Get data flowing through pipeline. Needs redesign

This commit is contained in:
Matthew Honnibal 2017-05-16 11:21:59 +02:00
parent 1d7c18e58a
commit 5211645af3
6 changed files with 143 additions and 284 deletions

View File

@ -135,7 +135,7 @@ def Tok2Vec(width, embed_size, preprocess=None):
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
>> Residual(ExtractWindow(nW=1) >> Maxout(width, width*3))
)
if preprocess is not None:
if preprocess not in (False, None):
tok2vec = preprocess >> tok2vec
# Work around thinc API limitations :(. TODO: Revise in Thinc 7
tok2vec.nO = width

View File

@ -41,8 +41,7 @@ def train(language, output_dir, train_data, dev_data, n_iter, tagger, parser, ne
gold_train = list(read_gold_json(train_path))
gold_dev = list(read_gold_json(dev_path)) if dev_path else None
train_model(lang, gold_train, gold_dev, output_path, tagger_cfg, parser_cfg,
entity_cfg, n_iter)
train_model(lang, gold_train, gold_dev, output_path, n_iter)
if gold_dev:
scorer = evaluate(lang, gold_dev, output_path)
print_results(scorer)
@ -58,24 +57,30 @@ def train_config(config):
prints("%s not found in config file." % setting, title="Missing setting")
def train_model(Language, train_data, dev_data, output_path, tagger_cfg, parser_cfg,
entity_cfg, n_iter):
def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
print("Itn.\tN weight\tN feats\tUAS\tNER F.\tTag %\tToken %")
with Language.train(output_path, train_data,
pos=tagger_cfg, deps=parser_cfg, ner=entity_cfg) as trainer:
nlp = Language(pipeline=['tensor', 'dependencies', 'entities'])
for itn, epoch in enumerate(trainer.epochs(n_iter, augment_data=None)):
for docs, golds in partition_all(12, epoch):
trainer.update(docs, golds)
# TODO: Get spaCy using Thinc's trainer and optimizer
with nlp.begin_training(train_data, **cfg) as (trainer, optimizer):
for itn, epoch in enumerate(trainer.epochs(n_iter)):
losses = defaultdict(float)
for docs, golds in epoch:
grads = {}
def get_grads(W, dW, key=None):
grads[key] = (W, dW)
for proc in nlp.pipeline:
loss = proc.update(docs, golds, drop=0.0, sgd=get_grads)
losses[proc.name] += loss
for key, (W, dW) in grads.items():
optimizer(W, dW, key=key)
if dev_data:
dev_scores = trainer.evaluate(dev_data).scores
else:
defaultdict(float)
print_progress(itn, trainer.nlp.parser.model.nr_weight,
trainer.nlp.parser.model.nr_active_feat,
**dev_scores)
print_progress(itn, losses['dep'], **dev_scores)
def evaluate(Language, gold_tuples, output_path):

View File

@ -11,7 +11,8 @@ from .lemmatizer import Lemmatizer
from .train import Trainer
from .syntax.parser import get_templates
from .syntax.nonproj import PseudoProjectivity
from .pipeline import DependencyParser, EntityRecognizer
from .pipeline import DependencyParser, NeuralDependencyParser, EntityRecognizer
from .pipeline import TokenVectorEncoder, NeuralEntityRecognizer
from .syntax.arc_eager import ArcEager
from .syntax.ner import BiluoPushDown
from .compat import json_dumps
@ -31,111 +32,49 @@ class BaseDefaults(object):
@classmethod
def create_vocab(cls, nlp=None):
lemmatizer = cls.create_lemmatizer(nlp)
if nlp is None or nlp.path is None:
lex_attr_getters = dict(cls.lex_attr_getters)
# This is very messy, but it's the minimal working fix to Issue #639.
# This defaults stuff needs to be refactored (again)
lex_attr_getters[IS_STOP] = lambda string: string.lower() in cls.stop_words
vocab = Vocab(lex_attr_getters=lex_attr_getters, tag_map=cls.tag_map,
lemmatizer=lemmatizer)
else:
vocab = Vocab.load(nlp.path, lex_attr_getters=cls.lex_attr_getters,
tag_map=cls.tag_map, lemmatizer=lemmatizer)
lex_attr_getters = dict(cls.lex_attr_getters)
# This is messy, but it's the minimal working fix to Issue #639.
lex_attr_getters[IS_STOP] = lambda string: string.lower() in cls.stop_words
vocab = Vocab(lex_attr_getters=lex_attr_getters, tag_map=cls.tag_map,
lemmatizer=lemmatizer)
for tag_str, exc in cls.morph_rules.items():
for orth_str, attrs in exc.items():
vocab.morphology.add_special_case(tag_str, orth_str, attrs)
return vocab
@classmethod
def add_vectors(cls, nlp=None):
if nlp is None or nlp.path is None:
return False
else:
vec_path = nlp.path / 'vocab' / 'vec.bin'
if vec_path.exists():
return lambda vocab: vocab.load_vectors_from_bin_loc(vec_path)
@classmethod
def create_tokenizer(cls, nlp=None):
rules = cls.tokenizer_exceptions
if cls.token_match:
token_match = cls.token_match
if cls.prefixes:
prefix_search = util.compile_prefix_regex(cls.prefixes).search
else:
prefix_search = None
if cls.suffixes:
suffix_search = util.compile_suffix_regex(cls.suffixes).search
else:
suffix_search = None
if cls.infixes:
infix_finditer = util.compile_infix_regex(cls.infixes).finditer
else:
infix_finditer = None
token_match = cls.token_match
prefix_search = util.compile_prefix_regex(cls.prefixes).search \
if cls.prefixes else None
suffix_search = util.compile_suffix_regex(cls.suffixes).search \
if cls.suffixes else None
infix_finditer = util.compile_infix_regex(cls.infixes).finditer \
if cls.infixes else None
vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
return Tokenizer(vocab, rules=rules,
prefix_search=prefix_search, suffix_search=suffix_search,
infix_finditer=infix_finditer, token_match=token_match)
@classmethod
def create_tagger(cls, nlp=None):
if nlp is None:
return Tagger(cls.create_vocab(), features=cls.tagger_features)
elif nlp.path is False:
return Tagger(nlp.vocab, features=cls.tagger_features)
elif nlp.path is None or not (nlp.path / 'pos').exists():
return None
else:
return Tagger.load(nlp.path / 'pos', nlp.vocab)
@classmethod
def create_parser(cls, nlp=None, **cfg):
if nlp is None:
return DependencyParser(cls.create_vocab(), features=cls.parser_features,
**cfg)
elif nlp.path is False:
return DependencyParser(nlp.vocab, features=cls.parser_features, **cfg)
elif nlp.path is None or not (nlp.path / 'deps').exists():
return None
else:
return DependencyParser.load(nlp.path / 'deps', nlp.vocab, **cfg)
@classmethod
def create_entity(cls, nlp=None, **cfg):
if nlp is None:
return EntityRecognizer(cls.create_vocab(), features=cls.entity_features, **cfg)
elif nlp.path is False:
return EntityRecognizer(nlp.vocab, features=cls.entity_features, **cfg)
elif nlp.path is None or not (nlp.path / 'ner').exists():
return None
else:
return EntityRecognizer.load(nlp.path / 'ner', nlp.vocab, **cfg)
@classmethod
def create_matcher(cls, nlp=None):
if nlp is None:
return Matcher(cls.create_vocab())
elif nlp.path is False:
return Matcher(nlp.vocab)
elif nlp.path is None or not (nlp.path / 'vocab').exists():
return None
else:
return Matcher.load(nlp.path / 'vocab', nlp.vocab)
@classmethod
def create_pipeline(self, nlp=None):
def create_pipeline(cls, nlp=None):
meta = nlp.meta if nlp is not None else {}
# Resolve strings, like "cnn", "lstm", etc
pipeline = []
if nlp is None:
return []
if nlp.tagger:
pipeline.append(nlp.tagger)
if nlp.parser:
pipeline.append(nlp.parser)
pipeline.append(PseudoProjectivity.deprojectivize)
if nlp.entity:
pipeline.append(nlp.entity)
for entry in cls.pipeline:
factory = cls.Defaults.factories[entry]
pipeline.append(factory(self, **meta.get(entry, {})))
return pipeline
factories = {
'make_doc': create_tokenizer,
'tensor': lambda nlp, **cfg: TokenVectorEncoder(nlp.vocab, **cfg),
'tags': lambda nlp, **cfg: Tagger(nlp.vocab, **cfg),
'dependencies': lambda nlp, **cfg: NeuralDependencyParser(nlp.vocab, **cfg),
'entities': lambda nlp, **cfg: NeuralEntityRecognizer(nlp.vocab, **cfg),
}
token_match = TOKEN_MATCH
prefixes = tuple(TOKENIZER_PREFIXES)
suffixes = tuple(TOKENIZER_SUFFIXES)
@ -161,120 +100,30 @@ class Language(object):
Defaults = BaseDefaults
lang = None
@classmethod
def setup_directory(cls, path, **configs):
"""
Initialise a model directory.
"""
for name, config in configs.items():
directory = path / name
if directory.exists():
shutil.rmtree(str(directory))
directory.mkdir()
with (directory / 'config.json').open('w') as file_:
data = json_dumps(config)
file_.write(data)
if not (path / 'vocab').exists():
(path / 'vocab').mkdir()
def __init__(self, vocab=True, make_doc=True, pipeline=None, meta={}):
self.meta = dict(meta)
@classmethod
@contextmanager
def train(cls, path, gold_tuples, **configs):
parser_cfg = configs.get('deps', {})
if parser_cfg.get('pseudoprojective'):
# preprocess training data here before ArcEager.get_labels() is called
gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples)
for subdir in ('deps', 'ner', 'pos'):
if subdir not in configs:
configs[subdir] = {}
if parser_cfg:
configs['deps']['actions'] = ArcEager.get_actions(gold_parses=gold_tuples)
if 'ner' in configs:
configs['ner']['actions'] = BiluoPushDown.get_actions(gold_parses=gold_tuples)
cls.setup_directory(path, **configs)
self = cls(
path=path,
vocab=False,
tokenizer=False,
tagger=False,
parser=False,
entity=False,
matcher=False,
vectors=False,
pipeline=False)
self.vocab = self.Defaults.create_vocab(self)
self.tokenizer = self.Defaults.create_tokenizer(self)
self.tagger = self.Defaults.create_tagger(self)
self.parser = self.Defaults.create_parser(self)
self.entity = self.Defaults.create_entity(self)
self.pipeline = self.Defaults.create_pipeline(self)
yield Trainer(self, gold_tuples)
self.end_training()
self.save_to_directory(path)
def __init__(self, **overrides):
"""
Create or load the pipeline.
Arguments:
**overrides: Keyword arguments indicating which defaults to override.
Returns:
Language: The newly constructed object.
"""
if 'data_dir' in overrides and 'path' not in overrides:
raise ValueError("The argument 'data_dir' has been renamed to 'path'")
path = util.ensure_path(overrides.get('path', True))
if path is True:
path = util.get_data_path() / self.lang
if not path.exists() and 'path' not in overrides:
path = None
self.meta = overrides.get('meta', {})
self.path = path
self.vocab = self.Defaults.create_vocab(self) \
if 'vocab' not in overrides \
else overrides['vocab']
add_vectors = self.Defaults.add_vectors(self) \
if 'add_vectors' not in overrides \
else overrides['add_vectors']
if self.vocab and add_vectors:
add_vectors(self.vocab)
self.tokenizer = self.Defaults.create_tokenizer(self) \
if 'tokenizer' not in overrides \
else overrides['tokenizer']
self.tagger = self.Defaults.create_tagger(self) \
if 'tagger' not in overrides \
else overrides['tagger']
self.parser = self.Defaults.create_parser(self) \
if 'parser' not in overrides \
else overrides['parser']
self.entity = self.Defaults.create_entity(self) \
if 'entity' not in overrides \
else overrides['entity']
self.matcher = self.Defaults.create_matcher(self) \
if 'matcher' not in overrides \
else overrides['matcher']
if 'make_doc' in overrides:
self.make_doc = overrides['make_doc']
elif 'create_make_doc' in overrides:
self.make_doc = overrides['create_make_doc'](self)
elif not hasattr(self, 'make_doc'):
self.make_doc = lambda text: self.tokenizer(text)
if 'pipeline' in overrides:
self.pipeline = overrides['pipeline']
elif 'create_pipeline' in overrides:
self.pipeline = overrides['create_pipeline'](self)
if vocab is True:
factory = self.Defaults.create_vocab
vocab = factory(self, **meta.get('vocab', {}))
self.vocab = vocab
if make_doc is True:
factory = self.Defaults.create_tokenizer
make_doc = factory(self, **meta.get('tokenizer', {}))
self.make_doc = make_doc
if pipeline is True:
self.pipeline = self.Defaults.create_pipeline(self)
elif pipeline:
self.pipeline = list(pipeline)
# Resolve strings, like "cnn", "lstm", etc
for i, entry in enumerate(self.pipeline):
if entry in self.Defaults.factories:
factory = self.Defaults.factories[entry]
self.pipeline[i] = factory(self, **meta.get(entry, {}))
else:
self.pipeline = [self.tagger, self.parser, self.matcher, self.entity]
self.pipeline = []
def __call__(self, text, tag=True, parse=True, entity=True):
def __call__(self, text, **disabled):
"""
Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string
@ -294,18 +143,24 @@ class Language(object):
('An', 'NN')
"""
doc = self.make_doc(text)
if self.entity and entity:
# Add any of the entity labels already set, in case we don't have them.
for token in doc:
if token.ent_type != 0:
self.entity.add_label(token.ent_type)
skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity}
for proc in self.pipeline:
if proc and not skip.get(proc):
proc(doc)
name = getattr(proc, 'name', None)
if name in disabled and not disabled[named]:
continue
proc(doc)
return doc
def pipe(self, texts, tag=True, parse=True, entity=True, n_threads=2, batch_size=1000):
@contextmanager
def begin_training(self, gold_tuples, **cfg):
contexts = []
for proc in self.pipeline:
if hasattr(proc, 'begin_training'):
context = proc.begin_training(gold_tuples, pipeline=self.pipeline)
contexts.append(context)
trainer = Trainer(self, gold_tuples, **cfg)
yield trainer, trainer.optimizer
def pipe(self, texts, n_threads=2, batch_size=1000, **disabled):
"""
Process texts as a stream, and yield Doc objects in order.
@ -317,55 +172,28 @@ class Language(object):
parse (bool)
entity (bool)
"""
skip = {self.tagger: not tag, self.parser: not parse, self.entity: not entity}
stream = (self.make_doc(text) for text in texts)
for proc in self.pipeline:
if proc and not skip.get(proc):
if hasattr(proc, 'pipe'):
stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size)
else:
stream = (proc(item) for item in stream)
name = getattr(proc, 'name', None)
if name in disabled and not disabled[named]:
continue
if hasattr(proc, 'pipe'):
stream = proc.pipe(stream, n_threads=n_threads, batch_size=batch_size)
else:
stream = (proc(item) for item in stream)
for doc in stream:
yield doc
def save_to_directory(self, path):
"""
Save the Vocab, StringStore and pipeline to a directory.
def to_disk(self, path):
raise NotImplemented
Arguments:
path (string or pathlib path): Path to save the model.
"""
configs = {
'pos': self.tagger.cfg if self.tagger else {},
'deps': self.parser.cfg if self.parser else {},
'ner': self.entity.cfg if self.entity else {},
}
def from_disk(self, path):
raise NotImplemented
path = util.ensure_path(path)
if not path.exists():
path.mkdir()
self.setup_directory(path, **configs)
def to_bytes(self, path):
raise NotImplemented
strings_loc = path / 'vocab' / 'strings.json'
with strings_loc.open('w', encoding='utf8') as file_:
self.vocab.strings.dump(file_)
self.vocab.dump(path / 'vocab' / 'lexemes.bin')
# TODO: Word vectors?
if self.tagger:
self.tagger.model.dump(str(path / 'pos' / 'model'))
if self.parser:
self.parser.model.dump(str(path / 'deps' / 'model'))
if self.entity:
self.entity.model.dump(str(path / 'ner' / 'model'))
def from_bytes(self, path):
raise NotImplemented
def end_training(self, path=None):
if self.tagger:
self.tagger.model.end_training()
if self.parser:
self.parser.model.end_training()
if self.entity:
self.entity.model.end_training()
# NB: This is slightly different from before --- we no longer default
# to taking nlp.path
if path is not None:
self.save_to_directory(path)

View File

@ -9,7 +9,8 @@ import numpy
cimport numpy as np
from .tokens.doc cimport Doc
from .syntax.parser cimport Parser
from .syntax.parser cimport Parser as LinearParser
from .syntax.nn_parser cimport Parser as NeuralParser
from .syntax.parser import get_templates as get_feature_templates
from .syntax.beam_parser cimport BeamParser
from .syntax.ner cimport BiluoPushDown
@ -30,13 +31,13 @@ from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
from ._ml import Tok2Vec, flatten, get_col, doc2feats
class TokenVectorEncoder(object):
'''Assign position-sensitive vectors to tokens, using a CNN or RNN.'''
name = 'tok2vec'
@classmethod
def Model(cls, width=128, embed_size=5000, **cfg):
return Tok2Vec(width, embed_size, preprocess=False)
return Tok2Vec(width, embed_size, preprocess=doc2feats())
def __init__(self, vocab, model=True, **cfg):
self.vocab = vocab
@ -76,10 +77,11 @@ class TokenVectorEncoder(object):
doc.vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
idx += 1
def update(self, docs_feats, golds, drop=0., sgd=None):
def update(self, docs, golds, drop=0., sgd=None):
return 0.0
cdef int i, j, idx
cdef GoldParse gold
docs, feats = docs_feats
feats = self.doc2feats(docs)
scores, finish_update = self.tagger.begin_update(feats, drop=drop)
tag_index = {tag: i for i, tag in enumerate(docs[0].vocab.morphology.tag_names)}
@ -95,7 +97,7 @@ class TokenVectorEncoder(object):
finish_update(d_scores, sgd)
cdef class EntityRecognizer(Parser):
cdef class EntityRecognizer(LinearParser):
"""
Annotate named entities on Doc objects.
"""
@ -104,7 +106,7 @@ cdef class EntityRecognizer(Parser):
feature_templates = get_feature_templates('ner')
def add_label(self, label):
Parser.add_label(self, label)
LinearParser.add_label(self, label)
if isinstance(label, basestring):
label = self.vocab.strings[label]
@ -118,21 +120,31 @@ cdef class BeamEntityRecognizer(BeamParser):
feature_templates = get_feature_templates('ner')
def add_label(self, label):
Parser.add_label(self, label)
LinearParser.add_label(self, label)
if isinstance(label, basestring):
label = self.vocab.strings[label]
cdef class DependencyParser(Parser):
cdef class DependencyParser(LinearParser):
TransitionSystem = ArcEager
feature_templates = get_feature_templates('basic')
def add_label(self, label):
Parser.add_label(self, label)
LinearParser.add_label(self, label)
if isinstance(label, basestring):
label = self.vocab.strings[label]
cdef class NeuralDependencyParser(NeuralParser):
name = 'parser'
TransitionSystem = ArcEager
cdef class NeuralEntityRecognizer(NeuralParser):
name = 'entity'
TransitionSystem = BiluoPushDown
cdef class BeamDependencyParser(BeamParser):
TransitionSystem = ArcEager

View File

@ -238,11 +238,7 @@ cdef class Parser:
upper.begin_training(upper.ops.allocate((500, hidden_width)))
return tok2vec, lower, upper
@classmethod
def Moves(cls):
return TransitionSystem()
def __init__(self, Vocab vocab, moves=True, model=True, **cfg):
def __init__(self, Vocab vocab, model=True, **cfg):
"""
Create a Parser.
@ -262,9 +258,13 @@ cdef class Parser:
Arbitrary configuration parameters. Set to the .cfg attribute
"""
self.vocab = vocab
self.moves = self.Moves(self.vocab) if moves is True else moves
self.model = self.Model(self.moves.n_moves) if model is True else model
self.moves = self.TransitionSystem(self.vocab.strings, {})
self.cfg = cfg
if 'actions' in self.cfg:
for action, labels in self.cfg.get('actions', {}).items():
for label in labels:
self.moves.add_action(action, label)
self.model = model
def __reduce__(self):
return (Parser, (self.vocab, self.moves, self.model, self.cfg), None, None)
@ -440,6 +440,17 @@ cdef class Parser:
# order, or the model goes out of synch
self.cfg.setdefault('extra_labels', []).append(label)
def begin_training(self, gold_tuples, **cfg):
if 'model' in cfg:
self.model = cfg['model']
actions = self.moves.get_actions(gold_parses=gold_tuples)
for action, labels in actions.items():
for label in labels:
self.moves.add_action(action, label)
if self.model is True:
tok2vec = cfg['pipeline'][0].model
self.model = self.Model(self.moves.n_moves, tok2vec=tok2vec, **cfg)
class ParserStateError(ValueError):
def __init__(self, doc):

View File

@ -3,12 +3,14 @@ from __future__ import absolute_import, unicode_literals
import random
import tqdm
from cytoolz import partition_all
from thinc.neural.optimizers import Adam
from thinc.neural.ops import NumpyOps, CupyOps
from .gold import GoldParse, merge_sents
from .scorer import Scorer
from .tokens.doc import Doc
class Trainer(object):
@ -19,6 +21,7 @@ class Trainer(object):
self.nlp = nlp
self.gold_tuples = gold_tuples
self.nr_epoch = 0
self.optimizer = Adam(NumpyOps(), 0.001)
def epochs(self, nr_epoch, augment_data=None, gold_preproc=False):
cached_golds = {}
@ -75,9 +78,9 @@ class Trainer(object):
def make_docs(self, raw_text, paragraph_tuples):
if raw_text is not None:
return [self.nlp.tokenizer(raw_text)]
return [self.nlp.make_doc(raw_text)]
else:
return [self.nlp.tokenizer.tokens_from_list(sent_tuples[0][1])
return [Doc(self.nlp.vocab, words=sent_tuples[0][1])
for sent_tuples in paragraph_tuples]
def make_golds(self, docs, paragraph_tuples):