mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 01:16:28 +03:00
Get data flowing through pipeline. Needs redesign
This commit is contained in:
parent
1d7c18e58a
commit
5211645af3
|
@ -135,7 +135,7 @@ def Tok2Vec(width, embed_size, preprocess=None):
|
||||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||||
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||||
)
|
)
|
||||||
if preprocess is not None:
|
if preprocess not in (False, None):
|
||||||
tok2vec = preprocess >> tok2vec
|
tok2vec = preprocess >> tok2vec
|
||||||
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
|
||||||
tok2vec.nO = width
|
tok2vec.nO = width
|
||||||
|
|
|
@ -41,8 +41,7 @@ def train(language, output_dir, train_data, dev_data, n_iter, tagger, parser, ne
|
||||||
gold_train = list(read_gold_json(train_path))
|
gold_train = list(read_gold_json(train_path))
|
||||||
gold_dev = list(read_gold_json(dev_path)) if dev_path else None
|
gold_dev = list(read_gold_json(dev_path)) if dev_path else None
|
||||||
|
|
||||||
train_model(lang, gold_train, gold_dev, output_path, tagger_cfg, parser_cfg,
|
train_model(lang, gold_train, gold_dev, output_path, n_iter)
|
||||||
entity_cfg, n_iter)
|
|
||||||
if gold_dev:
|
if gold_dev:
|
||||||
scorer = evaluate(lang, gold_dev, output_path)
|
scorer = evaluate(lang, gold_dev, output_path)
|
||||||
print_results(scorer)
|
print_results(scorer)
|
||||||
|
@ -58,24 +57,30 @@ def train_config(config):
|
||||||
prints("%s not found in config file." % setting, title="Missing setting")
|
prints("%s not found in config file." % setting, title="Missing setting")
|
||||||
|
|
||||||
|
|
||||||
def train_model(Language, train_data, dev_data, output_path, tagger_cfg, parser_cfg,
|
def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
|
||||||
entity_cfg, n_iter):
|
|
||||||
print("Itn.\tN weight\tN feats\tUAS\tNER F.\tTag %\tToken %")
|
print("Itn.\tN weight\tN feats\tUAS\tNER F.\tTag %\tToken %")
|
||||||
|
|
||||||
with Language.train(output_path, train_data,
|
nlp = Language(pipeline=['tensor', 'dependencies', 'entities'])
|
||||||
pos=tagger_cfg, deps=parser_cfg, ner=entity_cfg) as trainer:
|
|
||||||
|
|
||||||
for itn, epoch in enumerate(trainer.epochs(n_iter, augment_data=None)):
|
# TODO: Get spaCy using Thinc's trainer and optimizer
|
||||||
for docs, golds in partition_all(12, epoch):
|
with nlp.begin_training(train_data, **cfg) as (trainer, optimizer):
|
||||||
trainer.update(docs, golds)
|
for itn, epoch in enumerate(trainer.epochs(n_iter)):
|
||||||
|
losses = defaultdict(float)
|
||||||
|
for docs, golds in epoch:
|
||||||
|
grads = {}
|
||||||
|
def get_grads(W, dW, key=None):
|
||||||
|
grads[key] = (W, dW)
|
||||||
|
|
||||||
|
for proc in nlp.pipeline:
|
||||||
|
loss = proc.update(docs, golds, drop=0.0, sgd=get_grads)
|
||||||
|
losses[proc.name] += loss
|
||||||
|
for key, (W, dW) in grads.items():
|
||||||
|
optimizer(W, dW, key=key)
|
||||||
if dev_data:
|
if dev_data:
|
||||||
dev_scores = trainer.evaluate(dev_data).scores
|
dev_scores = trainer.evaluate(dev_data).scores
|
||||||
else:
|
else:
|
||||||
defaultdict(float)
|
defaultdict(float)
|
||||||
print_progress(itn, trainer.nlp.parser.model.nr_weight,
|
print_progress(itn, losses['dep'], **dev_scores)
|
||||||
trainer.nlp.parser.model.nr_active_feat,
|
|
||||||
**dev_scores)
|
|
||||||
|
|
||||||
|
|
||||||
def evaluate(Language, gold_tuples, output_path):
|
def evaluate(Language, gold_tuples, output_path):
|
||||||
|
|
|
@ -11,7 +11,8 @@ from .lemmatizer import Lemmatizer
|
||||||
from .train import Trainer
|
from .train import Trainer
|
||||||
from .syntax.parser import get_templates
|
from .syntax.parser import get_templates
|
||||||
from .syntax.nonproj import PseudoProjectivity
|
from .syntax.nonproj import PseudoProjectivity
|
||||||
from .pipeline import DependencyParser, EntityRecognizer
|
from .pipeline import DependencyParser, NeuralDependencyParser, EntityRecognizer
|
||||||
|
from .pipeline import TokenVectorEncoder, NeuralEntityRecognizer
|
||||||
from .syntax.arc_eager import ArcEager
|
from .syntax.arc_eager import ArcEager
|
||||||
from .syntax.ner import BiluoPushDown
|
from .syntax.ner import BiluoPushDown
|
||||||
from .compat import json_dumps
|
from .compat import json_dumps
|
||||||
|
@ -31,111 +32,49 @@ class BaseDefaults(object):
|
||||||
@classmethod
|
@classmethod
|
||||||
def create_vocab(cls, nlp=None):
|
def create_vocab(cls, nlp=None):
|
||||||
lemmatizer = cls.create_lemmatizer(nlp)
|
lemmatizer = cls.create_lemmatizer(nlp)
|
||||||
if nlp is None or nlp.path is None:
|
lex_attr_getters = dict(cls.lex_attr_getters)
|
||||||
lex_attr_getters = dict(cls.lex_attr_getters)
|
# This is messy, but it's the minimal working fix to Issue #639.
|
||||||
# This is very messy, but it's the minimal working fix to Issue #639.
|
lex_attr_getters[IS_STOP] = lambda string: string.lower() in cls.stop_words
|
||||||
# This defaults stuff needs to be refactored (again)
|
vocab = Vocab(lex_attr_getters=lex_attr_getters, tag_map=cls.tag_map,
|
||||||
lex_attr_getters[IS_STOP] = lambda string: string.lower() in cls.stop_words
|
lemmatizer=lemmatizer)
|
||||||
vocab = Vocab(lex_attr_getters=lex_attr_getters, tag_map=cls.tag_map,
|
|
||||||
lemmatizer=lemmatizer)
|
|
||||||
else:
|
|
||||||
vocab = Vocab.load(nlp.path, lex_attr_getters=cls.lex_attr_getters,
|
|
||||||
tag_map=cls.tag_map, lemmatizer=lemmatizer)
|
|
||||||
for tag_str, exc in cls.morph_rules.items():
|
for tag_str, exc in cls.morph_rules.items():
|
||||||
for orth_str, attrs in exc.items():
|
for orth_str, attrs in exc.items():
|
||||||
vocab.morphology.add_special_case(tag_str, orth_str, attrs)
|
vocab.morphology.add_special_case(tag_str, orth_str, attrs)
|
||||||
return vocab
|
return vocab
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def add_vectors(cls, nlp=None):
|
|
||||||
if nlp is None or nlp.path is None:
|
|
||||||
return False
|
|
||||||
else:
|
|
||||||
vec_path = nlp.path / 'vocab' / 'vec.bin'
|
|
||||||
if vec_path.exists():
|
|
||||||
return lambda vocab: vocab.load_vectors_from_bin_loc(vec_path)
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def create_tokenizer(cls, nlp=None):
|
def create_tokenizer(cls, nlp=None):
|
||||||
rules = cls.tokenizer_exceptions
|
rules = cls.tokenizer_exceptions
|
||||||
if cls.token_match:
|
token_match = cls.token_match
|
||||||
token_match = cls.token_match
|
prefix_search = util.compile_prefix_regex(cls.prefixes).search \
|
||||||
if cls.prefixes:
|
if cls.prefixes else None
|
||||||
prefix_search = util.compile_prefix_regex(cls.prefixes).search
|
suffix_search = util.compile_suffix_regex(cls.suffixes).search \
|
||||||
else:
|
if cls.suffixes else None
|
||||||
prefix_search = None
|
infix_finditer = util.compile_infix_regex(cls.infixes).finditer \
|
||||||
if cls.suffixes:
|
if cls.infixes else None
|
||||||
suffix_search = util.compile_suffix_regex(cls.suffixes).search
|
|
||||||
else:
|
|
||||||
suffix_search = None
|
|
||||||
if cls.infixes:
|
|
||||||
infix_finditer = util.compile_infix_regex(cls.infixes).finditer
|
|
||||||
else:
|
|
||||||
infix_finditer = None
|
|
||||||
vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
|
vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
|
||||||
return Tokenizer(vocab, rules=rules,
|
return Tokenizer(vocab, rules=rules,
|
||||||
prefix_search=prefix_search, suffix_search=suffix_search,
|
prefix_search=prefix_search, suffix_search=suffix_search,
|
||||||
infix_finditer=infix_finditer, token_match=token_match)
|
infix_finditer=infix_finditer, token_match=token_match)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def create_tagger(cls, nlp=None):
|
def create_pipeline(cls, nlp=None):
|
||||||
if nlp is None:
|
meta = nlp.meta if nlp is not None else {}
|
||||||
return Tagger(cls.create_vocab(), features=cls.tagger_features)
|
# Resolve strings, like "cnn", "lstm", etc
|
||||||
elif nlp.path is False:
|
|
||||||
return Tagger(nlp.vocab, features=cls.tagger_features)
|
|
||||||
elif nlp.path is None or not (nlp.path / 'pos').exists():
|
|
||||||
return None
|
|
||||||
else:
|
|
||||||
return Tagger.load(nlp.path / 'pos', nlp.vocab)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def create_parser(cls, nlp=None, **cfg):
|
|
||||||
if nlp is None:
|
|
||||||
return DependencyParser(cls.create_vocab(), features=cls.parser_features,
|
|
||||||
**cfg)
|
|
||||||
elif nlp.path is False:
|
|
||||||
return DependencyParser(nlp.vocab, features=cls.parser_features, **cfg)
|
|
||||||
elif nlp.path is None or not (nlp.path / 'deps').exists():
|
|
||||||
return None
|
|
||||||
else:
|
|
||||||
return DependencyParser.load(nlp.path / 'deps', nlp.vocab, **cfg)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def create_entity(cls, nlp=None, **cfg):
|
|
||||||
if nlp is None:
|
|
||||||
return EntityRecognizer(cls.create_vocab(), features=cls.entity_features, **cfg)
|
|
||||||
elif nlp.path is False:
|
|
||||||
return EntityRecognizer(nlp.vocab, features=cls.entity_features, **cfg)
|
|
||||||
elif nlp.path is None or not (nlp.path / 'ner').exists():
|
|
||||||
return None
|
|
||||||
else:
|
|
||||||
return EntityRecognizer.load(nlp.path / 'ner', nlp.vocab, **cfg)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def create_matcher(cls, nlp=None):
|
|
||||||
if nlp is None:
|
|
||||||
return Matcher(cls.create_vocab())
|
|
||||||
elif nlp.path is False:
|
|
||||||
return Matcher(nlp.vocab)
|
|
||||||
elif nlp.path is None or not (nlp.path / 'vocab').exists():
|
|
||||||
return None
|
|
||||||
else:
|
|
||||||
return Matcher.load(nlp.path / 'vocab', nlp.vocab)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def create_pipeline(self, nlp=None):
|
|
||||||
pipeline = []
|
pipeline = []
|
||||||
if nlp is None:
|
for entry in cls.pipeline:
|
||||||
return []
|
factory = cls.Defaults.factories[entry]
|
||||||
if nlp.tagger:
|
pipeline.append(factory(self, **meta.get(entry, {})))
|
||||||
pipeline.append(nlp.tagger)
|
|
||||||
if nlp.parser:
|
|
||||||
pipeline.append(nlp.parser)
|
|
||||||
pipeline.append(PseudoProjectivity.deprojectivize)
|
|
||||||
if nlp.entity:
|
|
||||||
pipeline.append(nlp.entity)
|
|
||||||
return pipeline
|
return pipeline
|
||||||
|
|
||||||
|
factories = {
|
||||||
|
'make_doc': create_tokenizer,
|
||||||
|
'tensor': lambda nlp, **cfg: TokenVectorEncoder(nlp.vocab, **cfg),
|
||||||
|
'tags': lambda nlp, **cfg: Tagger(nlp.vocab, **cfg),
|
||||||
|
'dependencies': lambda nlp, **cfg: NeuralDependencyParser(nlp.vocab, **cfg),
|
||||||
|
'entities': lambda nlp, **cfg: NeuralEntityRecognizer(nlp.vocab, **cfg),
|
||||||
|
}
|
||||||
|
|
||||||
token_match = TOKEN_MATCH
|
token_match = TOKEN_MATCH
|
||||||
prefixes = tuple(TOKENIZER_PREFIXES)
|
prefixes = tuple(TOKENIZER_PREFIXES)
|
||||||
suffixes = tuple(TOKENIZER_SUFFIXES)
|
suffixes = tuple(TOKENIZER_SUFFIXES)
|
||||||
|
@ -161,120 +100,30 @@ class Language(object):
|
||||||
Defaults = BaseDefaults
|
Defaults = BaseDefaults
|
||||||
lang = None
|
lang = None
|
||||||
|
|
||||||
@classmethod
|
def __init__(self, vocab=True, make_doc=True, pipeline=None, meta={}):
|
||||||
def setup_directory(cls, path, **configs):
|
self.meta = dict(meta)
|
||||||
"""
|
|
||||||
Initialise a model directory.
|
|
||||||
"""
|
|
||||||
for name, config in configs.items():
|
|
||||||
directory = path / name
|
|
||||||
if directory.exists():
|
|
||||||
shutil.rmtree(str(directory))
|
|
||||||
directory.mkdir()
|
|
||||||
with (directory / 'config.json').open('w') as file_:
|
|
||||||
data = json_dumps(config)
|
|
||||||
file_.write(data)
|
|
||||||
if not (path / 'vocab').exists():
|
|
||||||
(path / 'vocab').mkdir()
|
|
||||||
|
|
||||||
@classmethod
|
if vocab is True:
|
||||||
@contextmanager
|
factory = self.Defaults.create_vocab
|
||||||
def train(cls, path, gold_tuples, **configs):
|
vocab = factory(self, **meta.get('vocab', {}))
|
||||||
parser_cfg = configs.get('deps', {})
|
self.vocab = vocab
|
||||||
if parser_cfg.get('pseudoprojective'):
|
if make_doc is True:
|
||||||
# preprocess training data here before ArcEager.get_labels() is called
|
factory = self.Defaults.create_tokenizer
|
||||||
gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples)
|
make_doc = factory(self, **meta.get('tokenizer', {}))
|
||||||
|
self.make_doc = make_doc
|
||||||
for subdir in ('deps', 'ner', 'pos'):
|
if pipeline is True:
|
||||||
if subdir not in configs:
|
self.pipeline = self.Defaults.create_pipeline(self)
|
||||||
configs[subdir] = {}
|
elif pipeline:
|
||||||
if parser_cfg:
|
self.pipeline = list(pipeline)
|
||||||
configs['deps']['actions'] = ArcEager.get_actions(gold_parses=gold_tuples)
|
# Resolve strings, like "cnn", "lstm", etc
|
||||||
if 'ner' in configs:
|
for i, entry in enumerate(self.pipeline):
|
||||||
configs['ner']['actions'] = BiluoPushDown.get_actions(gold_parses=gold_tuples)
|
if entry in self.Defaults.factories:
|
||||||
|
factory = self.Defaults.factories[entry]
|
||||||
cls.setup_directory(path, **configs)
|
self.pipeline[i] = factory(self, **meta.get(entry, {}))
|
||||||
|
|
||||||
self = cls(
|
|
||||||
path=path,
|
|
||||||
vocab=False,
|
|
||||||
tokenizer=False,
|
|
||||||
tagger=False,
|
|
||||||
parser=False,
|
|
||||||
entity=False,
|
|
||||||
matcher=False,
|
|
||||||
vectors=False,
|
|
||||||
pipeline=False)
|
|
||||||
|
|
||||||
self.vocab = self.Defaults.create_vocab(self)
|
|
||||||
self.tokenizer = self.Defaults.create_tokenizer(self)
|
|
||||||
self.tagger = self.Defaults.create_tagger(self)
|
|
||||||
self.parser = self.Defaults.create_parser(self)
|
|
||||||
self.entity = self.Defaults.create_entity(self)
|
|
||||||
self.pipeline = self.Defaults.create_pipeline(self)
|
|
||||||
yield Trainer(self, gold_tuples)
|
|
||||||
self.end_training()
|
|
||||||
self.save_to_directory(path)
|
|
||||||
|
|
||||||
def __init__(self, **overrides):
|
|
||||||
"""
|
|
||||||
Create or load the pipeline.
|
|
||||||
|
|
||||||
Arguments:
|
|
||||||
**overrides: Keyword arguments indicating which defaults to override.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Language: The newly constructed object.
|
|
||||||
"""
|
|
||||||
if 'data_dir' in overrides and 'path' not in overrides:
|
|
||||||
raise ValueError("The argument 'data_dir' has been renamed to 'path'")
|
|
||||||
path = util.ensure_path(overrides.get('path', True))
|
|
||||||
if path is True:
|
|
||||||
path = util.get_data_path() / self.lang
|
|
||||||
if not path.exists() and 'path' not in overrides:
|
|
||||||
path = None
|
|
||||||
self.meta = overrides.get('meta', {})
|
|
||||||
self.path = path
|
|
||||||
|
|
||||||
self.vocab = self.Defaults.create_vocab(self) \
|
|
||||||
if 'vocab' not in overrides \
|
|
||||||
else overrides['vocab']
|
|
||||||
add_vectors = self.Defaults.add_vectors(self) \
|
|
||||||
if 'add_vectors' not in overrides \
|
|
||||||
else overrides['add_vectors']
|
|
||||||
if self.vocab and add_vectors:
|
|
||||||
add_vectors(self.vocab)
|
|
||||||
self.tokenizer = self.Defaults.create_tokenizer(self) \
|
|
||||||
if 'tokenizer' not in overrides \
|
|
||||||
else overrides['tokenizer']
|
|
||||||
|
|
||||||
self.tagger = self.Defaults.create_tagger(self) \
|
|
||||||
if 'tagger' not in overrides \
|
|
||||||
else overrides['tagger']
|
|
||||||
self.parser = self.Defaults.create_parser(self) \
|
|
||||||
if 'parser' not in overrides \
|
|
||||||
else overrides['parser']
|
|
||||||
self.entity = self.Defaults.create_entity(self) \
|
|
||||||
if 'entity' not in overrides \
|
|
||||||
else overrides['entity']
|
|
||||||
self.matcher = self.Defaults.create_matcher(self) \
|
|
||||||
if 'matcher' not in overrides \
|
|
||||||
else overrides['matcher']
|
|
||||||
|
|
||||||
if 'make_doc' in overrides:
|
|
||||||
self.make_doc = overrides['make_doc']
|
|
||||||
elif 'create_make_doc' in overrides:
|
|
||||||
self.make_doc = overrides['create_make_doc'](self)
|
|
||||||
elif not hasattr(self, 'make_doc'):
|
|
||||||
self.make_doc = lambda text: self.tokenizer(text)
|
|
||||||
if 'pipeline' in overrides:
|
|
||||||
self.pipeline = overrides['pipeline']
|
|
||||||
elif 'create_pipeline' in overrides:
|
|
||||||
self.pipeline = overrides['create_pipeline'](self)
|
|
||||||
else:
|
else:
|
||||||
self.pipeline = [self.tagger, self.parser, self.matcher, self.entity]
|
self.pipeline = []
|
||||||
|
|
||||||
def __call__(self, text, tag=True, parse=True, entity=True):
|
def __call__(self, text, **disabled):
|
||||||
"""
|
"""
|
||||||
Apply the pipeline to some text. The text can span multiple sentences,
|
Apply the pipeline to some text. The text can span multiple sentences,
|
||||||
and can contain arbtrary whitespace. Alignment into the original string
|
and can contain arbtrary whitespace. Alignment into the original string
|
||||||
|
@ -294,18 +143,24 @@ class Language(object):
|
||||||
('An', 'NN')
|
('An', 'NN')
|
||||||
"""
|
"""
|
||||||
doc = self.make_doc(text)
|
doc = self.make_doc(text)
|
||||||
if self.entity and entity:
|
|
||||||
# Add any of the entity labels already set, in case we don't have them.
|
|
||||||
for token in doc:
|
|
||||||
if token.ent_type != 0:
|
|
||||||
self.entity.add_label(token.ent_type)
|
|
||||||
skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity}
|
|
||||||
for proc in self.pipeline:
|
for proc in self.pipeline:
|
||||||
if proc and not skip.get(proc):
|
name = getattr(proc, 'name', None)
|
||||||
proc(doc)
|
if name in disabled and not disabled[named]:
|
||||||
|
continue
|
||||||
|
proc(doc)
|
||||||
return doc
|
return doc
|
||||||
|
|
||||||
def pipe(self, texts, tag=True, parse=True, entity=True, n_threads=2, batch_size=1000):
|
@contextmanager
|
||||||
|
def begin_training(self, gold_tuples, **cfg):
|
||||||
|
contexts = []
|
||||||
|
for proc in self.pipeline:
|
||||||
|
if hasattr(proc, 'begin_training'):
|
||||||
|
context = proc.begin_training(gold_tuples, pipeline=self.pipeline)
|
||||||
|
contexts.append(context)
|
||||||
|
trainer = Trainer(self, gold_tuples, **cfg)
|
||||||
|
yield trainer, trainer.optimizer
|
||||||
|
|
||||||
|
def pipe(self, texts, n_threads=2, batch_size=1000, **disabled):
|
||||||
"""
|
"""
|
||||||
Process texts as a stream, and yield Doc objects in order.
|
Process texts as a stream, and yield Doc objects in order.
|
||||||
|
|
||||||
|
@ -317,55 +172,28 @@ class Language(object):
|
||||||
parse (bool)
|
parse (bool)
|
||||||
entity (bool)
|
entity (bool)
|
||||||
"""
|
"""
|
||||||
skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity}
|
|
||||||
stream = (self.make_doc(text) for text in texts)
|
stream = (self.make_doc(text) for text in texts)
|
||||||
for proc in self.pipeline:
|
for proc in self.pipeline:
|
||||||
if proc and not skip.get(proc):
|
name = getattr(proc, 'name', None)
|
||||||
if hasattr(proc, 'pipe'):
|
if name in disabled and not disabled[named]:
|
||||||
stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size)
|
continue
|
||||||
else:
|
|
||||||
stream = (proc(item) for item in stream)
|
if hasattr(proc, 'pipe'):
|
||||||
|
stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size)
|
||||||
|
else:
|
||||||
|
stream = (proc(item) for item in stream)
|
||||||
for doc in stream:
|
for doc in stream:
|
||||||
yield doc
|
yield doc
|
||||||
|
|
||||||
def save_to_directory(self, path):
|
def to_disk(self, path):
|
||||||
"""
|
raise NotImplemented
|
||||||
Save the Vocab, StringStore and pipeline to a directory.
|
|
||||||
|
|
||||||
Arguments:
|
def from_disk(self, path):
|
||||||
path (string or pathlib path): Path to save the model.
|
raise NotImplemented
|
||||||
"""
|
|
||||||
configs = {
|
|
||||||
'pos': self.tagger.cfg if self.tagger else {},
|
|
||||||
'deps': self.parser.cfg if self.parser else {},
|
|
||||||
'ner': self.entity.cfg if self.entity else {},
|
|
||||||
}
|
|
||||||
|
|
||||||
path = util.ensure_path(path)
|
def to_bytes(self, path):
|
||||||
if not path.exists():
|
raise NotImplemented
|
||||||
path.mkdir()
|
|
||||||
self.setup_directory(path, **configs)
|
|
||||||
|
|
||||||
strings_loc = path / 'vocab' / 'strings.json'
|
def from_bytes(self, path):
|
||||||
with strings_loc.open('w', encoding='utf8') as file_:
|
raise NotImplemented
|
||||||
self.vocab.strings.dump(file_)
|
|
||||||
self.vocab.dump(path / 'vocab' / 'lexemes.bin')
|
|
||||||
# TODO: Word vectors?
|
|
||||||
if self.tagger:
|
|
||||||
self.tagger.model.dump(str(path / 'pos' / 'model'))
|
|
||||||
if self.parser:
|
|
||||||
self.parser.model.dump(str(path / 'deps' / 'model'))
|
|
||||||
if self.entity:
|
|
||||||
self.entity.model.dump(str(path / 'ner' / 'model'))
|
|
||||||
|
|
||||||
def end_training(self, path=None):
|
|
||||||
if self.tagger:
|
|
||||||
self.tagger.model.end_training()
|
|
||||||
if self.parser:
|
|
||||||
self.parser.model.end_training()
|
|
||||||
if self.entity:
|
|
||||||
self.entity.model.end_training()
|
|
||||||
# NB: This is slightly different from before --- we no longer default
|
|
||||||
# to taking nlp.path
|
|
||||||
if path is not None:
|
|
||||||
self.save_to_directory(path)
|
|
||||||
|
|
|
@ -9,7 +9,8 @@ import numpy
|
||||||
cimport numpy as np
|
cimport numpy as np
|
||||||
|
|
||||||
from .tokens.doc cimport Doc
|
from .tokens.doc cimport Doc
|
||||||
from .syntax.parser cimport Parser
|
from .syntax.parser cimport Parser as LinearParser
|
||||||
|
from .syntax.nn_parser cimport Parser as NeuralParser
|
||||||
from .syntax.parser import get_templates as get_feature_templates
|
from .syntax.parser import get_templates as get_feature_templates
|
||||||
from .syntax.beam_parser cimport BeamParser
|
from .syntax.beam_parser cimport BeamParser
|
||||||
from .syntax.ner cimport BiluoPushDown
|
from .syntax.ner cimport BiluoPushDown
|
||||||
|
@ -30,13 +31,13 @@ from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||||
from ._ml import Tok2Vec, flatten, get_col, doc2feats
|
from ._ml import Tok2Vec, flatten, get_col, doc2feats
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class TokenVectorEncoder(object):
|
class TokenVectorEncoder(object):
|
||||||
'''Assign position-sensitive vectors to tokens, using a CNN or RNN.'''
|
'''Assign position-sensitive vectors to tokens, using a CNN or RNN.'''
|
||||||
|
name = 'tok2vec'
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def Model(cls, width=128, embed_size=5000, **cfg):
|
def Model(cls, width=128, embed_size=5000, **cfg):
|
||||||
return Tok2Vec(width, embed_size, preprocess=False)
|
return Tok2Vec(width, embed_size, preprocess=doc2feats())
|
||||||
|
|
||||||
def __init__(self, vocab, model=True, **cfg):
|
def __init__(self, vocab, model=True, **cfg):
|
||||||
self.vocab = vocab
|
self.vocab = vocab
|
||||||
|
@ -76,10 +77,11 @@ class TokenVectorEncoder(object):
|
||||||
doc.vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
|
doc.vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
|
||||||
idx += 1
|
idx += 1
|
||||||
|
|
||||||
def update(self, docs_feats, golds, drop=0., sgd=None):
|
def update(self, docs, golds, drop=0., sgd=None):
|
||||||
|
return 0.0
|
||||||
cdef int i, j, idx
|
cdef int i, j, idx
|
||||||
cdef GoldParse gold
|
cdef GoldParse gold
|
||||||
docs, feats = docs_feats
|
feats = self.doc2feats(docs)
|
||||||
scores, finish_update = self.tagger.begin_update(feats, drop=drop)
|
scores, finish_update = self.tagger.begin_update(feats, drop=drop)
|
||||||
|
|
||||||
tag_index = {tag: i for i, tag in enumerate(docs[0].vocab.morphology.tag_names)}
|
tag_index = {tag: i for i, tag in enumerate(docs[0].vocab.morphology.tag_names)}
|
||||||
|
@ -95,7 +97,7 @@ class TokenVectorEncoder(object):
|
||||||
finish_update(d_scores, sgd)
|
finish_update(d_scores, sgd)
|
||||||
|
|
||||||
|
|
||||||
cdef class EntityRecognizer(Parser):
|
cdef class EntityRecognizer(LinearParser):
|
||||||
"""
|
"""
|
||||||
Annotate named entities on Doc objects.
|
Annotate named entities on Doc objects.
|
||||||
"""
|
"""
|
||||||
|
@ -104,7 +106,7 @@ cdef class EntityRecognizer(Parser):
|
||||||
feature_templates = get_feature_templates('ner')
|
feature_templates = get_feature_templates('ner')
|
||||||
|
|
||||||
def add_label(self, label):
|
def add_label(self, label):
|
||||||
Parser.add_label(self, label)
|
LinearParser.add_label(self, label)
|
||||||
if isinstance(label, basestring):
|
if isinstance(label, basestring):
|
||||||
label = self.vocab.strings[label]
|
label = self.vocab.strings[label]
|
||||||
|
|
||||||
|
@ -118,21 +120,31 @@ cdef class BeamEntityRecognizer(BeamParser):
|
||||||
feature_templates = get_feature_templates('ner')
|
feature_templates = get_feature_templates('ner')
|
||||||
|
|
||||||
def add_label(self, label):
|
def add_label(self, label):
|
||||||
Parser.add_label(self, label)
|
LinearParser.add_label(self, label)
|
||||||
if isinstance(label, basestring):
|
if isinstance(label, basestring):
|
||||||
label = self.vocab.strings[label]
|
label = self.vocab.strings[label]
|
||||||
|
|
||||||
|
|
||||||
cdef class DependencyParser(Parser):
|
cdef class DependencyParser(LinearParser):
|
||||||
TransitionSystem = ArcEager
|
TransitionSystem = ArcEager
|
||||||
feature_templates = get_feature_templates('basic')
|
feature_templates = get_feature_templates('basic')
|
||||||
|
|
||||||
def add_label(self, label):
|
def add_label(self, label):
|
||||||
Parser.add_label(self, label)
|
LinearParser.add_label(self, label)
|
||||||
if isinstance(label, basestring):
|
if isinstance(label, basestring):
|
||||||
label = self.vocab.strings[label]
|
label = self.vocab.strings[label]
|
||||||
|
|
||||||
|
|
||||||
|
cdef class NeuralDependencyParser(NeuralParser):
|
||||||
|
name = 'parser'
|
||||||
|
TransitionSystem = ArcEager
|
||||||
|
|
||||||
|
|
||||||
|
cdef class NeuralEntityRecognizer(NeuralParser):
|
||||||
|
name = 'entity'
|
||||||
|
TransitionSystem = BiluoPushDown
|
||||||
|
|
||||||
|
|
||||||
cdef class BeamDependencyParser(BeamParser):
|
cdef class BeamDependencyParser(BeamParser):
|
||||||
TransitionSystem = ArcEager
|
TransitionSystem = ArcEager
|
||||||
|
|
||||||
|
|
|
@ -238,11 +238,7 @@ cdef class Parser:
|
||||||
upper.begin_training(upper.ops.allocate((500, hidden_width)))
|
upper.begin_training(upper.ops.allocate((500, hidden_width)))
|
||||||
return tok2vec, lower, upper
|
return tok2vec, lower, upper
|
||||||
|
|
||||||
@classmethod
|
def __init__(self, Vocab vocab, model=True, **cfg):
|
||||||
def Moves(cls):
|
|
||||||
return TransitionSystem()
|
|
||||||
|
|
||||||
def __init__(self, Vocab vocab, moves=True, model=True, **cfg):
|
|
||||||
"""
|
"""
|
||||||
Create a Parser.
|
Create a Parser.
|
||||||
|
|
||||||
|
@ -262,9 +258,13 @@ cdef class Parser:
|
||||||
Arbitrary configuration parameters. Set to the .cfg attribute
|
Arbitrary configuration parameters. Set to the .cfg attribute
|
||||||
"""
|
"""
|
||||||
self.vocab = vocab
|
self.vocab = vocab
|
||||||
self.moves = self.Moves(self.vocab) if moves is True else moves
|
self.moves = self.TransitionSystem(self.vocab.strings, {})
|
||||||
self.model = self.Model(self.moves.n_moves) if model is True else model
|
|
||||||
self.cfg = cfg
|
self.cfg = cfg
|
||||||
|
if 'actions' in self.cfg:
|
||||||
|
for action, labels in self.cfg.get('actions', {}).items():
|
||||||
|
for label in labels:
|
||||||
|
self.moves.add_action(action, label)
|
||||||
|
self.model = model
|
||||||
|
|
||||||
def __reduce__(self):
|
def __reduce__(self):
|
||||||
return (Parser, (self.vocab, self.moves, self.model, self.cfg), None, None)
|
return (Parser, (self.vocab, self.moves, self.model, self.cfg), None, None)
|
||||||
|
@ -440,6 +440,17 @@ cdef class Parser:
|
||||||
# order, or the model goes out of synch
|
# order, or the model goes out of synch
|
||||||
self.cfg.setdefault('extra_labels', []).append(label)
|
self.cfg.setdefault('extra_labels', []).append(label)
|
||||||
|
|
||||||
|
def begin_training(self, gold_tuples, **cfg):
|
||||||
|
if 'model' in cfg:
|
||||||
|
self.model = cfg['model']
|
||||||
|
actions = self.moves.get_actions(gold_parses=gold_tuples)
|
||||||
|
for action, labels in actions.items():
|
||||||
|
for label in labels:
|
||||||
|
self.moves.add_action(action, label)
|
||||||
|
if self.model is True:
|
||||||
|
tok2vec = cfg['pipeline'][0].model
|
||||||
|
self.model = self.Model(self.moves.n_moves, tok2vec=tok2vec, **cfg)
|
||||||
|
|
||||||
|
|
||||||
class ParserStateError(ValueError):
|
class ParserStateError(ValueError):
|
||||||
def __init__(self, doc):
|
def __init__(self, doc):
|
||||||
|
|
|
@ -3,12 +3,14 @@ from __future__ import absolute_import, unicode_literals
|
||||||
|
|
||||||
import random
|
import random
|
||||||
import tqdm
|
import tqdm
|
||||||
|
from cytoolz import partition_all
|
||||||
|
|
||||||
from thinc.neural.optimizers import Adam
|
from thinc.neural.optimizers import Adam
|
||||||
from thinc.neural.ops import NumpyOps, CupyOps
|
from thinc.neural.ops import NumpyOps, CupyOps
|
||||||
|
|
||||||
from .gold import GoldParse, merge_sents
|
from .gold import GoldParse, merge_sents
|
||||||
from .scorer import Scorer
|
from .scorer import Scorer
|
||||||
|
from .tokens.doc import Doc
|
||||||
|
|
||||||
|
|
||||||
class Trainer(object):
|
class Trainer(object):
|
||||||
|
@ -19,6 +21,7 @@ class Trainer(object):
|
||||||
self.nlp = nlp
|
self.nlp = nlp
|
||||||
self.gold_tuples = gold_tuples
|
self.gold_tuples = gold_tuples
|
||||||
self.nr_epoch = 0
|
self.nr_epoch = 0
|
||||||
|
self.optimizer = Adam(NumpyOps(), 0.001)
|
||||||
|
|
||||||
def epochs(self, nr_epoch, augment_data=None, gold_preproc=False):
|
def epochs(self, nr_epoch, augment_data=None, gold_preproc=False):
|
||||||
cached_golds = {}
|
cached_golds = {}
|
||||||
|
@ -75,9 +78,9 @@ class Trainer(object):
|
||||||
|
|
||||||
def make_docs(self, raw_text, paragraph_tuples):
|
def make_docs(self, raw_text, paragraph_tuples):
|
||||||
if raw_text is not None:
|
if raw_text is not None:
|
||||||
return [self.nlp.tokenizer(raw_text)]
|
return [self.nlp.make_doc(raw_text)]
|
||||||
else:
|
else:
|
||||||
return [self.nlp.tokenizer.tokens_from_list(sent_tuples[0][1])
|
return [Doc(self.nlp.vocab, words=sent_tuples[0][1])
|
||||||
for sent_tuples in paragraph_tuples]
|
for sent_tuples in paragraph_tuples]
|
||||||
|
|
||||||
def make_golds(self, docs, paragraph_tuples):
|
def make_golds(self, docs, paragraph_tuples):
|
||||||
|
|
Loading…
Reference in New Issue
Block a user