p>
 | 
			
		||||
                Pre-releases include alpha and beta versions, as well as release candidates. They
 | 
			
		||||
                are not intended for production use. You can download spaCy pre-releases via the{' '}
 | 
			
		||||
                <InlineCode>spacy-nightly</InlineCode> package on pip.
 | 
			
		||||
                <Link to="https://pypi.org/packages/spacy-nightly">
 | 
			
		||||
                    <InlineCode>spacy-nightly</InlineCode>
 | 
			
		||||
                </Link>{' '}
 | 
			
		||||
                package on pip.
 | 
			
		||||
            </p>
 | 
			
		||||
 | 
			
		||||
            <p>
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -28,7 +28,8 @@ import irlBackground from '../images/spacy-irl.jpg'
 | 
			
		|||
 | 
			
		||||
import Benchmarks from 'usage/_benchmarks-models.md'
 | 
			
		||||
 | 
			
		||||
const CODE_EXAMPLE = `# pip install spacy
 | 
			
		||||
function getCodeExample(nightly) {
 | 
			
		||||
    return `# pip install -U ${nightly ? 'spacy-nightly --pre' : 'spacy'}
 | 
			
		||||
# python -m spacy download en_core_web_sm
 | 
			
		||||
import spacy
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -52,9 +53,11 @@ print("Verbs:", [token.lemma_ for token in doc if token.pos_ == "VERB"])
 | 
			
		|||
for entity in doc.ents:
 | 
			
		||||
    print(entity.text, entity.label_)
 | 
			
		||||
`
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
const Landing = ({ data }) => {
 | 
			
		||||
    const { counts } = data
 | 
			
		||||
    const { counts, nightly } = data
 | 
			
		||||
    const codeExample = getCodeExample(nightly)
 | 
			
		||||
    return (
 | 
			
		||||
        <>
 | 
			
		||||
            <LandingHeader nightly={data.nightly}>
 | 
			
		||||
| 
						 | 
				
			
			@ -91,7 +94,7 @@ const Landing = ({ data }) => {
 | 
			
		|||
            </LandingGrid>
 | 
			
		||||
 | 
			
		||||
            <LandingGrid>
 | 
			
		||||
                <LandingDemo title="Edit the code & try spaCy">{CODE_EXAMPLE}</LandingDemo>
 | 
			
		||||
                <LandingDemo title="Edit the code & try spaCy">{codeExample}</LandingDemo>
 | 
			
		||||
 | 
			
		||||
                <LandingCol>
 | 
			
		||||
                    <H2>Features</H2>
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -141,6 +141,11 @@ const QuickstartInstall = ({ id, title }) => {
 | 
			
		|||
                        setters={setters}
 | 
			
		||||
                        showDropdown={showDropdown}
 | 
			
		||||
                    >
 | 
			
		||||
                        {nightly && (
 | 
			
		||||
                            <QS package="conda" comment prompt={false}>
 | 
			
		||||
                                # 🚨 Nightly releases are currently only available via pip
 | 
			
		||||
                            </QS>
 | 
			
		||||
                        )}
 | 
			
		||||
                        <QS config="venv">python -m venv .env</QS>
 | 
			
		||||
                        <QS config="venv" os="mac">
 | 
			
		||||
                            source .env/bin/activate
 | 
			
		||||
| 
						 | 
				
			
			@ -175,9 +180,9 @@ const QuickstartInstall = ({ id, title }) => {
 | 
			
		|||
                        </QS>
 | 
			
		||||
                        <QS package="source">pip install -r requirements.txt</QS>
 | 
			
		||||
                        <QS package="source">python setup.py build_ext --inplace</QS>
 | 
			
		||||
                        <QS package="source" config="train">
 | 
			
		||||
                            pip install -e '.[{pipExtras}]'
 | 
			
		||||
                        </QS>
 | 
			
		||||
                        {(train || hardware == 'gpu') && (
 | 
			
		||||
                            <QS package="source">pip install -e '.[{pipExtras}]'</QS>
 | 
			
		||||
                        )}
 | 
			
		||||
 | 
			
		||||
                        <QS config="train" package="conda">
 | 
			
		||||
                            conda install -c conda-forge spacy-transformers
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user