mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 01:06:33 +03:00
Merge branch 'master' into spacy.io
This commit is contained in:
commit
5a8a39c9b0
106
.github/contributors/ajrader.md
vendored
Normal file
106
.github/contributors/ajrader.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Andrew J Rader |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | August 14, 2019 |
|
||||
| GitHub username | ajrader |
|
||||
| Website (optional) | |
|
106
.github/contributors/phiedulxp.md
vendored
Normal file
106
.github/contributors/phiedulxp.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI GmbH](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Xiepeng Li |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | 20190810 |
|
||||
| GitHub username | phiedulxp |
|
||||
| Website (optional) | |
|
106
.github/contributors/ryanzhe.md
vendored
Normal file
106
.github/contributors/ryanzhe.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [ ] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect my
|
||||
contributions.
|
||||
|
||||
* [x] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Ziming He |
|
||||
| Company name (if applicable) | Georgia Tech |
|
||||
| Title or role (if applicable) | Student |
|
||||
| Date | 2019-07-24 |
|
||||
| GitHub username | RyanZHe |
|
||||
| Website (optional) | www.papermachine.me |
|
|
@ -1,16 +1,14 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from .train_descriptions import EntityEncoder
|
||||
from . import wikidata_processor as wd, wikipedia_processor as wp
|
||||
from bin.wiki_entity_linking.train_descriptions import EntityEncoder
|
||||
from bin.wiki_entity_linking import wikidata_processor as wd, wikipedia_processor as wp
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
import csv
|
||||
import datetime
|
||||
|
||||
|
||||
INPUT_DIM = 300 # dimension of pre-trained input vectors
|
||||
DESC_WIDTH = 64 # dimension of output entity vectors
|
||||
from spacy import Errors
|
||||
|
||||
|
||||
def create_kb(
|
||||
|
@ -23,17 +21,27 @@ def create_kb(
|
|||
count_input,
|
||||
prior_prob_input,
|
||||
wikidata_input,
|
||||
entity_vector_length,
|
||||
limit=None,
|
||||
read_raw_data=True,
|
||||
):
|
||||
# Create the knowledge base from Wikidata entries
|
||||
kb = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=DESC_WIDTH)
|
||||
kb = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=entity_vector_length)
|
||||
|
||||
# check the length of the nlp vectors
|
||||
if "vectors" in nlp.meta and nlp.vocab.vectors.size:
|
||||
input_dim = nlp.vocab.vectors_length
|
||||
print("Loaded pre-trained vectors of size %s" % input_dim)
|
||||
else:
|
||||
raise ValueError(Errors.E155)
|
||||
|
||||
# disable this part of the pipeline when rerunning the KB generation from preprocessed files
|
||||
read_raw_data = True
|
||||
|
||||
if read_raw_data:
|
||||
print()
|
||||
print(" * _read_wikidata_entities", datetime.datetime.now())
|
||||
title_to_id, id_to_descr = wd.read_wikidata_entities_json(wikidata_input)
|
||||
print(now(), " * read wikidata entities:")
|
||||
title_to_id, id_to_descr = wd.read_wikidata_entities_json(
|
||||
wikidata_input, limit=limit
|
||||
)
|
||||
|
||||
# write the title-ID and ID-description mappings to file
|
||||
_write_entity_files(
|
||||
|
@ -46,7 +54,7 @@ def create_kb(
|
|||
id_to_descr = get_id_to_description(entity_descr_output)
|
||||
|
||||
print()
|
||||
print(" * _get_entity_frequencies", datetime.datetime.now())
|
||||
print(now(), " * get entity frequencies:")
|
||||
print()
|
||||
entity_frequencies = wp.get_all_frequencies(count_input=count_input)
|
||||
|
||||
|
@ -65,40 +73,41 @@ def create_kb(
|
|||
filtered_title_to_id[title] = entity
|
||||
|
||||
print(len(title_to_id.keys()), "original titles")
|
||||
print("kept", len(filtered_title_to_id.keys()), " with frequency", min_entity_freq)
|
||||
kept_nr = len(filtered_title_to_id.keys())
|
||||
print("kept", kept_nr, "entities with min. frequency", min_entity_freq)
|
||||
|
||||
print()
|
||||
print(" * train entity encoder", datetime.datetime.now())
|
||||
print(now(), " * train entity encoder:")
|
||||
print()
|
||||
encoder = EntityEncoder(nlp, INPUT_DIM, DESC_WIDTH)
|
||||
encoder = EntityEncoder(nlp, input_dim, entity_vector_length)
|
||||
encoder.train(description_list=description_list, to_print=True)
|
||||
|
||||
print()
|
||||
print(" * get entity embeddings", datetime.datetime.now())
|
||||
print(now(), " * get entity embeddings:")
|
||||
print()
|
||||
embeddings = encoder.apply_encoder(description_list)
|
||||
|
||||
print()
|
||||
print(" * adding", len(entity_list), "entities", datetime.datetime.now())
|
||||
print(now(), " * adding", len(entity_list), "entities")
|
||||
kb.set_entities(
|
||||
entity_list=entity_list, freq_list=frequency_list, vector_list=embeddings
|
||||
)
|
||||
|
||||
print()
|
||||
print(" * adding aliases", datetime.datetime.now())
|
||||
print()
|
||||
_add_aliases(
|
||||
alias_cnt = _add_aliases(
|
||||
kb,
|
||||
title_to_id=filtered_title_to_id,
|
||||
max_entities_per_alias=max_entities_per_alias,
|
||||
min_occ=min_occ,
|
||||
prior_prob_input=prior_prob_input,
|
||||
)
|
||||
print()
|
||||
print(now(), " * adding", alias_cnt, "aliases")
|
||||
print()
|
||||
|
||||
print()
|
||||
print("kb size:", len(kb), kb.get_size_entities(), kb.get_size_aliases())
|
||||
print("# of entities in kb:", kb.get_size_entities())
|
||||
print("# of aliases in kb:", kb.get_size_aliases())
|
||||
|
||||
print("done with kb", datetime.datetime.now())
|
||||
print(now(), "Done with kb")
|
||||
return kb
|
||||
|
||||
|
||||
|
@ -140,6 +149,7 @@ def get_id_to_description(entity_descr_output):
|
|||
|
||||
def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, prior_prob_input):
|
||||
wp_titles = title_to_id.keys()
|
||||
cnt = 0
|
||||
|
||||
# adding aliases with prior probabilities
|
||||
# we can read this file sequentially, it's sorted by alias, and then by count
|
||||
|
@ -176,6 +186,7 @@ def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, prior_prob_in
|
|||
entities=selected_entities,
|
||||
probabilities=prior_probs,
|
||||
)
|
||||
cnt += 1
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
total_count = 0
|
||||
|
@ -190,3 +201,8 @@ def _add_aliases(kb, title_to_id, max_entities_per_alias, min_occ, prior_prob_in
|
|||
previous_alias = new_alias
|
||||
|
||||
line = prior_file.readline()
|
||||
return cnt
|
||||
|
||||
|
||||
def now():
|
||||
return datetime.datetime.now()
|
||||
|
|
|
@ -18,15 +18,19 @@ class EntityEncoder:
|
|||
"""
|
||||
|
||||
DROP = 0
|
||||
EPOCHS = 5
|
||||
STOP_THRESHOLD = 0.04
|
||||
|
||||
BATCH_SIZE = 1000
|
||||
|
||||
def __init__(self, nlp, input_dim, desc_width):
|
||||
# Set min. acceptable loss to avoid a 'mean of empty slice' warning by numpy
|
||||
MIN_LOSS = 0.01
|
||||
|
||||
# Reasonable default to stop training when things are not improving
|
||||
MAX_NO_IMPROVEMENT = 20
|
||||
|
||||
def __init__(self, nlp, input_dim, desc_width, epochs=5):
|
||||
self.nlp = nlp
|
||||
self.input_dim = input_dim
|
||||
self.desc_width = desc_width
|
||||
self.epochs = epochs
|
||||
|
||||
def apply_encoder(self, description_list):
|
||||
if self.encoder is None:
|
||||
|
@ -46,32 +50,41 @@ class EntityEncoder:
|
|||
|
||||
start = start + batch_size
|
||||
stop = min(stop + batch_size, len(description_list))
|
||||
print("encoded:", stop, "entities")
|
||||
|
||||
return encodings
|
||||
|
||||
def train(self, description_list, to_print=False):
|
||||
processed, loss = self._train_model(description_list)
|
||||
if to_print:
|
||||
print("Trained on", processed, "entities across", self.EPOCHS, "epochs")
|
||||
print(
|
||||
"Trained entity descriptions on",
|
||||
processed,
|
||||
"(non-unique) entities across",
|
||||
self.epochs,
|
||||
"epochs",
|
||||
)
|
||||
print("Final loss:", loss)
|
||||
|
||||
def _train_model(self, description_list):
|
||||
# TODO: when loss gets too low, a 'mean of empty slice' warning is thrown by numpy
|
||||
|
||||
best_loss = 1.0
|
||||
iter_since_best = 0
|
||||
self._build_network(self.input_dim, self.desc_width)
|
||||
|
||||
processed = 0
|
||||
loss = 1
|
||||
descriptions = description_list.copy() # copy this list so that shuffling does not affect other functions
|
||||
# copy this list so that shuffling does not affect other functions
|
||||
descriptions = description_list.copy()
|
||||
to_continue = True
|
||||
|
||||
for i in range(self.EPOCHS):
|
||||
for i in range(self.epochs):
|
||||
shuffle(descriptions)
|
||||
|
||||
batch_nr = 0
|
||||
start = 0
|
||||
stop = min(self.BATCH_SIZE, len(descriptions))
|
||||
|
||||
while loss > self.STOP_THRESHOLD and start < len(descriptions):
|
||||
while to_continue and start < len(descriptions):
|
||||
batch = []
|
||||
for descr in descriptions[start:stop]:
|
||||
doc = self.nlp(descr)
|
||||
|
@ -79,9 +92,24 @@ class EntityEncoder:
|
|||
batch.append(doc_vector)
|
||||
|
||||
loss = self._update(batch)
|
||||
print(i, batch_nr, loss)
|
||||
if batch_nr % 25 == 0:
|
||||
print("loss:", loss)
|
||||
processed += len(batch)
|
||||
|
||||
# in general, continue training if we haven't reached our ideal min yet
|
||||
to_continue = loss > self.MIN_LOSS
|
||||
|
||||
# store the best loss and track how long it's been
|
||||
if loss < best_loss:
|
||||
best_loss = loss
|
||||
iter_since_best = 0
|
||||
else:
|
||||
iter_since_best += 1
|
||||
|
||||
# stop learning if we haven't seen improvement since the last few iterations
|
||||
if iter_since_best > self.MAX_NO_IMPROVEMENT:
|
||||
to_continue = False
|
||||
|
||||
batch_nr += 1
|
||||
start = start + self.BATCH_SIZE
|
||||
stop = min(stop + self.BATCH_SIZE, len(descriptions))
|
||||
|
@ -103,14 +131,16 @@ class EntityEncoder:
|
|||
def _build_network(self, orig_width, hidden_with):
|
||||
with Model.define_operators({">>": chain}):
|
||||
# very simple encoder-decoder model
|
||||
self.encoder = (
|
||||
Affine(hidden_with, orig_width)
|
||||
self.encoder = Affine(hidden_with, orig_width)
|
||||
self.model = self.encoder >> zero_init(
|
||||
Affine(orig_width, hidden_with, drop_factor=0.0)
|
||||
)
|
||||
self.model = self.encoder >> zero_init(Affine(orig_width, hidden_with, drop_factor=0.0))
|
||||
self.sgd = create_default_optimizer(self.model.ops)
|
||||
|
||||
def _update(self, vectors):
|
||||
predictions, bp_model = self.model.begin_update(np.asarray(vectors), drop=self.DROP)
|
||||
predictions, bp_model = self.model.begin_update(
|
||||
np.asarray(vectors), drop=self.DROP
|
||||
)
|
||||
loss, d_scores = self._get_loss(scores=predictions, golds=np.asarray(vectors))
|
||||
bp_model(d_scores, sgd=self.sgd)
|
||||
return loss / len(vectors)
|
||||
|
|
|
@ -21,9 +21,9 @@ def now():
|
|||
return datetime.datetime.now()
|
||||
|
||||
|
||||
def create_training(wikipedia_input, entity_def_input, training_output):
|
||||
def create_training(wikipedia_input, entity_def_input, training_output, limit=None):
|
||||
wp_to_id = kb_creator.get_entity_to_id(entity_def_input)
|
||||
_process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=None)
|
||||
_process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=limit)
|
||||
|
||||
|
||||
def _process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=None):
|
||||
|
@ -128,6 +128,7 @@ def _process_wikipedia_texts(wikipedia_input, wp_to_id, training_output, limit=N
|
|||
|
||||
line = file.readline()
|
||||
cnt += 1
|
||||
print(now(), "processed", cnt, "lines of Wikipedia dump")
|
||||
|
||||
|
||||
text_regex = re.compile(r"(?<=<text xml:space=\"preserve\">).*(?=</text)")
|
||||
|
|
139
bin/wiki_entity_linking/wikidata_pretrain_kb.py
Normal file
139
bin/wiki_entity_linking/wikidata_pretrain_kb.py
Normal file
|
@ -0,0 +1,139 @@
|
|||
# coding: utf-8
|
||||
"""Script to process Wikipedia and Wikidata dumps and create a knowledge base (KB)
|
||||
with specific parameters. Intermediate files are written to disk.
|
||||
|
||||
Running the full pipeline on a standard laptop, may take up to 13 hours of processing.
|
||||
Use the -p, -d and -s options to speed up processing using the intermediate files
|
||||
from a previous run.
|
||||
|
||||
For the Wikidata dump: get the latest-all.json.bz2 from https://dumps.wikimedia.org/wikidatawiki/entities/
|
||||
For the Wikipedia dump: get enwiki-latest-pages-articles-multistream.xml.bz2
|
||||
from https://dumps.wikimedia.org/enwiki/latest/
|
||||
|
||||
"""
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import datetime
|
||||
from pathlib import Path
|
||||
import plac
|
||||
|
||||
from bin.wiki_entity_linking import wikipedia_processor as wp
|
||||
from bin.wiki_entity_linking import kb_creator
|
||||
|
||||
import spacy
|
||||
|
||||
from spacy import Errors
|
||||
|
||||
|
||||
def now():
|
||||
return datetime.datetime.now()
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
wd_json=("Path to the downloaded WikiData JSON dump.", "positional", None, Path),
|
||||
wp_xml=("Path to the downloaded Wikipedia XML dump.", "positional", None, Path),
|
||||
output_dir=("Output directory", "positional", None, Path),
|
||||
model=("Model name, should include pretrained vectors.", "positional", None, str),
|
||||
max_per_alias=("Max. # entities per alias (default 10)", "option", "a", int),
|
||||
min_freq=("Min. count of an entity in the corpus (default 20)", "option", "f", int),
|
||||
min_pair=("Min. count of entity-alias pairs (default 5)", "option", "c", int),
|
||||
entity_vector_length=("Length of entity vectors (default 64)", "option", "v", int),
|
||||
loc_prior_prob=("Location to file with prior probabilities", "option", "p", Path),
|
||||
loc_entity_defs=("Location to file with entity definitions", "option", "d", Path),
|
||||
loc_entity_desc=("Location to file with entity descriptions", "option", "s", Path),
|
||||
limit=("Optional threshold to limit lines read from dumps", "option", "l", int),
|
||||
)
|
||||
def main(
|
||||
wd_json,
|
||||
wp_xml,
|
||||
output_dir,
|
||||
model,
|
||||
max_per_alias=10,
|
||||
min_freq=20,
|
||||
min_pair=5,
|
||||
entity_vector_length=64,
|
||||
loc_prior_prob=None,
|
||||
loc_entity_defs=None,
|
||||
loc_entity_desc=None,
|
||||
limit=None,
|
||||
):
|
||||
print(now(), "Creating KB with Wikipedia and WikiData")
|
||||
print()
|
||||
|
||||
if limit is not None:
|
||||
print("Warning: reading only", limit, "lines of Wikipedia/Wikidata dumps.")
|
||||
|
||||
# STEP 0: set up IO
|
||||
if not output_dir.exists():
|
||||
output_dir.mkdir()
|
||||
|
||||
# STEP 1: create the NLP object
|
||||
print(now(), "STEP 1: loaded model", model)
|
||||
nlp = spacy.load(model)
|
||||
|
||||
# check the length of the nlp vectors
|
||||
if "vectors" not in nlp.meta or not nlp.vocab.vectors.size:
|
||||
raise ValueError(Errors.E155)
|
||||
|
||||
# STEP 2: create prior probabilities from WP
|
||||
print()
|
||||
if loc_prior_prob:
|
||||
print(now(), "STEP 2: reading prior probabilities from", loc_prior_prob)
|
||||
else:
|
||||
# It takes about 2h to process 1000M lines of Wikipedia XML dump
|
||||
loc_prior_prob = output_dir / "prior_prob.csv"
|
||||
print(now(), "STEP 2: writing prior probabilities at", loc_prior_prob)
|
||||
wp.read_prior_probs(wp_xml, loc_prior_prob, limit=limit)
|
||||
|
||||
# STEP 3: deduce entity frequencies from WP (takes only a few minutes)
|
||||
print()
|
||||
print(now(), "STEP 3: calculating entity frequencies")
|
||||
loc_entity_freq = output_dir / "entity_freq.csv"
|
||||
wp.write_entity_counts(loc_prior_prob, loc_entity_freq, to_print=False)
|
||||
|
||||
loc_kb = output_dir / "kb"
|
||||
|
||||
# STEP 4: reading entity descriptions and definitions from WikiData or from file
|
||||
print()
|
||||
if loc_entity_defs and loc_entity_desc:
|
||||
read_raw = False
|
||||
print(now(), "STEP 4a: reading entity definitions from", loc_entity_defs)
|
||||
print(now(), "STEP 4b: reading entity descriptions from", loc_entity_desc)
|
||||
else:
|
||||
# It takes about 10h to process 55M lines of Wikidata JSON dump
|
||||
read_raw = True
|
||||
loc_entity_defs = output_dir / "entity_defs.csv"
|
||||
loc_entity_desc = output_dir / "entity_descriptions.csv"
|
||||
print(now(), "STEP 4: parsing wikidata for entity definitions and descriptions")
|
||||
|
||||
# STEP 5: creating the actual KB
|
||||
# It takes ca. 30 minutes to pretrain the entity embeddings
|
||||
print()
|
||||
print(now(), "STEP 5: creating the KB at", loc_kb)
|
||||
kb = kb_creator.create_kb(
|
||||
nlp=nlp,
|
||||
max_entities_per_alias=max_per_alias,
|
||||
min_entity_freq=min_freq,
|
||||
min_occ=min_pair,
|
||||
entity_def_output=loc_entity_defs,
|
||||
entity_descr_output=loc_entity_desc,
|
||||
count_input=loc_entity_freq,
|
||||
prior_prob_input=loc_prior_prob,
|
||||
wikidata_input=wd_json,
|
||||
entity_vector_length=entity_vector_length,
|
||||
limit=limit,
|
||||
read_raw_data=read_raw,
|
||||
)
|
||||
if read_raw:
|
||||
print(" - wrote entity definitions to", loc_entity_defs)
|
||||
print(" - wrote writing entity descriptions to", loc_entity_desc)
|
||||
|
||||
kb.dump(loc_kb)
|
||||
nlp.to_disk(output_dir / "nlp")
|
||||
|
||||
print()
|
||||
print(now(), "Done!")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
plac.call(main)
|
|
@ -10,8 +10,8 @@ def read_wikidata_entities_json(wikidata_file, limit=None, to_print=False):
|
|||
# Read the JSON wiki data and parse out the entities. Takes about 7u30 to parse 55M lines.
|
||||
# get latest-all.json.bz2 from https://dumps.wikimedia.org/wikidatawiki/entities/
|
||||
|
||||
lang = 'en'
|
||||
site_filter = 'enwiki'
|
||||
lang = "en"
|
||||
site_filter = "enwiki"
|
||||
|
||||
# properties filter (currently disabled to get ALL data)
|
||||
prop_filter = dict()
|
||||
|
@ -28,12 +28,14 @@ def read_wikidata_entities_json(wikidata_file, limit=None, to_print=False):
|
|||
parse_aliases = False
|
||||
parse_claims = False
|
||||
|
||||
with bz2.open(wikidata_file, mode='rb') as file:
|
||||
with bz2.open(wikidata_file, mode="rb") as file:
|
||||
line = file.readline()
|
||||
cnt = 0
|
||||
while line and (not limit or cnt < limit):
|
||||
if cnt % 500000 == 0:
|
||||
print(datetime.datetime.now(), "processed", cnt, "lines of WikiData dump")
|
||||
if cnt % 1000000 == 0:
|
||||
print(
|
||||
datetime.datetime.now(), "processed", cnt, "lines of WikiData JSON dump"
|
||||
)
|
||||
clean_line = line.strip()
|
||||
if clean_line.endswith(b","):
|
||||
clean_line = clean_line[:-1]
|
||||
|
@ -52,8 +54,13 @@ def read_wikidata_entities_json(wikidata_file, limit=None, to_print=False):
|
|||
claim_property = claims.get(prop, None)
|
||||
if claim_property:
|
||||
for cp in claim_property:
|
||||
cp_id = cp['mainsnak'].get('datavalue', {}).get('value', {}).get('id')
|
||||
cp_rank = cp['rank']
|
||||
cp_id = (
|
||||
cp["mainsnak"]
|
||||
.get("datavalue", {})
|
||||
.get("value", {})
|
||||
.get("id")
|
||||
)
|
||||
cp_rank = cp["rank"]
|
||||
if cp_rank != "deprecated" and cp_id in value_set:
|
||||
keep = True
|
||||
|
||||
|
@ -67,10 +74,17 @@ def read_wikidata_entities_json(wikidata_file, limit=None, to_print=False):
|
|||
# parsing all properties that refer to other entities
|
||||
if parse_properties:
|
||||
for prop, claim_property in claims.items():
|
||||
cp_dicts = [cp['mainsnak']['datavalue'].get('value') for cp in claim_property
|
||||
if cp['mainsnak'].get('datavalue')]
|
||||
cp_values = [cp_dict.get('id') for cp_dict in cp_dicts if isinstance(cp_dict, dict)
|
||||
if cp_dict.get('id') is not None]
|
||||
cp_dicts = [
|
||||
cp["mainsnak"]["datavalue"].get("value")
|
||||
for cp in claim_property
|
||||
if cp["mainsnak"].get("datavalue")
|
||||
]
|
||||
cp_values = [
|
||||
cp_dict.get("id")
|
||||
for cp_dict in cp_dicts
|
||||
if isinstance(cp_dict, dict)
|
||||
if cp_dict.get("id") is not None
|
||||
]
|
||||
if cp_values:
|
||||
if to_print:
|
||||
print("prop:", prop, cp_values)
|
||||
|
@ -79,7 +93,7 @@ def read_wikidata_entities_json(wikidata_file, limit=None, to_print=False):
|
|||
if parse_sitelinks:
|
||||
site_value = obj["sitelinks"].get(site_filter, None)
|
||||
if site_value:
|
||||
site = site_value['title']
|
||||
site = site_value["title"]
|
||||
if to_print:
|
||||
print(site_filter, ":", site)
|
||||
title_to_id[site] = unique_id
|
||||
|
@ -91,7 +105,9 @@ def read_wikidata_entities_json(wikidata_file, limit=None, to_print=False):
|
|||
lang_label = labels.get(lang, None)
|
||||
if lang_label:
|
||||
if to_print:
|
||||
print("label (" + lang + "):", lang_label["value"])
|
||||
print(
|
||||
"label (" + lang + "):", lang_label["value"]
|
||||
)
|
||||
|
||||
if found_link and parse_descriptions:
|
||||
descriptions = obj["descriptions"]
|
||||
|
@ -99,7 +115,10 @@ def read_wikidata_entities_json(wikidata_file, limit=None, to_print=False):
|
|||
lang_descr = descriptions.get(lang, None)
|
||||
if lang_descr:
|
||||
if to_print:
|
||||
print("description (" + lang + "):", lang_descr["value"])
|
||||
print(
|
||||
"description (" + lang + "):",
|
||||
lang_descr["value"],
|
||||
)
|
||||
id_to_descr[unique_id] = lang_descr["value"]
|
||||
|
||||
if parse_aliases:
|
||||
|
@ -109,11 +128,14 @@ def read_wikidata_entities_json(wikidata_file, limit=None, to_print=False):
|
|||
if lang_aliases:
|
||||
for item in lang_aliases:
|
||||
if to_print:
|
||||
print("alias (" + lang + "):", item["value"])
|
||||
print(
|
||||
"alias (" + lang + "):", item["value"]
|
||||
)
|
||||
|
||||
if to_print:
|
||||
print()
|
||||
line = file.readline()
|
||||
cnt += 1
|
||||
print(datetime.datetime.now(), "processed", cnt, "lines of WikiData JSON dump")
|
||||
|
||||
return title_to_id, id_to_descr
|
||||
|
|
430
bin/wiki_entity_linking/wikidata_train_entity_linker.py
Normal file
430
bin/wiki_entity_linking/wikidata_train_entity_linker.py
Normal file
|
@ -0,0 +1,430 @@
|
|||
# coding: utf-8
|
||||
"""Script to take a previously created Knowledge Base and train an entity linking
|
||||
pipeline. The provided KB directory should hold the kb, the original nlp object and
|
||||
its vocab used to create the KB, and a few auxiliary files such as the entity definitions,
|
||||
as created by the script `wikidata_create_kb`.
|
||||
|
||||
For the Wikipedia dump: get enwiki-latest-pages-articles-multistream.xml.bz2
|
||||
from https://dumps.wikimedia.org/enwiki/latest/
|
||||
|
||||
"""
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import random
|
||||
import datetime
|
||||
from pathlib import Path
|
||||
import plac
|
||||
|
||||
from bin.wiki_entity_linking import training_set_creator
|
||||
|
||||
import spacy
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
from spacy import Errors
|
||||
from spacy.util import minibatch, compounding
|
||||
|
||||
|
||||
def now():
|
||||
return datetime.datetime.now()
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
dir_kb=("Directory with KB, NLP and related files", "positional", None, Path),
|
||||
output_dir=("Output directory", "option", "o", Path),
|
||||
loc_training=("Location to training data", "option", "k", Path),
|
||||
wp_xml=("Path to the downloaded Wikipedia XML dump.", "option", "w", Path),
|
||||
epochs=("Number of training iterations (default 10)", "option", "e", int),
|
||||
dropout=("Dropout to prevent overfitting (default 0.5)", "option", "p", float),
|
||||
lr=("Learning rate (default 0.005)", "option", "n", float),
|
||||
l2=("L2 regularization", "option", "r", float),
|
||||
train_inst=("# training instances (default 90% of all)", "option", "t", int),
|
||||
dev_inst=("# test instances (default 10% of all)", "option", "d", int),
|
||||
limit=("Optional threshold to limit lines read from WP dump", "option", "l", int),
|
||||
)
|
||||
def main(
|
||||
dir_kb,
|
||||
output_dir=None,
|
||||
loc_training=None,
|
||||
wp_xml=None,
|
||||
epochs=10,
|
||||
dropout=0.5,
|
||||
lr=0.005,
|
||||
l2=1e-6,
|
||||
train_inst=None,
|
||||
dev_inst=None,
|
||||
limit=None,
|
||||
):
|
||||
print(now(), "Creating Entity Linker with Wikipedia and WikiData")
|
||||
print()
|
||||
|
||||
# STEP 0: set up IO
|
||||
if output_dir and not output_dir.exists():
|
||||
output_dir.mkdir()
|
||||
|
||||
# STEP 1 : load the NLP object
|
||||
nlp_dir = dir_kb / "nlp"
|
||||
print(now(), "STEP 1: loading model from", nlp_dir)
|
||||
nlp = spacy.load(nlp_dir)
|
||||
|
||||
# check that there is a NER component in the pipeline
|
||||
if "ner" not in nlp.pipe_names:
|
||||
raise ValueError(Errors.E152)
|
||||
|
||||
# STEP 2 : read the KB
|
||||
print()
|
||||
print(now(), "STEP 2: reading the KB from", dir_kb / "kb")
|
||||
kb = KnowledgeBase(vocab=nlp.vocab)
|
||||
kb.load_bulk(dir_kb / "kb")
|
||||
|
||||
# STEP 3: create a training dataset from WP
|
||||
print()
|
||||
if loc_training:
|
||||
print(now(), "STEP 3: reading training dataset from", loc_training)
|
||||
else:
|
||||
if not wp_xml:
|
||||
raise ValueError(Errors.E153)
|
||||
|
||||
if output_dir:
|
||||
loc_training = output_dir / "training_data"
|
||||
else:
|
||||
loc_training = dir_kb / "training_data"
|
||||
if not loc_training.exists():
|
||||
loc_training.mkdir()
|
||||
print(now(), "STEP 3: creating training dataset at", loc_training)
|
||||
|
||||
if limit is not None:
|
||||
print("Warning: reading only", limit, "lines of Wikipedia dump.")
|
||||
|
||||
loc_entity_defs = dir_kb / "entity_defs.csv"
|
||||
training_set_creator.create_training(
|
||||
wikipedia_input=wp_xml,
|
||||
entity_def_input=loc_entity_defs,
|
||||
training_output=loc_training,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
# STEP 4: parse the training data
|
||||
print()
|
||||
print(now(), "STEP 4: parse the training & evaluation data")
|
||||
|
||||
# for training, get pos & neg instances that correspond to entries in the kb
|
||||
print("Parsing training data, limit =", train_inst)
|
||||
train_data = training_set_creator.read_training(
|
||||
nlp=nlp, training_dir=loc_training, dev=False, limit=train_inst, kb=kb
|
||||
)
|
||||
|
||||
print("Training on", len(train_data), "articles")
|
||||
print()
|
||||
|
||||
print("Parsing dev testing data, limit =", dev_inst)
|
||||
# for testing, get all pos instances, whether or not they are in the kb
|
||||
dev_data = training_set_creator.read_training(
|
||||
nlp=nlp, training_dir=loc_training, dev=True, limit=dev_inst, kb=None
|
||||
)
|
||||
|
||||
print("Dev testing on", len(dev_data), "articles")
|
||||
print()
|
||||
|
||||
# STEP 5: create and train the entity linking pipe
|
||||
print()
|
||||
print(now(), "STEP 5: training Entity Linking pipe")
|
||||
|
||||
el_pipe = nlp.create_pipe(
|
||||
name="entity_linker", config={"pretrained_vectors": nlp.vocab.vectors.name}
|
||||
)
|
||||
el_pipe.set_kb(kb)
|
||||
nlp.add_pipe(el_pipe, last=True)
|
||||
|
||||
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "entity_linker"]
|
||||
with nlp.disable_pipes(*other_pipes): # only train Entity Linking
|
||||
optimizer = nlp.begin_training()
|
||||
optimizer.learn_rate = lr
|
||||
optimizer.L2 = l2
|
||||
|
||||
if not train_data:
|
||||
print("Did not find any training data")
|
||||
else:
|
||||
for itn in range(epochs):
|
||||
random.shuffle(train_data)
|
||||
losses = {}
|
||||
batches = minibatch(train_data, size=compounding(4.0, 128.0, 1.001))
|
||||
batchnr = 0
|
||||
|
||||
with nlp.disable_pipes(*other_pipes):
|
||||
for batch in batches:
|
||||
try:
|
||||
docs, golds = zip(*batch)
|
||||
nlp.update(
|
||||
docs=docs,
|
||||
golds=golds,
|
||||
sgd=optimizer,
|
||||
drop=dropout,
|
||||
losses=losses,
|
||||
)
|
||||
batchnr += 1
|
||||
except Exception as e:
|
||||
print("Error updating batch:", e)
|
||||
|
||||
if batchnr > 0:
|
||||
el_pipe.cfg["incl_context"] = True
|
||||
el_pipe.cfg["incl_prior"] = True
|
||||
dev_acc_context, _ = _measure_acc(dev_data, el_pipe)
|
||||
losses["entity_linker"] = losses["entity_linker"] / batchnr
|
||||
print(
|
||||
"Epoch, train loss",
|
||||
itn,
|
||||
round(losses["entity_linker"], 2),
|
||||
" / dev accuracy avg",
|
||||
round(dev_acc_context, 3),
|
||||
)
|
||||
|
||||
# STEP 6: measure the performance of our trained pipe on an independent dev set
|
||||
print()
|
||||
if len(dev_data):
|
||||
print()
|
||||
print(now(), "STEP 6: performance measurement of Entity Linking pipe")
|
||||
print()
|
||||
|
||||
counts, acc_r, acc_r_d, acc_p, acc_p_d, acc_o, acc_o_d = _measure_baselines(
|
||||
dev_data, kb
|
||||
)
|
||||
print("dev counts:", sorted(counts.items(), key=lambda x: x[0]))
|
||||
|
||||
oracle_by_label = [(x, round(y, 3)) for x, y in acc_o_d.items()]
|
||||
print("dev accuracy oracle:", round(acc_o, 3), oracle_by_label)
|
||||
|
||||
random_by_label = [(x, round(y, 3)) for x, y in acc_r_d.items()]
|
||||
print("dev accuracy random:", round(acc_r, 3), random_by_label)
|
||||
|
||||
prior_by_label = [(x, round(y, 3)) for x, y in acc_p_d.items()]
|
||||
print("dev accuracy prior:", round(acc_p, 3), prior_by_label)
|
||||
|
||||
# using only context
|
||||
el_pipe.cfg["incl_context"] = True
|
||||
el_pipe.cfg["incl_prior"] = False
|
||||
dev_acc_context, dev_acc_cont_d = _measure_acc(dev_data, el_pipe)
|
||||
context_by_label = [(x, round(y, 3)) for x, y in dev_acc_cont_d.items()]
|
||||
print("dev accuracy context:", round(dev_acc_context, 3), context_by_label)
|
||||
|
||||
# measuring combined accuracy (prior + context)
|
||||
el_pipe.cfg["incl_context"] = True
|
||||
el_pipe.cfg["incl_prior"] = True
|
||||
dev_acc_combo, dev_acc_combo_d = _measure_acc(dev_data, el_pipe)
|
||||
combo_by_label = [(x, round(y, 3)) for x, y in dev_acc_combo_d.items()]
|
||||
print("dev accuracy prior+context:", round(dev_acc_combo, 3), combo_by_label)
|
||||
|
||||
# STEP 7: apply the EL pipe on a toy example
|
||||
print()
|
||||
print(now(), "STEP 7: applying Entity Linking to toy example")
|
||||
print()
|
||||
run_el_toy_example(nlp=nlp)
|
||||
|
||||
# STEP 8: write the NLP pipeline (including entity linker) to file
|
||||
if output_dir:
|
||||
print()
|
||||
nlp_loc = output_dir / "nlp"
|
||||
print(now(), "STEP 8: Writing trained NLP to", nlp_loc)
|
||||
nlp.to_disk(nlp_loc)
|
||||
print()
|
||||
|
||||
print()
|
||||
print(now(), "Done!")
|
||||
|
||||
|
||||
def _measure_acc(data, el_pipe=None, error_analysis=False):
|
||||
# If the docs in the data require further processing with an entity linker, set el_pipe
|
||||
correct_by_label = dict()
|
||||
incorrect_by_label = dict()
|
||||
|
||||
docs = [d for d, g in data if len(d) > 0]
|
||||
if el_pipe is not None:
|
||||
docs = list(el_pipe.pipe(docs))
|
||||
golds = [g for d, g in data if len(d) > 0]
|
||||
|
||||
for doc, gold in zip(docs, golds):
|
||||
try:
|
||||
correct_entries_per_article = dict()
|
||||
for entity, kb_dict in gold.links.items():
|
||||
start, end = entity
|
||||
# only evaluating on positive examples
|
||||
for gold_kb, value in kb_dict.items():
|
||||
if value:
|
||||
offset = _offset(start, end)
|
||||
correct_entries_per_article[offset] = gold_kb
|
||||
|
||||
for ent in doc.ents:
|
||||
ent_label = ent.label_
|
||||
pred_entity = ent.kb_id_
|
||||
start = ent.start_char
|
||||
end = ent.end_char
|
||||
offset = _offset(start, end)
|
||||
gold_entity = correct_entries_per_article.get(offset, None)
|
||||
# the gold annotations are not complete so we can't evaluate missing annotations as 'wrong'
|
||||
if gold_entity is not None:
|
||||
if gold_entity == pred_entity:
|
||||
correct = correct_by_label.get(ent_label, 0)
|
||||
correct_by_label[ent_label] = correct + 1
|
||||
else:
|
||||
incorrect = incorrect_by_label.get(ent_label, 0)
|
||||
incorrect_by_label[ent_label] = incorrect + 1
|
||||
if error_analysis:
|
||||
print(ent.text, "in", doc)
|
||||
print(
|
||||
"Predicted",
|
||||
pred_entity,
|
||||
"should have been",
|
||||
gold_entity,
|
||||
)
|
||||
print()
|
||||
|
||||
except Exception as e:
|
||||
print("Error assessing accuracy", e)
|
||||
|
||||
acc, acc_by_label = calculate_acc(correct_by_label, incorrect_by_label)
|
||||
return acc, acc_by_label
|
||||
|
||||
|
||||
def _measure_baselines(data, kb):
|
||||
# Measure 3 performance baselines: random selection, prior probabilities, and 'oracle' prediction for upper bound
|
||||
counts_d = dict()
|
||||
|
||||
random_correct_d = dict()
|
||||
random_incorrect_d = dict()
|
||||
|
||||
oracle_correct_d = dict()
|
||||
oracle_incorrect_d = dict()
|
||||
|
||||
prior_correct_d = dict()
|
||||
prior_incorrect_d = dict()
|
||||
|
||||
docs = [d for d, g in data if len(d) > 0]
|
||||
golds = [g for d, g in data if len(d) > 0]
|
||||
|
||||
for doc, gold in zip(docs, golds):
|
||||
try:
|
||||
correct_entries_per_article = dict()
|
||||
for entity, kb_dict in gold.links.items():
|
||||
start, end = entity
|
||||
for gold_kb, value in kb_dict.items():
|
||||
# only evaluating on positive examples
|
||||
if value:
|
||||
offset = _offset(start, end)
|
||||
correct_entries_per_article[offset] = gold_kb
|
||||
|
||||
for ent in doc.ents:
|
||||
label = ent.label_
|
||||
start = ent.start_char
|
||||
end = ent.end_char
|
||||
offset = _offset(start, end)
|
||||
gold_entity = correct_entries_per_article.get(offset, None)
|
||||
|
||||
# the gold annotations are not complete so we can't evaluate missing annotations as 'wrong'
|
||||
if gold_entity is not None:
|
||||
counts_d[label] = counts_d.get(label, 0) + 1
|
||||
candidates = kb.get_candidates(ent.text)
|
||||
oracle_candidate = ""
|
||||
best_candidate = ""
|
||||
random_candidate = ""
|
||||
if candidates:
|
||||
scores = []
|
||||
|
||||
for c in candidates:
|
||||
scores.append(c.prior_prob)
|
||||
if c.entity_ == gold_entity:
|
||||
oracle_candidate = c.entity_
|
||||
|
||||
best_index = scores.index(max(scores))
|
||||
best_candidate = candidates[best_index].entity_
|
||||
random_candidate = random.choice(candidates).entity_
|
||||
|
||||
if gold_entity == best_candidate:
|
||||
prior_correct_d[label] = prior_correct_d.get(label, 0) + 1
|
||||
else:
|
||||
prior_incorrect_d[label] = prior_incorrect_d.get(label, 0) + 1
|
||||
|
||||
if gold_entity == random_candidate:
|
||||
random_correct_d[label] = random_correct_d.get(label, 0) + 1
|
||||
else:
|
||||
random_incorrect_d[label] = random_incorrect_d.get(label, 0) + 1
|
||||
|
||||
if gold_entity == oracle_candidate:
|
||||
oracle_correct_d[label] = oracle_correct_d.get(label, 0) + 1
|
||||
else:
|
||||
oracle_incorrect_d[label] = oracle_incorrect_d.get(label, 0) + 1
|
||||
|
||||
except Exception as e:
|
||||
print("Error assessing accuracy", e)
|
||||
|
||||
acc_prior, acc_prior_d = calculate_acc(prior_correct_d, prior_incorrect_d)
|
||||
acc_rand, acc_rand_d = calculate_acc(random_correct_d, random_incorrect_d)
|
||||
acc_oracle, acc_oracle_d = calculate_acc(oracle_correct_d, oracle_incorrect_d)
|
||||
|
||||
return (
|
||||
counts_d,
|
||||
acc_rand,
|
||||
acc_rand_d,
|
||||
acc_prior,
|
||||
acc_prior_d,
|
||||
acc_oracle,
|
||||
acc_oracle_d,
|
||||
)
|
||||
|
||||
|
||||
def _offset(start, end):
|
||||
return "{}_{}".format(start, end)
|
||||
|
||||
|
||||
def calculate_acc(correct_by_label, incorrect_by_label):
|
||||
acc_by_label = dict()
|
||||
total_correct = 0
|
||||
total_incorrect = 0
|
||||
all_keys = set()
|
||||
all_keys.update(correct_by_label.keys())
|
||||
all_keys.update(incorrect_by_label.keys())
|
||||
for label in sorted(all_keys):
|
||||
correct = correct_by_label.get(label, 0)
|
||||
incorrect = incorrect_by_label.get(label, 0)
|
||||
total_correct += correct
|
||||
total_incorrect += incorrect
|
||||
if correct == incorrect == 0:
|
||||
acc_by_label[label] = 0
|
||||
else:
|
||||
acc_by_label[label] = correct / (correct + incorrect)
|
||||
acc = 0
|
||||
if not (total_correct == total_incorrect == 0):
|
||||
acc = total_correct / (total_correct + total_incorrect)
|
||||
return acc, acc_by_label
|
||||
|
||||
|
||||
def check_kb(kb):
|
||||
for mention in ("Bush", "Douglas Adams", "Homer", "Brazil", "China"):
|
||||
candidates = kb.get_candidates(mention)
|
||||
|
||||
print("generating candidates for " + mention + " :")
|
||||
for c in candidates:
|
||||
print(
|
||||
" ",
|
||||
c.prior_prob,
|
||||
c.alias_,
|
||||
"-->",
|
||||
c.entity_ + " (freq=" + str(c.entity_freq) + ")",
|
||||
)
|
||||
print()
|
||||
|
||||
|
||||
def run_el_toy_example(nlp):
|
||||
text = (
|
||||
"In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, "
|
||||
"Douglas reminds us to always bring our towel, even in China or Brazil. "
|
||||
"The main character in Doug's novel is the man Arthur Dent, "
|
||||
"but Dougledydoug doesn't write about George Washington or Homer Simpson."
|
||||
)
|
||||
doc = nlp(text)
|
||||
print(text)
|
||||
for ent in doc.ents:
|
||||
print(" ent", ent.text, ent.label_, ent.kb_id_)
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
plac.call(main)
|
|
@ -120,7 +120,7 @@ def now():
|
|||
return datetime.datetime.now()
|
||||
|
||||
|
||||
def read_prior_probs(wikipedia_input, prior_prob_output):
|
||||
def read_prior_probs(wikipedia_input, prior_prob_output, limit=None):
|
||||
"""
|
||||
Read the XML wikipedia data and parse out intra-wiki links to estimate prior probabilities.
|
||||
The full file takes about 2h to parse 1100M lines.
|
||||
|
@ -129,9 +129,9 @@ def read_prior_probs(wikipedia_input, prior_prob_output):
|
|||
with bz2.open(wikipedia_input, mode="rb") as file:
|
||||
line = file.readline()
|
||||
cnt = 0
|
||||
while line:
|
||||
if cnt % 5000000 == 0:
|
||||
print(now(), "processed", cnt, "lines of Wikipedia dump")
|
||||
while line and (not limit or cnt < limit):
|
||||
if cnt % 25000000 == 0:
|
||||
print(now(), "processed", cnt, "lines of Wikipedia XML dump")
|
||||
clean_line = line.strip().decode("utf-8")
|
||||
|
||||
aliases, entities, normalizations = get_wp_links(clean_line)
|
||||
|
@ -141,6 +141,7 @@ def read_prior_probs(wikipedia_input, prior_prob_output):
|
|||
|
||||
line = file.readline()
|
||||
cnt += 1
|
||||
print(now(), "processed", cnt, "lines of Wikipedia XML dump")
|
||||
|
||||
# write all aliases and their entities and count occurrences to file
|
||||
with prior_prob_output.open("w", encoding="utf8") as outputfile:
|
||||
|
|
|
@ -1,75 +0,0 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
"""Demonstrate how to build a simple knowledge base and run an Entity Linking algorithm.
|
||||
Currently still a bit of a dummy algorithm: taking simply the entity with highest probability for a given alias
|
||||
"""
|
||||
import spacy
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
|
||||
def create_kb(vocab):
|
||||
kb = KnowledgeBase(vocab=vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
entity_0 = "Q1004791_Douglas"
|
||||
print("adding entity", entity_0)
|
||||
kb.add_entity(entity=entity_0, freq=0.5, entity_vector=[0])
|
||||
|
||||
entity_1 = "Q42_Douglas_Adams"
|
||||
print("adding entity", entity_1)
|
||||
kb.add_entity(entity=entity_1, freq=0.5, entity_vector=[1])
|
||||
|
||||
entity_2 = "Q5301561_Douglas_Haig"
|
||||
print("adding entity", entity_2)
|
||||
kb.add_entity(entity=entity_2, freq=0.5, entity_vector=[2])
|
||||
|
||||
# adding aliases
|
||||
print()
|
||||
alias_0 = "Douglas"
|
||||
print("adding alias", alias_0)
|
||||
kb.add_alias(alias=alias_0, entities=[entity_0, entity_1, entity_2], probabilities=[0.6, 0.1, 0.2])
|
||||
|
||||
alias_1 = "Douglas Adams"
|
||||
print("adding alias", alias_1)
|
||||
kb.add_alias(alias=alias_1, entities=[entity_1], probabilities=[0.9])
|
||||
|
||||
print()
|
||||
print("kb size:", len(kb), kb.get_size_entities(), kb.get_size_aliases())
|
||||
|
||||
return kb
|
||||
|
||||
|
||||
def add_el(kb, nlp):
|
||||
el_pipe = nlp.create_pipe(name='entity_linker', config={"context_width": 64})
|
||||
el_pipe.set_kb(kb)
|
||||
nlp.add_pipe(el_pipe, last=True)
|
||||
nlp.begin_training()
|
||||
el_pipe.context_weight = 0
|
||||
el_pipe.prior_weight = 1
|
||||
|
||||
for alias in ["Douglas Adams", "Douglas"]:
|
||||
candidates = nlp.linker.kb.get_candidates(alias)
|
||||
print()
|
||||
print(len(candidates), "candidate(s) for", alias, ":")
|
||||
for c in candidates:
|
||||
print(" ", c.entity_, c.prior_prob)
|
||||
|
||||
text = "In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, " \
|
||||
"Douglas reminds us to always bring our towel. " \
|
||||
"The main character in Doug's novel is called Arthur Dent."
|
||||
doc = nlp(text)
|
||||
|
||||
print()
|
||||
for token in doc:
|
||||
print("token", token.text, token.ent_type_, token.ent_kb_id_)
|
||||
|
||||
print()
|
||||
for ent in doc.ents:
|
||||
print("ent", ent.text, ent.label_, ent.kb_id_)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
my_nlp = spacy.load('en_core_web_sm')
|
||||
my_kb = create_kb(my_nlp.vocab)
|
||||
add_el(my_kb, my_nlp)
|
|
@ -1,514 +0,0 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import os
|
||||
from os import path
|
||||
import random
|
||||
import datetime
|
||||
from pathlib import Path
|
||||
|
||||
from bin.wiki_entity_linking import wikipedia_processor as wp
|
||||
from bin.wiki_entity_linking import training_set_creator, kb_creator
|
||||
from bin.wiki_entity_linking.kb_creator import DESC_WIDTH
|
||||
|
||||
import spacy
|
||||
from spacy.kb import KnowledgeBase
|
||||
from spacy.util import minibatch, compounding
|
||||
|
||||
"""
|
||||
Demonstrate how to build a knowledge base from WikiData and run an Entity Linking algorithm.
|
||||
"""
|
||||
|
||||
ROOT_DIR = Path("C:/Users/Sofie/Documents/data/")
|
||||
OUTPUT_DIR = ROOT_DIR / "wikipedia"
|
||||
TRAINING_DIR = OUTPUT_DIR / "training_data_nel"
|
||||
|
||||
PRIOR_PROB = OUTPUT_DIR / "prior_prob.csv"
|
||||
ENTITY_COUNTS = OUTPUT_DIR / "entity_freq.csv"
|
||||
ENTITY_DEFS = OUTPUT_DIR / "entity_defs.csv"
|
||||
ENTITY_DESCR = OUTPUT_DIR / "entity_descriptions.csv"
|
||||
|
||||
KB_DIR = OUTPUT_DIR / "kb_1"
|
||||
KB_FILE = "kb"
|
||||
NLP_1_DIR = OUTPUT_DIR / "nlp_1"
|
||||
NLP_2_DIR = OUTPUT_DIR / "nlp_2"
|
||||
|
||||
# get latest-all.json.bz2 from https://dumps.wikimedia.org/wikidatawiki/entities/
|
||||
WIKIDATA_JSON = ROOT_DIR / "wikidata" / "wikidata-20190304-all.json.bz2"
|
||||
|
||||
# get enwiki-latest-pages-articles-multistream.xml.bz2 from https://dumps.wikimedia.org/enwiki/latest/
|
||||
ENWIKI_DUMP = (
|
||||
ROOT_DIR / "wikipedia" / "enwiki-20190320-pages-articles-multistream.xml.bz2"
|
||||
)
|
||||
|
||||
# KB construction parameters
|
||||
MAX_CANDIDATES = 10
|
||||
MIN_ENTITY_FREQ = 20
|
||||
MIN_PAIR_OCC = 5
|
||||
|
||||
# model training parameters
|
||||
EPOCHS = 10
|
||||
DROPOUT = 0.5
|
||||
LEARN_RATE = 0.005
|
||||
L2 = 1e-6
|
||||
CONTEXT_WIDTH = 128
|
||||
|
||||
|
||||
def now():
|
||||
return datetime.datetime.now()
|
||||
|
||||
|
||||
def run_pipeline():
|
||||
# set the appropriate booleans to define which parts of the pipeline should be re(run)
|
||||
print("START", now())
|
||||
print()
|
||||
nlp_1 = spacy.load("en_core_web_lg")
|
||||
nlp_2 = None
|
||||
kb_2 = None
|
||||
|
||||
# one-time methods to create KB and write to file
|
||||
to_create_prior_probs = False
|
||||
to_create_entity_counts = False
|
||||
to_create_kb = False
|
||||
|
||||
# read KB back in from file
|
||||
to_read_kb = True
|
||||
to_test_kb = False
|
||||
|
||||
# create training dataset
|
||||
create_wp_training = False
|
||||
|
||||
# train the EL pipe
|
||||
train_pipe = True
|
||||
measure_performance = True
|
||||
|
||||
# test the EL pipe on a simple example
|
||||
to_test_pipeline = True
|
||||
|
||||
# write the NLP object, read back in and test again
|
||||
to_write_nlp = True
|
||||
to_read_nlp = True
|
||||
test_from_file = False
|
||||
|
||||
# STEP 1 : create prior probabilities from WP (run only once)
|
||||
if to_create_prior_probs:
|
||||
print("STEP 1: to_create_prior_probs", now())
|
||||
wp.read_prior_probs(ENWIKI_DUMP, PRIOR_PROB)
|
||||
print()
|
||||
|
||||
# STEP 2 : deduce entity frequencies from WP (run only once)
|
||||
if to_create_entity_counts:
|
||||
print("STEP 2: to_create_entity_counts", now())
|
||||
wp.write_entity_counts(PRIOR_PROB, ENTITY_COUNTS, to_print=False)
|
||||
print()
|
||||
|
||||
# STEP 3 : create KB and write to file (run only once)
|
||||
if to_create_kb:
|
||||
print("STEP 3a: to_create_kb", now())
|
||||
kb_1 = kb_creator.create_kb(
|
||||
nlp=nlp_1,
|
||||
max_entities_per_alias=MAX_CANDIDATES,
|
||||
min_entity_freq=MIN_ENTITY_FREQ,
|
||||
min_occ=MIN_PAIR_OCC,
|
||||
entity_def_output=ENTITY_DEFS,
|
||||
entity_descr_output=ENTITY_DESCR,
|
||||
count_input=ENTITY_COUNTS,
|
||||
prior_prob_input=PRIOR_PROB,
|
||||
wikidata_input=WIKIDATA_JSON,
|
||||
)
|
||||
print("kb entities:", kb_1.get_size_entities())
|
||||
print("kb aliases:", kb_1.get_size_aliases())
|
||||
print()
|
||||
|
||||
print("STEP 3b: write KB and NLP", now())
|
||||
|
||||
if not path.exists(KB_DIR):
|
||||
os.makedirs(KB_DIR)
|
||||
kb_1.dump(KB_DIR / KB_FILE)
|
||||
nlp_1.to_disk(NLP_1_DIR)
|
||||
print()
|
||||
|
||||
# STEP 4 : read KB back in from file
|
||||
if to_read_kb:
|
||||
print("STEP 4: to_read_kb", now())
|
||||
nlp_2 = spacy.load(NLP_1_DIR)
|
||||
kb_2 = KnowledgeBase(vocab=nlp_2.vocab, entity_vector_length=DESC_WIDTH)
|
||||
kb_2.load_bulk(KB_DIR / KB_FILE)
|
||||
print("kb entities:", kb_2.get_size_entities())
|
||||
print("kb aliases:", kb_2.get_size_aliases())
|
||||
print()
|
||||
|
||||
# test KB
|
||||
if to_test_kb:
|
||||
check_kb(kb_2)
|
||||
print()
|
||||
|
||||
# STEP 5: create a training dataset from WP
|
||||
if create_wp_training:
|
||||
print("STEP 5: create training dataset", now())
|
||||
training_set_creator.create_training(
|
||||
wikipedia_input=ENWIKI_DUMP,
|
||||
entity_def_input=ENTITY_DEFS,
|
||||
training_output=TRAINING_DIR,
|
||||
)
|
||||
|
||||
# STEP 6: create and train the entity linking pipe
|
||||
if train_pipe:
|
||||
print("STEP 6: training Entity Linking pipe", now())
|
||||
type_to_int = {label: i for i, label in enumerate(nlp_2.entity.labels)}
|
||||
print(" -analysing", len(type_to_int), "different entity types")
|
||||
el_pipe = nlp_2.create_pipe(
|
||||
name="entity_linker",
|
||||
config={
|
||||
"context_width": CONTEXT_WIDTH,
|
||||
"pretrained_vectors": nlp_2.vocab.vectors.name,
|
||||
"type_to_int": type_to_int,
|
||||
},
|
||||
)
|
||||
el_pipe.set_kb(kb_2)
|
||||
nlp_2.add_pipe(el_pipe, last=True)
|
||||
|
||||
other_pipes = [pipe for pipe in nlp_2.pipe_names if pipe != "entity_linker"]
|
||||
with nlp_2.disable_pipes(*other_pipes): # only train Entity Linking
|
||||
optimizer = nlp_2.begin_training()
|
||||
optimizer.learn_rate = LEARN_RATE
|
||||
optimizer.L2 = L2
|
||||
|
||||
# define the size (nr of entities) of training and dev set
|
||||
train_limit = 5000
|
||||
dev_limit = 5000
|
||||
|
||||
# for training, get pos & neg instances that correspond to entries in the kb
|
||||
train_data = training_set_creator.read_training(
|
||||
nlp=nlp_2,
|
||||
training_dir=TRAINING_DIR,
|
||||
dev=False,
|
||||
limit=train_limit,
|
||||
kb=el_pipe.kb,
|
||||
)
|
||||
|
||||
print("Training on", len(train_data), "articles")
|
||||
print()
|
||||
|
||||
# for testing, get all pos instances, whether or not they are in the kb
|
||||
dev_data = training_set_creator.read_training(
|
||||
nlp=nlp_2, training_dir=TRAINING_DIR, dev=True, limit=dev_limit, kb=None
|
||||
)
|
||||
|
||||
print("Dev testing on", len(dev_data), "articles")
|
||||
print()
|
||||
|
||||
if not train_data:
|
||||
print("Did not find any training data")
|
||||
else:
|
||||
for itn in range(EPOCHS):
|
||||
random.shuffle(train_data)
|
||||
losses = {}
|
||||
batches = minibatch(train_data, size=compounding(4.0, 128.0, 1.001))
|
||||
batchnr = 0
|
||||
|
||||
with nlp_2.disable_pipes(*other_pipes):
|
||||
for batch in batches:
|
||||
try:
|
||||
docs, golds = zip(*batch)
|
||||
nlp_2.update(
|
||||
docs=docs,
|
||||
golds=golds,
|
||||
sgd=optimizer,
|
||||
drop=DROPOUT,
|
||||
losses=losses,
|
||||
)
|
||||
batchnr += 1
|
||||
except Exception as e:
|
||||
print("Error updating batch:", e)
|
||||
|
||||
if batchnr > 0:
|
||||
el_pipe.cfg["context_weight"] = 1
|
||||
el_pipe.cfg["prior_weight"] = 1
|
||||
dev_acc_context, _ = _measure_acc(dev_data, el_pipe)
|
||||
losses["entity_linker"] = losses["entity_linker"] / batchnr
|
||||
print(
|
||||
"Epoch, train loss",
|
||||
itn,
|
||||
round(losses["entity_linker"], 2),
|
||||
" / dev acc avg",
|
||||
round(dev_acc_context, 3),
|
||||
)
|
||||
|
||||
# STEP 7: measure the performance of our trained pipe on an independent dev set
|
||||
if len(dev_data) and measure_performance:
|
||||
print()
|
||||
print("STEP 7: performance measurement of Entity Linking pipe", now())
|
||||
print()
|
||||
|
||||
counts, acc_r, acc_r_d, acc_p, acc_p_d, acc_o, acc_o_d = _measure_baselines(
|
||||
dev_data, kb_2
|
||||
)
|
||||
print("dev counts:", sorted(counts.items(), key=lambda x: x[0]))
|
||||
|
||||
oracle_by_label = [(x, round(y, 3)) for x, y in acc_o_d.items()]
|
||||
print("dev acc oracle:", round(acc_o, 3), oracle_by_label)
|
||||
|
||||
random_by_label = [(x, round(y, 3)) for x, y in acc_r_d.items()]
|
||||
print("dev acc random:", round(acc_r, 3), random_by_label)
|
||||
|
||||
prior_by_label = [(x, round(y, 3)) for x, y in acc_p_d.items()]
|
||||
print("dev acc prior:", round(acc_p, 3), prior_by_label)
|
||||
|
||||
# using only context
|
||||
el_pipe.cfg["context_weight"] = 1
|
||||
el_pipe.cfg["prior_weight"] = 0
|
||||
dev_acc_context, dev_acc_cont_d = _measure_acc(dev_data, el_pipe)
|
||||
context_by_label = [(x, round(y, 3)) for x, y in dev_acc_cont_d.items()]
|
||||
print("dev acc context avg:", round(dev_acc_context, 3), context_by_label)
|
||||
|
||||
# measuring combined accuracy (prior + context)
|
||||
el_pipe.cfg["context_weight"] = 1
|
||||
el_pipe.cfg["prior_weight"] = 1
|
||||
dev_acc_combo, dev_acc_combo_d = _measure_acc(dev_data, el_pipe)
|
||||
combo_by_label = [(x, round(y, 3)) for x, y in dev_acc_combo_d.items()]
|
||||
print("dev acc combo avg:", round(dev_acc_combo, 3), combo_by_label)
|
||||
|
||||
# STEP 8: apply the EL pipe on a toy example
|
||||
if to_test_pipeline:
|
||||
print()
|
||||
print("STEP 8: applying Entity Linking to toy example", now())
|
||||
print()
|
||||
run_el_toy_example(nlp=nlp_2)
|
||||
|
||||
# STEP 9: write the NLP pipeline (including entity linker) to file
|
||||
if to_write_nlp:
|
||||
print()
|
||||
print("STEP 9: testing NLP IO", now())
|
||||
print()
|
||||
print("writing to", NLP_2_DIR)
|
||||
nlp_2.to_disk(NLP_2_DIR)
|
||||
print()
|
||||
|
||||
# verify that the IO has gone correctly
|
||||
if to_read_nlp:
|
||||
print("reading from", NLP_2_DIR)
|
||||
nlp_3 = spacy.load(NLP_2_DIR)
|
||||
|
||||
print("running toy example with NLP 3")
|
||||
run_el_toy_example(nlp=nlp_3)
|
||||
|
||||
# testing performance with an NLP model from file
|
||||
if test_from_file:
|
||||
nlp_2 = spacy.load(NLP_1_DIR)
|
||||
nlp_3 = spacy.load(NLP_2_DIR)
|
||||
el_pipe = nlp_3.get_pipe("entity_linker")
|
||||
|
||||
dev_limit = 5000
|
||||
dev_data = training_set_creator.read_training(
|
||||
nlp=nlp_2, training_dir=TRAINING_DIR, dev=True, limit=dev_limit, kb=None
|
||||
)
|
||||
|
||||
print("Dev testing from file on", len(dev_data), "articles")
|
||||
print()
|
||||
|
||||
dev_acc_combo, dev_acc_combo_dict = _measure_acc(dev_data, el_pipe)
|
||||
combo_by_label = [(x, round(y, 3)) for x, y in dev_acc_combo_dict.items()]
|
||||
print("dev acc combo avg:", round(dev_acc_combo, 3), combo_by_label)
|
||||
|
||||
print()
|
||||
print("STOP", now())
|
||||
|
||||
|
||||
def _measure_acc(data, el_pipe=None, error_analysis=False):
|
||||
# If the docs in the data require further processing with an entity linker, set el_pipe
|
||||
correct_by_label = dict()
|
||||
incorrect_by_label = dict()
|
||||
|
||||
docs = [d for d, g in data if len(d) > 0]
|
||||
if el_pipe is not None:
|
||||
docs = list(el_pipe.pipe(docs))
|
||||
golds = [g for d, g in data if len(d) > 0]
|
||||
|
||||
for doc, gold in zip(docs, golds):
|
||||
try:
|
||||
correct_entries_per_article = dict()
|
||||
for entity, kb_dict in gold.links.items():
|
||||
start, end = entity
|
||||
# only evaluating on positive examples
|
||||
for gold_kb, value in kb_dict.items():
|
||||
if value:
|
||||
offset = _offset(start, end)
|
||||
correct_entries_per_article[offset] = gold_kb
|
||||
|
||||
for ent in doc.ents:
|
||||
ent_label = ent.label_
|
||||
pred_entity = ent.kb_id_
|
||||
start = ent.start_char
|
||||
end = ent.end_char
|
||||
offset = _offset(start, end)
|
||||
gold_entity = correct_entries_per_article.get(offset, None)
|
||||
# the gold annotations are not complete so we can't evaluate missing annotations as 'wrong'
|
||||
if gold_entity is not None:
|
||||
if gold_entity == pred_entity:
|
||||
correct = correct_by_label.get(ent_label, 0)
|
||||
correct_by_label[ent_label] = correct + 1
|
||||
else:
|
||||
incorrect = incorrect_by_label.get(ent_label, 0)
|
||||
incorrect_by_label[ent_label] = incorrect + 1
|
||||
if error_analysis:
|
||||
print(ent.text, "in", doc)
|
||||
print(
|
||||
"Predicted",
|
||||
pred_entity,
|
||||
"should have been",
|
||||
gold_entity,
|
||||
)
|
||||
print()
|
||||
|
||||
except Exception as e:
|
||||
print("Error assessing accuracy", e)
|
||||
|
||||
acc, acc_by_label = calculate_acc(correct_by_label, incorrect_by_label)
|
||||
return acc, acc_by_label
|
||||
|
||||
|
||||
def _measure_baselines(data, kb):
|
||||
# Measure 3 performance baselines: random selection, prior probabilities, and 'oracle' prediction for upper bound
|
||||
counts_d = dict()
|
||||
|
||||
random_correct_d = dict()
|
||||
random_incorrect_d = dict()
|
||||
|
||||
oracle_correct_d = dict()
|
||||
oracle_incorrect_d = dict()
|
||||
|
||||
prior_correct_d = dict()
|
||||
prior_incorrect_d = dict()
|
||||
|
||||
docs = [d for d, g in data if len(d) > 0]
|
||||
golds = [g for d, g in data if len(d) > 0]
|
||||
|
||||
for doc, gold in zip(docs, golds):
|
||||
try:
|
||||
correct_entries_per_article = dict()
|
||||
for entity, kb_dict in gold.links.items():
|
||||
start, end = entity
|
||||
for gold_kb, value in kb_dict.items():
|
||||
# only evaluating on positive examples
|
||||
if value:
|
||||
offset = _offset(start, end)
|
||||
correct_entries_per_article[offset] = gold_kb
|
||||
|
||||
for ent in doc.ents:
|
||||
label = ent.label_
|
||||
start = ent.start_char
|
||||
end = ent.end_char
|
||||
offset = _offset(start, end)
|
||||
gold_entity = correct_entries_per_article.get(offset, None)
|
||||
|
||||
# the gold annotations are not complete so we can't evaluate missing annotations as 'wrong'
|
||||
if gold_entity is not None:
|
||||
counts_d[label] = counts_d.get(label, 0) + 1
|
||||
candidates = kb.get_candidates(ent.text)
|
||||
oracle_candidate = ""
|
||||
best_candidate = ""
|
||||
random_candidate = ""
|
||||
if candidates:
|
||||
scores = []
|
||||
|
||||
for c in candidates:
|
||||
scores.append(c.prior_prob)
|
||||
if c.entity_ == gold_entity:
|
||||
oracle_candidate = c.entity_
|
||||
|
||||
best_index = scores.index(max(scores))
|
||||
best_candidate = candidates[best_index].entity_
|
||||
random_candidate = random.choice(candidates).entity_
|
||||
|
||||
if gold_entity == best_candidate:
|
||||
prior_correct_d[label] = prior_correct_d.get(label, 0) + 1
|
||||
else:
|
||||
prior_incorrect_d[label] = prior_incorrect_d.get(label, 0) + 1
|
||||
|
||||
if gold_entity == random_candidate:
|
||||
random_correct_d[label] = random_correct_d.get(label, 0) + 1
|
||||
else:
|
||||
random_incorrect_d[label] = random_incorrect_d.get(label, 0) + 1
|
||||
|
||||
if gold_entity == oracle_candidate:
|
||||
oracle_correct_d[label] = oracle_correct_d.get(label, 0) + 1
|
||||
else:
|
||||
oracle_incorrect_d[label] = oracle_incorrect_d.get(label, 0) + 1
|
||||
|
||||
except Exception as e:
|
||||
print("Error assessing accuracy", e)
|
||||
|
||||
acc_prior, acc_prior_d = calculate_acc(prior_correct_d, prior_incorrect_d)
|
||||
acc_rand, acc_rand_d = calculate_acc(random_correct_d, random_incorrect_d)
|
||||
acc_oracle, acc_oracle_d = calculate_acc(oracle_correct_d, oracle_incorrect_d)
|
||||
|
||||
return (
|
||||
counts_d,
|
||||
acc_rand,
|
||||
acc_rand_d,
|
||||
acc_prior,
|
||||
acc_prior_d,
|
||||
acc_oracle,
|
||||
acc_oracle_d,
|
||||
)
|
||||
|
||||
|
||||
def _offset(start, end):
|
||||
return "{}_{}".format(start, end)
|
||||
|
||||
|
||||
def calculate_acc(correct_by_label, incorrect_by_label):
|
||||
acc_by_label = dict()
|
||||
total_correct = 0
|
||||
total_incorrect = 0
|
||||
all_keys = set()
|
||||
all_keys.update(correct_by_label.keys())
|
||||
all_keys.update(incorrect_by_label.keys())
|
||||
for label in sorted(all_keys):
|
||||
correct = correct_by_label.get(label, 0)
|
||||
incorrect = incorrect_by_label.get(label, 0)
|
||||
total_correct += correct
|
||||
total_incorrect += incorrect
|
||||
if correct == incorrect == 0:
|
||||
acc_by_label[label] = 0
|
||||
else:
|
||||
acc_by_label[label] = correct / (correct + incorrect)
|
||||
acc = 0
|
||||
if not (total_correct == total_incorrect == 0):
|
||||
acc = total_correct / (total_correct + total_incorrect)
|
||||
return acc, acc_by_label
|
||||
|
||||
|
||||
def check_kb(kb):
|
||||
for mention in ("Bush", "Douglas Adams", "Homer", "Brazil", "China"):
|
||||
candidates = kb.get_candidates(mention)
|
||||
|
||||
print("generating candidates for " + mention + " :")
|
||||
for c in candidates:
|
||||
print(
|
||||
" ",
|
||||
c.prior_prob,
|
||||
c.alias_,
|
||||
"-->",
|
||||
c.entity_ + " (freq=" + str(c.entity_freq) + ")",
|
||||
)
|
||||
print()
|
||||
|
||||
|
||||
def run_el_toy_example(nlp):
|
||||
text = (
|
||||
"In The Hitchhiker's Guide to the Galaxy, written by Douglas Adams, "
|
||||
"Douglas reminds us to always bring our towel, even in China or Brazil. "
|
||||
"The main character in Doug's novel is the man Arthur Dent, "
|
||||
"but Dougledydoug doesn't write about George Washington or Homer Simpson."
|
||||
)
|
||||
doc = nlp(text)
|
||||
print(text)
|
||||
for ent in doc.ents:
|
||||
print(" ent", ent.text, ent.label_, ent.kb_id_)
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_pipeline()
|
139
examples/training/pretrain_kb.py
Normal file
139
examples/training/pretrain_kb.py
Normal file
|
@ -0,0 +1,139 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
|
||||
"""Example of defining and (pre)training spaCy's knowledge base,
|
||||
which is needed to implement entity linking functionality.
|
||||
|
||||
For more details, see the documentation:
|
||||
* Knowledge base: https://spacy.io/api/kb
|
||||
* Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking
|
||||
|
||||
Compatible with: spaCy vX.X
|
||||
Last tested with: vX.X
|
||||
"""
|
||||
from __future__ import unicode_literals, print_function
|
||||
|
||||
import plac
|
||||
from pathlib import Path
|
||||
|
||||
from spacy.vocab import Vocab
|
||||
|
||||
import spacy
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
from bin.wiki_entity_linking.train_descriptions import EntityEncoder
|
||||
from spacy import Errors
|
||||
|
||||
|
||||
# Q2146908 (Russ Cochran): American golfer
|
||||
# Q7381115 (Russ Cochran): publisher
|
||||
ENTITIES = {"Q2146908": ("American golfer", 342), "Q7381115": ("publisher", 17)}
|
||||
|
||||
INPUT_DIM = 300 # dimension of pre-trained input vectors
|
||||
DESC_WIDTH = 64 # dimension of output entity vectors
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
vocab_path=("Path to the vocab for the kb", "option", "v", Path),
|
||||
model=("Model name, should have pretrained word embeddings", "option", "m", str),
|
||||
output_dir=("Optional output directory", "option", "o", Path),
|
||||
n_iter=("Number of training iterations", "option", "n", int),
|
||||
)
|
||||
def main(vocab_path=None, model=None, output_dir=None, n_iter=50):
|
||||
"""Load the model, create the KB and pretrain the entity encodings.
|
||||
Either an nlp model or a vocab is needed to provide access to pre-trained word embeddings.
|
||||
If an output_dir is provided, the KB will be stored there in a file 'kb'.
|
||||
When providing an nlp model, the updated vocab will also be written to a directory in the output_dir."""
|
||||
if model is None and vocab_path is None:
|
||||
raise ValueError(Errors.E154)
|
||||
|
||||
if model is not None:
|
||||
nlp = spacy.load(model) # load existing spaCy model
|
||||
print("Loaded model '%s'" % model)
|
||||
else:
|
||||
vocab = Vocab().from_disk(vocab_path)
|
||||
# create blank Language class with specified vocab
|
||||
nlp = spacy.blank("en", vocab=vocab)
|
||||
print("Created blank 'en' model with vocab from '%s'" % vocab_path)
|
||||
|
||||
kb = KnowledgeBase(vocab=nlp.vocab)
|
||||
|
||||
# set up the data
|
||||
entity_ids = []
|
||||
descriptions = []
|
||||
freqs = []
|
||||
for key, value in ENTITIES.items():
|
||||
desc, freq = value
|
||||
entity_ids.append(key)
|
||||
descriptions.append(desc)
|
||||
freqs.append(freq)
|
||||
|
||||
# training entity description encodings
|
||||
# this part can easily be replaced with a custom entity encoder
|
||||
encoder = EntityEncoder(
|
||||
nlp=nlp,
|
||||
input_dim=INPUT_DIM,
|
||||
desc_width=DESC_WIDTH,
|
||||
epochs=n_iter,
|
||||
threshold=0.001,
|
||||
)
|
||||
encoder.train(description_list=descriptions, to_print=True)
|
||||
|
||||
# get the pretrained entity vectors
|
||||
embeddings = encoder.apply_encoder(descriptions)
|
||||
|
||||
# set the entities, can also be done by calling `kb.add_entity` for each entity
|
||||
kb.set_entities(entity_list=entity_ids, freq_list=freqs, vector_list=embeddings)
|
||||
|
||||
# adding aliases, the entities need to be defined in the KB beforehand
|
||||
kb.add_alias(
|
||||
alias="Russ Cochran",
|
||||
entities=["Q2146908", "Q7381115"],
|
||||
probabilities=[0.24, 0.7], # the sum of these probabilities should not exceed 1
|
||||
)
|
||||
|
||||
# test the trained model
|
||||
print()
|
||||
_print_kb(kb)
|
||||
|
||||
# save model to output directory
|
||||
if output_dir is not None:
|
||||
output_dir = Path(output_dir)
|
||||
if not output_dir.exists():
|
||||
output_dir.mkdir()
|
||||
kb_path = str(output_dir / "kb")
|
||||
kb.dump(kb_path)
|
||||
print()
|
||||
print("Saved KB to", kb_path)
|
||||
|
||||
# only storing the vocab if we weren't already reading it from file
|
||||
if not vocab_path:
|
||||
vocab_path = output_dir / "vocab"
|
||||
kb.vocab.to_disk(vocab_path)
|
||||
print("Saved vocab to", vocab_path)
|
||||
|
||||
print()
|
||||
|
||||
# test the saved model
|
||||
# always reload a knowledge base with the same vocab instance!
|
||||
print("Loading vocab from", vocab_path)
|
||||
print("Loading KB from", kb_path)
|
||||
vocab2 = Vocab().from_disk(vocab_path)
|
||||
kb2 = KnowledgeBase(vocab=vocab2)
|
||||
kb2.load_bulk(kb_path)
|
||||
_print_kb(kb2)
|
||||
print()
|
||||
|
||||
|
||||
def _print_kb(kb):
|
||||
print(kb.get_size_entities(), "kb entities:", kb.get_entity_strings())
|
||||
print(kb.get_size_aliases(), "kb aliases:", kb.get_alias_strings())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
plac.call(main)
|
||||
|
||||
# Expected output:
|
||||
|
||||
# 2 kb entities: ['Q2146908', 'Q7381115']
|
||||
# 1 kb aliases: ['Russ Cochran']
|
173
examples/training/train_entity_linker.py
Normal file
173
examples/training/train_entity_linker.py
Normal file
|
@ -0,0 +1,173 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
|
||||
"""Example of training spaCy's entity linker, starting off with an
|
||||
existing model and a pre-defined knowledge base.
|
||||
|
||||
For more details, see the documentation:
|
||||
* Training: https://spacy.io/usage/training
|
||||
* Entity Linking: https://spacy.io/usage/linguistic-features#entity-linking
|
||||
|
||||
Compatible with: spaCy vX.X
|
||||
Last tested with: vX.X
|
||||
"""
|
||||
from __future__ import unicode_literals, print_function
|
||||
|
||||
import plac
|
||||
import random
|
||||
from pathlib import Path
|
||||
|
||||
from spacy.symbols import PERSON
|
||||
from spacy.vocab import Vocab
|
||||
|
||||
import spacy
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
from spacy import Errors
|
||||
from spacy.tokens import Span
|
||||
from spacy.util import minibatch, compounding
|
||||
|
||||
|
||||
def sample_train_data():
|
||||
train_data = []
|
||||
|
||||
# Q2146908 (Russ Cochran): American golfer
|
||||
# Q7381115 (Russ Cochran): publisher
|
||||
|
||||
text_1 = "Russ Cochran his reprints include EC Comics."
|
||||
dict_1 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}
|
||||
train_data.append((text_1, {"links": dict_1}))
|
||||
|
||||
text_2 = "Russ Cochran has been publishing comic art."
|
||||
dict_2 = {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}
|
||||
train_data.append((text_2, {"links": dict_2}))
|
||||
|
||||
text_3 = "Russ Cochran captured his first major title with his son as caddie."
|
||||
dict_3 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}
|
||||
train_data.append((text_3, {"links": dict_3}))
|
||||
|
||||
text_4 = "Russ Cochran was a member of University of Kentucky's golf team."
|
||||
dict_4 = {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}
|
||||
train_data.append((text_4, {"links": dict_4}))
|
||||
|
||||
return train_data
|
||||
|
||||
|
||||
# training data
|
||||
TRAIN_DATA = sample_train_data()
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
kb_path=("Path to the knowledge base", "positional", None, Path),
|
||||
vocab_path=("Path to the vocab for the kb", "positional", None, Path),
|
||||
output_dir=("Optional output directory", "option", "o", Path),
|
||||
n_iter=("Number of training iterations", "option", "n", int),
|
||||
)
|
||||
def main(kb_path, vocab_path=None, output_dir=None, n_iter=50):
|
||||
"""Create a blank model with the specified vocab, set up the pipeline and train the entity linker.
|
||||
The `vocab` should be the one used during creation of the KB."""
|
||||
vocab = Vocab().from_disk(vocab_path)
|
||||
# create blank Language class with correct vocab
|
||||
nlp = spacy.blank("en", vocab=vocab)
|
||||
nlp.vocab.vectors.name = "spacy_pretrained_vectors"
|
||||
print("Created blank 'en' model with vocab from '%s'" % vocab_path)
|
||||
|
||||
# create the built-in pipeline components and add them to the pipeline
|
||||
# nlp.create_pipe works for built-ins that are registered with spaCy
|
||||
if "entity_linker" not in nlp.pipe_names:
|
||||
entity_linker = nlp.create_pipe("entity_linker")
|
||||
kb = KnowledgeBase(vocab=nlp.vocab)
|
||||
kb.load_bulk(kb_path)
|
||||
print("Loaded Knowledge Base from '%s'" % kb_path)
|
||||
entity_linker.set_kb(kb)
|
||||
nlp.add_pipe(entity_linker, last=True)
|
||||
else:
|
||||
entity_linker = nlp.get_pipe("entity_linker")
|
||||
kb = entity_linker.kb
|
||||
|
||||
# make sure the annotated examples correspond to known identifiers in the knowlege base
|
||||
kb_ids = kb.get_entity_strings()
|
||||
for text, annotation in TRAIN_DATA:
|
||||
for offset, kb_id_dict in annotation["links"].items():
|
||||
new_dict = {}
|
||||
for kb_id, value in kb_id_dict.items():
|
||||
if kb_id in kb_ids:
|
||||
new_dict[kb_id] = value
|
||||
else:
|
||||
print(
|
||||
"Removed", kb_id, "from training because it is not in the KB."
|
||||
)
|
||||
annotation["links"][offset] = new_dict
|
||||
|
||||
# get names of other pipes to disable them during training
|
||||
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "entity_linker"]
|
||||
with nlp.disable_pipes(*other_pipes): # only train entity linker
|
||||
# reset and initialize the weights randomly
|
||||
optimizer = nlp.begin_training()
|
||||
for itn in range(n_iter):
|
||||
random.shuffle(TRAIN_DATA)
|
||||
losses = {}
|
||||
# batch up the examples using spaCy's minibatch
|
||||
batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001))
|
||||
for batch in batches:
|
||||
texts, annotations = zip(*batch)
|
||||
nlp.update(
|
||||
texts, # batch of texts
|
||||
annotations, # batch of annotations
|
||||
drop=0.2, # dropout - make it harder to memorise data
|
||||
losses=losses,
|
||||
sgd=optimizer,
|
||||
)
|
||||
print(itn, "Losses", losses)
|
||||
|
||||
# test the trained model
|
||||
_apply_model(nlp)
|
||||
|
||||
# save model to output directory
|
||||
if output_dir is not None:
|
||||
output_dir = Path(output_dir)
|
||||
if not output_dir.exists():
|
||||
output_dir.mkdir()
|
||||
nlp.to_disk(output_dir)
|
||||
print()
|
||||
print("Saved model to", output_dir)
|
||||
|
||||
# test the saved model
|
||||
print("Loading from", output_dir)
|
||||
nlp2 = spacy.load(output_dir)
|
||||
_apply_model(nlp2)
|
||||
|
||||
|
||||
def _apply_model(nlp):
|
||||
for text, annotation in TRAIN_DATA:
|
||||
doc = nlp.tokenizer(text)
|
||||
|
||||
# set entities so the evaluation is independent of the NER step
|
||||
# all the examples contain 'Russ Cochran' as the first two tokens in the sentence
|
||||
rc_ent = Span(doc, 0, 2, label=PERSON)
|
||||
doc.ents = [rc_ent]
|
||||
|
||||
# apply the entity linker which will now make predictions for the 'Russ Cochran' entities
|
||||
doc = nlp.get_pipe("entity_linker")(doc)
|
||||
|
||||
print()
|
||||
print("Entities", [(ent.text, ent.label_, ent.kb_id_) for ent in doc.ents])
|
||||
print("Tokens", [(t.text, t.ent_type_, t.ent_kb_id_) for t in doc])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
plac.call(main)
|
||||
|
||||
# Expected output (can be shuffled):
|
||||
|
||||
# Entities[('Russ Cochran', 'PERSON', 'Q7381115')]
|
||||
# Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ("his", '', ''), ('reprints', '', ''), ('include', '', ''), ('The', '', ''), ('Complete', '', ''), ('EC', '', ''), ('Library', '', ''), ('.', '', '')]
|
||||
|
||||
# Entities[('Russ Cochran', 'PERSON', 'Q7381115')]
|
||||
# Tokens[('Russ', 'PERSON', 'Q7381115'), ('Cochran', 'PERSON', 'Q7381115'), ('has', '', ''), ('been', '', ''), ('publishing', '', ''), ('comic', '', ''), ('art', '', ''), ('.', '', '')]
|
||||
|
||||
# Entities[('Russ Cochran', 'PERSON', 'Q2146908')]
|
||||
# Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('captured', '', ''), ('his', '', ''), ('first', '', ''), ('major', '', ''), ('title', '', ''), ('with', '', ''), ('his', '', ''), ('son', '', ''), ('as', '', ''), ('caddie', '', ''), ('.', '', '')]
|
||||
|
||||
# Entities[('Russ Cochran', 'PERSON', 'Q2146908')]
|
||||
# Tokens[('Russ', 'PERSON', 'Q2146908'), ('Cochran', 'PERSON', 'Q2146908'), ('was', '', ''), ('a', '', ''), ('member', '', ''), ('of', '', ''), ('University', '', ''), ('of', '', ''), ('Kentucky', '', ''), ("'s", '', ''), ('golf', '', ''), ('team', '', ''), ('.', '', '')]
|
24
spacy/_ml.py
24
spacy/_ml.py
|
@ -665,25 +665,15 @@ def build_simple_cnn_text_classifier(tok2vec, nr_class, exclusive_classes=False,
|
|||
def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
|
||||
if "entity_width" not in cfg:
|
||||
raise ValueError(Errors.E144.format(param="entity_width"))
|
||||
if "context_width" not in cfg:
|
||||
raise ValueError(Errors.E144.format(param="context_width"))
|
||||
|
||||
conv_depth = cfg.get("conv_depth", 2)
|
||||
cnn_maxout_pieces = cfg.get("cnn_maxout_pieces", 3)
|
||||
pretrained_vectors = cfg.get("pretrained_vectors", None)
|
||||
context_width = cfg.get("context_width")
|
||||
entity_width = cfg.get("entity_width")
|
||||
context_width = cfg.get("entity_width")
|
||||
|
||||
with Model.define_operators({">>": chain, "**": clone}):
|
||||
model = (
|
||||
Affine(entity_width, entity_width + context_width + 1 + ner_types)
|
||||
>> Affine(1, entity_width, drop_factor=0.0)
|
||||
>> logistic
|
||||
)
|
||||
|
||||
# context encoder
|
||||
tok2vec = (
|
||||
Tok2Vec(
|
||||
tok2vec = Tok2Vec(
|
||||
width=hidden_width,
|
||||
embed_size=embed_width,
|
||||
pretrained_vectors=pretrained_vectors,
|
||||
|
@ -692,17 +682,17 @@ def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
|
|||
conv_depth=conv_depth,
|
||||
bilstm_depth=0,
|
||||
)
|
||||
|
||||
model = (
|
||||
tok2vec
|
||||
>> flatten_add_lengths
|
||||
>> Pooling(mean_pool)
|
||||
>> Residual(zero_init(Maxout(hidden_width, hidden_width)))
|
||||
>> zero_init(Affine(context_width, hidden_width))
|
||||
>> zero_init(Affine(context_width, hidden_width, drop_factor=0.0))
|
||||
)
|
||||
|
||||
model.tok2vec = tok2vec
|
||||
|
||||
model.tok2vec = tok2vec
|
||||
model.tok2vec.nO = context_width
|
||||
model.nO = 1
|
||||
model.nO = context_width
|
||||
return model
|
||||
|
||||
|
||||
|
|
|
@ -9,11 +9,14 @@ import srsly
|
|||
from wasabi import Printer, MESSAGES
|
||||
|
||||
from ..gold import GoldCorpus, read_json_object
|
||||
from ..syntax import nonproj
|
||||
from ..util import load_model, get_lang_class
|
||||
|
||||
|
||||
# Minimum number of expected occurences of label in data to train new label
|
||||
# Minimum number of expected occurrences of NER label in data to train new label
|
||||
NEW_LABEL_THRESHOLD = 50
|
||||
# Minimum number of expected occurrences of dependency labels
|
||||
DEP_LABEL_THRESHOLD = 20
|
||||
# Minimum number of expected examples to train a blank model
|
||||
BLANK_MODEL_MIN_THRESHOLD = 100
|
||||
BLANK_MODEL_THRESHOLD = 2000
|
||||
|
@ -68,12 +71,10 @@ def debug_data(
|
|||
nlp = lang_cls()
|
||||
|
||||
msg.divider("Data format validation")
|
||||
# Load the data in one – might take a while but okay in this case
|
||||
train_data = _load_file(train_path, msg)
|
||||
dev_data = _load_file(dev_path, msg)
|
||||
|
||||
# Validate data format using the JSON schema
|
||||
# TODO: update once the new format is ready
|
||||
# TODO: move validation to GoldCorpus in order to be able to load from dir
|
||||
train_data_errors = [] # TODO: validate_json
|
||||
dev_data_errors = [] # TODO: validate_json
|
||||
if not train_data_errors:
|
||||
|
@ -88,18 +89,34 @@ def debug_data(
|
|||
sys.exit(1)
|
||||
|
||||
# Create the gold corpus to be able to better analyze data
|
||||
with msg.loading("Analyzing corpus..."):
|
||||
train_data = read_json_object(train_data)
|
||||
dev_data = read_json_object(dev_data)
|
||||
corpus = GoldCorpus(train_data, dev_data)
|
||||
loading_train_error_message = ""
|
||||
loading_dev_error_message = ""
|
||||
with msg.loading("Loading corpus..."):
|
||||
corpus = GoldCorpus(train_path, dev_path)
|
||||
try:
|
||||
train_docs = list(corpus.train_docs(nlp))
|
||||
train_docs_unpreprocessed = list(corpus.train_docs_without_preprocessing(nlp))
|
||||
except ValueError as e:
|
||||
loading_train_error_message = "Training data cannot be loaded: {}".format(str(e))
|
||||
try:
|
||||
dev_docs = list(corpus.dev_docs(nlp))
|
||||
except ValueError as e:
|
||||
loading_dev_error_message = "Development data cannot be loaded: {}".format(str(e))
|
||||
if loading_train_error_message or loading_dev_error_message:
|
||||
if loading_train_error_message:
|
||||
msg.fail(loading_train_error_message)
|
||||
if loading_dev_error_message:
|
||||
msg.fail(loading_dev_error_message)
|
||||
sys.exit(1)
|
||||
msg.good("Corpus is loadable")
|
||||
|
||||
# Create all gold data here to avoid iterating over the train_docs constantly
|
||||
gold_data = _compile_gold(train_docs, pipeline)
|
||||
train_texts = gold_data["texts"]
|
||||
dev_texts = set([doc.text for doc, gold in dev_docs])
|
||||
gold_train_data = _compile_gold(train_docs, pipeline)
|
||||
gold_train_unpreprocessed_data = _compile_gold(train_docs_unpreprocessed, pipeline)
|
||||
gold_dev_data = _compile_gold(dev_docs, pipeline)
|
||||
|
||||
train_texts = gold_train_data["texts"]
|
||||
dev_texts = gold_dev_data["texts"]
|
||||
|
||||
msg.divider("Training stats")
|
||||
msg.text("Training pipeline: {}".format(", ".join(pipeline)))
|
||||
|
@ -133,13 +150,21 @@ def debug_data(
|
|||
)
|
||||
|
||||
msg.divider("Vocab & Vectors")
|
||||
n_words = gold_data["n_words"]
|
||||
n_words = gold_train_data["n_words"]
|
||||
msg.info(
|
||||
"{} total {} in the data ({} unique)".format(
|
||||
n_words, "word" if n_words == 1 else "words", len(gold_data["words"])
|
||||
n_words, "word" if n_words == 1 else "words", len(gold_train_data["words"])
|
||||
)
|
||||
)
|
||||
most_common_words = gold_data["words"].most_common(10)
|
||||
if gold_train_data["n_misaligned_words"] > 0:
|
||||
msg.warn(
|
||||
"{} misaligned tokens in the training data".format(gold_train_data["n_misaligned_words"])
|
||||
)
|
||||
if gold_dev_data["n_misaligned_words"] > 0:
|
||||
msg.warn(
|
||||
"{} misaligned tokens in the dev data".format(gold_dev_data["n_misaligned_words"])
|
||||
)
|
||||
most_common_words = gold_train_data["words"].most_common(10)
|
||||
msg.text(
|
||||
"10 most common words: {}".format(
|
||||
_format_labels(most_common_words, counts=True)
|
||||
|
@ -159,8 +184,8 @@ def debug_data(
|
|||
|
||||
if "ner" in pipeline:
|
||||
# Get all unique NER labels present in the data
|
||||
labels = set(label for label in gold_data["ner"] if label not in ("O", "-"))
|
||||
label_counts = gold_data["ner"]
|
||||
labels = set(label for label in gold_train_data["ner"] if label not in ("O", "-"))
|
||||
label_counts = gold_train_data["ner"]
|
||||
model_labels = _get_labels_from_model(nlp, "ner")
|
||||
new_labels = [l for l in labels if l not in model_labels]
|
||||
existing_labels = [l for l in labels if l in model_labels]
|
||||
|
@ -196,8 +221,8 @@ def debug_data(
|
|||
"Existing: {}".format(_format_labels(existing_labels)), show=verbose
|
||||
)
|
||||
|
||||
if gold_data["ws_ents"]:
|
||||
msg.fail("{} invalid whitespace entity spans".format(gold_data["ws_ents"]))
|
||||
if gold_train_data["ws_ents"]:
|
||||
msg.fail("{} invalid whitespace entity spans".format(gold_train_data["ws_ents"]))
|
||||
has_ws_ents_error = True
|
||||
|
||||
for label in new_labels:
|
||||
|
@ -220,14 +245,14 @@ def debug_data(
|
|||
if not has_low_data_warning:
|
||||
msg.good("Good amount of examples for all labels")
|
||||
if not has_no_neg_warning:
|
||||
msg.good("Examples without occurences available for all labels")
|
||||
msg.good("Examples without occurrences available for all labels")
|
||||
if not has_ws_ents_error:
|
||||
msg.good("No entities consisting of or starting/ending with whitespace")
|
||||
|
||||
if has_low_data_warning:
|
||||
msg.text(
|
||||
"To train a new entity type, your data should include at "
|
||||
"least {} insteances of the new label".format(NEW_LABEL_THRESHOLD),
|
||||
"least {} instances of the new label".format(NEW_LABEL_THRESHOLD),
|
||||
show=verbose,
|
||||
)
|
||||
if has_no_neg_warning:
|
||||
|
@ -245,7 +270,7 @@ def debug_data(
|
|||
|
||||
if "textcat" in pipeline:
|
||||
msg.divider("Text Classification")
|
||||
labels = [label for label in gold_data["textcat"]]
|
||||
labels = [label for label in gold_train_data["textcat"]]
|
||||
model_labels = _get_labels_from_model(nlp, "textcat")
|
||||
new_labels = [l for l in labels if l not in model_labels]
|
||||
existing_labels = [l for l in labels if l in model_labels]
|
||||
|
@ -256,7 +281,7 @@ def debug_data(
|
|||
)
|
||||
if new_labels:
|
||||
labels_with_counts = _format_labels(
|
||||
gold_data["textcat"].most_common(), counts=True
|
||||
gold_train_data["textcat"].most_common(), counts=True
|
||||
)
|
||||
msg.text("New: {}".format(labels_with_counts), show=verbose)
|
||||
if existing_labels:
|
||||
|
@ -266,7 +291,7 @@ def debug_data(
|
|||
|
||||
if "tagger" in pipeline:
|
||||
msg.divider("Part-of-speech Tagging")
|
||||
labels = [label for label in gold_data["tags"]]
|
||||
labels = [label for label in gold_train_data["tags"]]
|
||||
tag_map = nlp.Defaults.tag_map
|
||||
msg.info(
|
||||
"{} {} in data ({} {} in tag map)".format(
|
||||
|
@ -277,7 +302,7 @@ def debug_data(
|
|||
)
|
||||
)
|
||||
labels_with_counts = _format_labels(
|
||||
gold_data["tags"].most_common(), counts=True
|
||||
gold_train_data["tags"].most_common(), counts=True
|
||||
)
|
||||
msg.text(labels_with_counts, show=verbose)
|
||||
non_tagmap = [l for l in labels if l not in tag_map]
|
||||
|
@ -292,17 +317,132 @@ def debug_data(
|
|||
|
||||
if "parser" in pipeline:
|
||||
msg.divider("Dependency Parsing")
|
||||
labels = [label for label in gold_data["deps"]]
|
||||
|
||||
# profile sentence length
|
||||
msg.info(
|
||||
"{} {} in data".format(
|
||||
len(labels), "label" if len(labels) == 1 else "labels"
|
||||
"Found {} sentence{} with an average length of {:.1f} words.".format(
|
||||
gold_train_data["n_sents"],
|
||||
"s" if len(train_docs) > 1 else "",
|
||||
gold_train_data["n_words"] / gold_train_data["n_sents"]
|
||||
)
|
||||
)
|
||||
|
||||
# profile labels
|
||||
labels_train = [label for label in gold_train_data["deps"]]
|
||||
labels_train_unpreprocessed = [label for label in gold_train_unpreprocessed_data["deps"]]
|
||||
labels_dev = [label for label in gold_dev_data["deps"]]
|
||||
|
||||
if gold_train_unpreprocessed_data["n_nonproj"] > 0:
|
||||
msg.info(
|
||||
"Found {} nonprojective train sentence{}".format(
|
||||
gold_train_unpreprocessed_data["n_nonproj"],
|
||||
"s" if gold_train_unpreprocessed_data["n_nonproj"] > 1 else ""
|
||||
)
|
||||
)
|
||||
if gold_dev_data["n_nonproj"] > 0:
|
||||
msg.info(
|
||||
"Found {} nonprojective dev sentence{}".format(
|
||||
gold_dev_data["n_nonproj"],
|
||||
"s" if gold_dev_data["n_nonproj"] > 1 else ""
|
||||
)
|
||||
)
|
||||
|
||||
msg.info(
|
||||
"{} {} in train data".format(
|
||||
len(labels_train_unpreprocessed), "label" if len(labels_train) == 1 else "labels"
|
||||
)
|
||||
)
|
||||
msg.info(
|
||||
"{} {} in projectivized train data".format(
|
||||
len(labels_train), "label" if len(labels_train) == 1 else "labels"
|
||||
)
|
||||
)
|
||||
|
||||
labels_with_counts = _format_labels(
|
||||
gold_data["deps"].most_common(), counts=True
|
||||
gold_train_unpreprocessed_data["deps"].most_common(), counts=True
|
||||
)
|
||||
msg.text(labels_with_counts, show=verbose)
|
||||
|
||||
# rare labels in train
|
||||
for label in gold_train_unpreprocessed_data["deps"]:
|
||||
if gold_train_unpreprocessed_data["deps"][label] <= DEP_LABEL_THRESHOLD:
|
||||
msg.warn(
|
||||
"Low number of examples for label '{}' ({})".format(
|
||||
label, gold_train_unpreprocessed_data["deps"][label]
|
||||
)
|
||||
)
|
||||
has_low_data_warning = True
|
||||
|
||||
|
||||
# rare labels in projectivized train
|
||||
rare_projectivized_labels = []
|
||||
for label in gold_train_data["deps"]:
|
||||
if gold_train_data["deps"][label] <= DEP_LABEL_THRESHOLD and "||" in label:
|
||||
rare_projectivized_labels.append("{}: {}".format(label, str(gold_train_data["deps"][label])))
|
||||
|
||||
if len(rare_projectivized_labels) > 0:
|
||||
msg.warn(
|
||||
"Low number of examples for {} label{} in the "
|
||||
"projectivized dependency trees used for training. You may "
|
||||
"want to projectivize labels such as punct before "
|
||||
"training in order to improve parser performance.".format(
|
||||
len(rare_projectivized_labels),
|
||||
"s" if len(rare_projectivized_labels) > 1 else "")
|
||||
)
|
||||
msg.warn(
|
||||
"Projectivized labels with low numbers of examples: "
|
||||
"{}".format("\n".join(rare_projectivized_labels)),
|
||||
show=verbose
|
||||
)
|
||||
has_low_data_warning = True
|
||||
|
||||
# labels only in train
|
||||
if set(labels_train) - set(labels_dev):
|
||||
msg.warn(
|
||||
"The following labels were found only in the train data: "
|
||||
"{}".format(", ".join(set(labels_train) - set(labels_dev))),
|
||||
show=verbose
|
||||
)
|
||||
|
||||
# labels only in dev
|
||||
if set(labels_dev) - set(labels_train):
|
||||
msg.warn(
|
||||
"The following labels were found only in the dev data: " +
|
||||
", ".join(set(labels_dev) - set(labels_train)),
|
||||
show=verbose
|
||||
)
|
||||
|
||||
if has_low_data_warning:
|
||||
msg.text(
|
||||
"To train a parser, your data should include at "
|
||||
"least {} instances of each label.".format(DEP_LABEL_THRESHOLD),
|
||||
show=verbose,
|
||||
)
|
||||
|
||||
# multiple root labels
|
||||
if len(gold_train_unpreprocessed_data["roots"]) > 1:
|
||||
msg.warn(
|
||||
"Multiple root labels ({}) ".format(", ".join(gold_train_unpreprocessed_data["roots"])) +
|
||||
"found in training data. spaCy's parser uses a single root "
|
||||
"label ROOT so this distinction will not be available."
|
||||
)
|
||||
|
||||
# these should not happen, but just in case
|
||||
if gold_train_data["n_nonproj"] > 0:
|
||||
msg.fail(
|
||||
"Found {} nonprojective projectivized train sentence{}".format(
|
||||
gold_train_data["n_nonproj"],
|
||||
"s" if gold_train_data["n_nonproj"] > 1 else ""
|
||||
)
|
||||
)
|
||||
if gold_train_data["n_cycles"] > 0:
|
||||
msg.fail(
|
||||
"Found {} projectivized train sentence{} with cycles".format(
|
||||
gold_train_data["n_cycles"],
|
||||
"s" if gold_train_data["n_cycles"] > 1 else ""
|
||||
)
|
||||
)
|
||||
|
||||
msg.divider("Summary")
|
||||
good_counts = msg.counts[MESSAGES.GOOD]
|
||||
warn_counts = msg.counts[MESSAGES.WARN]
|
||||
|
@ -350,16 +490,25 @@ def _compile_gold(train_docs, pipeline):
|
|||
"tags": Counter(),
|
||||
"deps": Counter(),
|
||||
"words": Counter(),
|
||||
"roots": Counter(),
|
||||
"ws_ents": 0,
|
||||
"n_words": 0,
|
||||
"n_misaligned_words": 0,
|
||||
"n_sents": 0,
|
||||
"n_nonproj": 0,
|
||||
"n_cycles": 0,
|
||||
"texts": set(),
|
||||
}
|
||||
for doc, gold in train_docs:
|
||||
data["words"].update(gold.words)
|
||||
data["n_words"] += len(gold.words)
|
||||
valid_words = [x for x in gold.words if x is not None]
|
||||
data["words"].update(valid_words)
|
||||
data["n_words"] += len(valid_words)
|
||||
data["n_misaligned_words"] += len(gold.words) - len(valid_words)
|
||||
data["texts"].add(doc.text)
|
||||
if "ner" in pipeline:
|
||||
for i, label in enumerate(gold.ner):
|
||||
if label is None:
|
||||
continue
|
||||
if label.startswith(("B-", "U-", "L-")) and doc[i].is_space:
|
||||
# "Illegal" whitespace entity
|
||||
data["ws_ents"] += 1
|
||||
|
@ -371,9 +520,17 @@ def _compile_gold(train_docs, pipeline):
|
|||
if "textcat" in pipeline:
|
||||
data["cats"].update(gold.cats)
|
||||
if "tagger" in pipeline:
|
||||
data["tags"].update(gold.tags)
|
||||
data["tags"].update([x for x in gold.tags if x is not None])
|
||||
if "parser" in pipeline:
|
||||
data["deps"].update(gold.labels)
|
||||
data["deps"].update([x for x in gold.labels if x is not None])
|
||||
for i, (dep, head) in enumerate(zip(gold.labels, gold.heads)):
|
||||
if head == i:
|
||||
data["roots"].update([dep])
|
||||
data["n_sents"] += 1
|
||||
if nonproj.is_nonproj_tree(gold.heads):
|
||||
data["n_nonproj"] += 1
|
||||
if nonproj.contains_cycle(gold.heads):
|
||||
data["n_cycles"] += 1
|
||||
return data
|
||||
|
||||
|
||||
|
|
|
@ -5,7 +5,7 @@ import uuid
|
|||
|
||||
from .templates import TPL_DEP_SVG, TPL_DEP_WORDS, TPL_DEP_ARCS, TPL_ENTS
|
||||
from .templates import TPL_ENT, TPL_ENT_RTL, TPL_FIGURE, TPL_TITLE, TPL_PAGE
|
||||
from ..util import minify_html, escape_html
|
||||
from ..util import minify_html, escape_html, get_entry_points
|
||||
|
||||
DEFAULT_LANG = "en"
|
||||
DEFAULT_DIR = "ltr"
|
||||
|
@ -237,6 +237,9 @@ class EntityRenderer(object):
|
|||
"CARDINAL": "#e4e7d2",
|
||||
"PERCENT": "#e4e7d2",
|
||||
}
|
||||
user_colors = get_entry_points("spacy_displacy_colors")
|
||||
for user_color in user_colors.values():
|
||||
colors.update(user_color)
|
||||
colors.update(options.get("colors", {}))
|
||||
self.default_color = "#ddd"
|
||||
self.colors = colors
|
||||
|
|
|
@ -124,7 +124,8 @@ class Errors(object):
|
|||
E016 = ("MultitaskObjective target should be function or one of: dep, "
|
||||
"tag, ent, dep_tag_offset, ent_tag.")
|
||||
E017 = ("Can only add unicode or bytes. Got type: {value_type}")
|
||||
E018 = ("Can't retrieve string for hash '{hash_value}'.")
|
||||
E018 = ("Can't retrieve string for hash '{hash_value}'. This usually refers "
|
||||
"to an issue with the `Vocab` or `StringStore`.")
|
||||
E019 = ("Can't create transition with unknown action ID: {action}. Action "
|
||||
"IDs are enumerated in spacy/syntax/{src}.pyx.")
|
||||
E020 = ("Could not find a gold-standard action to supervise the "
|
||||
|
@ -242,7 +243,8 @@ class Errors(object):
|
|||
"Tag sequence:\n{tags}")
|
||||
E068 = ("Invalid BILUO tag: '{tag}'.")
|
||||
E069 = ("Invalid gold-standard parse tree. Found cycle between word "
|
||||
"IDs: {cycle}")
|
||||
"IDs: {cycle} (tokens: {cycle_tokens}) in the document starting "
|
||||
"with tokens: {doc_tokens}.")
|
||||
E070 = ("Invalid gold-standard data. Number of documents ({n_docs}) "
|
||||
"does not align with number of annotations ({n_annots}).")
|
||||
E071 = ("Error creating lexeme: specified orth ID ({orth}) does not "
|
||||
|
@ -420,7 +422,12 @@ class Errors(object):
|
|||
E151 = ("Trying to call nlp.update without required annotation types. "
|
||||
"Expected top-level keys: {expected_keys}."
|
||||
" Got: {unexpected_keys}.")
|
||||
|
||||
E152 = ("The `nlp` object should have a pre-trained `ner` component.")
|
||||
E153 = ("Either provide a path to a preprocessed training directory, "
|
||||
"or to the original Wikipedia XML dump.")
|
||||
E154 = ("Either the `nlp` model or the `vocab` should be specified.")
|
||||
E155 = ("The `nlp` object should have access to pre-trained word vectors, cf. "
|
||||
"https://spacy.io/usage/models#languages.")
|
||||
|
||||
@add_codes
|
||||
class TempErrors(object):
|
||||
|
|
|
@ -216,6 +216,10 @@ class GoldCorpus(object):
|
|||
make_projective=True)
|
||||
yield from gold_docs
|
||||
|
||||
def train_docs_without_preprocessing(self, nlp, gold_preproc=False):
|
||||
gold_docs = self.iter_gold_docs(nlp, self.train_tuples, gold_preproc=gold_preproc)
|
||||
yield from gold_docs
|
||||
|
||||
def dev_docs(self, nlp, gold_preproc=False):
|
||||
gold_docs = self.iter_gold_docs(nlp, self.dev_tuples, gold_preproc=gold_preproc)
|
||||
yield from gold_docs
|
||||
|
@ -590,7 +594,7 @@ cdef class GoldParse:
|
|||
|
||||
cycle = nonproj.contains_cycle(self.heads)
|
||||
if cycle is not None:
|
||||
raise ValueError(Errors.E069.format(cycle=cycle))
|
||||
raise ValueError(Errors.E069.format(cycle=cycle, cycle_tokens=" ".join(["'{}'".format(self.words[tok_id]) for tok_id in cycle]), doc_tokens=" ".join(words[:50])))
|
||||
|
||||
def __len__(self):
|
||||
"""Get the number of gold-standard tokens.
|
||||
|
@ -678,11 +682,23 @@ def biluo_tags_from_offsets(doc, entities, missing="O"):
|
|||
>>> tags = biluo_tags_from_offsets(doc, entities)
|
||||
>>> assert tags == ["O", "O", 'U-LOC', "O"]
|
||||
"""
|
||||
# Ensure no overlapping entity labels exist
|
||||
tokens_in_ents = {}
|
||||
|
||||
starts = {token.idx: token.i for token in doc}
|
||||
ends = {token.idx + len(token): token.i for token in doc}
|
||||
biluo = ["-" for _ in doc]
|
||||
# Handle entity cases
|
||||
for start_char, end_char, label in entities:
|
||||
for token_index in range(start_char, end_char):
|
||||
if token_index in tokens_in_ents.keys():
|
||||
raise ValueError(Errors.E103.format(
|
||||
span1=(tokens_in_ents[token_index][0],
|
||||
tokens_in_ents[token_index][1],
|
||||
tokens_in_ents[token_index][2]),
|
||||
span2=(start_char, end_char, label)))
|
||||
tokens_in_ents[token_index] = (start_char, end_char, label)
|
||||
|
||||
start_token = starts.get(start_char)
|
||||
end_token = ends.get(end_char)
|
||||
# Only interested if the tokenization is correct
|
||||
|
|
14
spacy/kb.pyx
14
spacy/kb.pyx
|
@ -19,6 +19,13 @@ from libcpp.vector cimport vector
|
|||
|
||||
|
||||
cdef class Candidate:
|
||||
"""A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved
|
||||
to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking
|
||||
algorithm which will disambiguate the various candidates to the correct one.
|
||||
Each candidate (alias, entity) pair is assigned to a certain prior probability.
|
||||
|
||||
DOCS: https://spacy.io/api/candidate
|
||||
"""
|
||||
|
||||
def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
|
||||
self.kb = kb
|
||||
|
@ -62,8 +69,13 @@ cdef class Candidate:
|
|||
|
||||
|
||||
cdef class KnowledgeBase:
|
||||
"""A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases,
|
||||
to support entity linking of named entities to real-world concepts.
|
||||
|
||||
def __init__(self, Vocab vocab, entity_vector_length):
|
||||
DOCS: https://spacy.io/api/kb
|
||||
"""
|
||||
|
||||
def __init__(self, Vocab vocab, entity_vector_length=64):
|
||||
self.vocab = vocab
|
||||
self.mem = Pool()
|
||||
self.entity_vector_length = entity_vector_length
|
||||
|
|
|
@ -11558,7 +11558,7 @@ LOOKUP = {
|
|||
"drunker": "drunk",
|
||||
"drunkest": "drunk",
|
||||
"drunks": "drunk",
|
||||
"dry": "spin-dry",
|
||||
"dry": "dry",
|
||||
"dry-cleaned": "dry-clean",
|
||||
"dry-cleaners": "dry-cleaner",
|
||||
"dry-cleaning": "dry-clean",
|
||||
|
@ -35294,7 +35294,8 @@ LOOKUP = {
|
|||
"spryer": "spry",
|
||||
"spryest": "spry",
|
||||
"spuds": "spud",
|
||||
"spun": "spin-dry",
|
||||
"spun": "spin",
|
||||
"spun-dry": "spin-dry",
|
||||
"spunkier": "spunky",
|
||||
"spunkiest": "spunky",
|
||||
"spunks": "spunk",
|
||||
|
|
|
@ -6,7 +6,7 @@ from ...language import Language
|
|||
from ...tokens import Doc
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from .stop_words import STOP_WORDS
|
||||
|
||||
from .tag_map import TAG_MAP
|
||||
|
||||
class ChineseDefaults(Language.Defaults):
|
||||
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
||||
|
@ -14,6 +14,7 @@ class ChineseDefaults(Language.Defaults):
|
|||
use_jieba = True
|
||||
tokenizer_exceptions = BASE_EXCEPTIONS
|
||||
stop_words = STOP_WORDS
|
||||
tag_map = TAG_MAP
|
||||
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
|
||||
|
||||
|
||||
|
|
|
@ -9,10 +9,12 @@ Example sentences to test spaCy and its language models.
|
|||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
|
||||
# from https://zh.wikipedia.org/wiki/汉语
|
||||
sentences = [
|
||||
"蘋果公司正考量用一億元買下英國的新創公司",
|
||||
"自駕車將保險責任歸屬轉移至製造商",
|
||||
"舊金山考慮禁止送貨機器人在人行道上行駛",
|
||||
"倫敦是英國的大城市",
|
||||
"作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。",
|
||||
"汉语有多种分支,当中官话最为流行,为中华人民共和国的国家通用语言(又称为普通话)、以及中华民国的国语。",
|
||||
"此外,中文还是联合国正式语文,并被上海合作组织等国际组织采用为官方语言。",
|
||||
"在中国大陆,汉语通称为“汉语”。",
|
||||
"在联合国、台湾、香港及澳门,通称为“中文”。",
|
||||
"在新加坡及马来西亚,通称为“华语”。"
|
||||
]
|
||||
|
|
107
spacy/lang/zh/lex_attrs.py
Normal file
107
spacy/lang/zh/lex_attrs.py
Normal file
|
@ -0,0 +1,107 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
import re
|
||||
from ...attrs import LIKE_NUM
|
||||
|
||||
_single_num_words = [
|
||||
"〇",
|
||||
"一",
|
||||
"二",
|
||||
"三",
|
||||
"四",
|
||||
"五",
|
||||
"六",
|
||||
"七",
|
||||
"八",
|
||||
"九",
|
||||
"十",
|
||||
"十一",
|
||||
"十二",
|
||||
"十三",
|
||||
"十四",
|
||||
"十五",
|
||||
"十六",
|
||||
"十七",
|
||||
"十八",
|
||||
"十九",
|
||||
"廿",
|
||||
"卅",
|
||||
"卌",
|
||||
"皕",
|
||||
"零",
|
||||
"壹",
|
||||
"贰",
|
||||
"叁",
|
||||
"肆",
|
||||
"伍",
|
||||
"陆",
|
||||
"柒",
|
||||
"捌",
|
||||
"玖",
|
||||
"拾",
|
||||
"拾壹",
|
||||
"拾贰",
|
||||
"拾叁",
|
||||
"拾肆",
|
||||
"拾伍",
|
||||
"拾陆",
|
||||
"拾柒",
|
||||
"拾捌",
|
||||
"拾玖"
|
||||
]
|
||||
|
||||
_count_num_words = [
|
||||
"一",
|
||||
"二",
|
||||
"三",
|
||||
"四",
|
||||
"五",
|
||||
"六",
|
||||
"七",
|
||||
"八",
|
||||
"九",
|
||||
"壹",
|
||||
"贰",
|
||||
"叁",
|
||||
"肆",
|
||||
"伍",
|
||||
"陆",
|
||||
"柒",
|
||||
"捌",
|
||||
"玖"
|
||||
]
|
||||
|
||||
_base_num_words = [
|
||||
"十",
|
||||
"百",
|
||||
"千",
|
||||
"万",
|
||||
"亿",
|
||||
"兆",
|
||||
"拾",
|
||||
"佰",
|
||||
"仟"
|
||||
]
|
||||
|
||||
|
||||
def like_num(text):
|
||||
if text.startswith(("+", "-", "±", "~")):
|
||||
text = text[1:]
|
||||
text = text.replace(",", "").replace(
|
||||
".", "").replace(",", "").replace("。", "")
|
||||
if text.isdigit():
|
||||
return True
|
||||
if text.count("/") == 1:
|
||||
num, denom = text.split("/")
|
||||
if num.isdigit() and denom.isdigit():
|
||||
return True
|
||||
if text in _single_num_words:
|
||||
return True
|
||||
if re.match('^((' + '|'.join(_count_num_words) + '){1}'
|
||||
+ '(' + '|'.join(_base_num_words) + '){1})+'
|
||||
+ '(' + '|'.join(_count_num_words) + ')?$', text):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
LEX_ATTRS = {LIKE_NUM: like_num}
|
47
spacy/lang/zh/tag_map.py
Normal file
47
spacy/lang/zh/tag_map.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import POS, PUNCT, SYM, ADJ, CONJ, CCONJ, NUM, DET, ADV, ADP, X, VERB
|
||||
from ...symbols import NOUN, PROPN, PART, INTJ, SPACE, PRON, AUX
|
||||
|
||||
# The Chinese part-of-speech tagger uses the OntoNotes 5 version of the Penn Treebank tag set.
|
||||
# We also map the tags to the simpler Google Universal POS tag set.
|
||||
|
||||
TAG_MAP = {
|
||||
"AS": {POS: PART},
|
||||
"DEC": {POS: PART},
|
||||
"DEG": {POS: PART},
|
||||
"DER": {POS: PART},
|
||||
"DEV": {POS: PART},
|
||||
"ETC": {POS: PART},
|
||||
"LC": {POS: PART},
|
||||
"MSP": {POS: PART},
|
||||
"SP": {POS: PART},
|
||||
"BA": {POS: X},
|
||||
"FW": {POS: X},
|
||||
"IJ": {POS: INTJ},
|
||||
"LB": {POS: X},
|
||||
"ON": {POS: X},
|
||||
"SB": {POS: X},
|
||||
"X": {POS: X},
|
||||
"URL": {POS: X},
|
||||
"INF": {POS: X},
|
||||
"NN": {POS: NOUN},
|
||||
"NR": {POS: NOUN},
|
||||
"NT": {POS: NOUN},
|
||||
"VA": {POS: VERB},
|
||||
"VC": {POS: VERB},
|
||||
"VE": {POS: VERB},
|
||||
"VV": {POS: VERB},
|
||||
"CD": {POS: NUM},
|
||||
"M": {POS: NUM},
|
||||
"OD": {POS: NUM},
|
||||
"DT": {POS: DET},
|
||||
"CC": {POS: CCONJ},
|
||||
"CS": {POS: CONJ},
|
||||
"AD": {POS: ADV},
|
||||
"JJ": {POS: ADJ},
|
||||
"P": {POS: ADP},
|
||||
"PN": {POS: PRON},
|
||||
"PU": {POS: PUNCT}
|
||||
}
|
|
@ -14,6 +14,8 @@ from thinc.neural.util import to_categorical
|
|||
from thinc.neural.util import get_array_module
|
||||
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
from spacy.cli.pretrain import get_cossim_loss
|
||||
from .functions import merge_subtokens
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..syntax.nn_parser cimport Parser
|
||||
|
@ -1102,7 +1104,7 @@ cdef class EntityRecognizer(Parser):
|
|||
class EntityLinker(Pipe):
|
||||
"""Pipeline component for named entity linking.
|
||||
|
||||
DOCS: TODO
|
||||
DOCS: https://spacy.io/api/entitylinker
|
||||
"""
|
||||
name = 'entity_linker'
|
||||
NIL = "NIL" # string used to refer to a non-existing link
|
||||
|
@ -1121,9 +1123,6 @@ class EntityLinker(Pipe):
|
|||
self.model = True
|
||||
self.kb = None
|
||||
self.cfg = dict(cfg)
|
||||
self.sgd_context = None
|
||||
if not self.cfg.get("context_width"):
|
||||
self.cfg["context_width"] = 128
|
||||
|
||||
def set_kb(self, kb):
|
||||
self.kb = kb
|
||||
|
@ -1144,7 +1143,6 @@ class EntityLinker(Pipe):
|
|||
|
||||
if self.model is True:
|
||||
self.model = self.Model(**self.cfg)
|
||||
self.sgd_context = self.create_optimizer()
|
||||
|
||||
if sgd is None:
|
||||
sgd = self.create_optimizer()
|
||||
|
@ -1170,12 +1168,6 @@ class EntityLinker(Pipe):
|
|||
golds = [golds]
|
||||
|
||||
context_docs = []
|
||||
entity_encodings = []
|
||||
|
||||
priors = []
|
||||
type_vectors = []
|
||||
|
||||
type_to_int = self.cfg.get("type_to_int", dict())
|
||||
|
||||
for doc, gold in zip(docs, golds):
|
||||
ents_by_offset = dict()
|
||||
|
@ -1184,49 +1176,38 @@ class EntityLinker(Pipe):
|
|||
for entity, kb_dict in gold.links.items():
|
||||
start, end = entity
|
||||
mention = doc.text[start:end]
|
||||
|
||||
for kb_id, value in kb_dict.items():
|
||||
entity_encoding = self.kb.get_vector(kb_id)
|
||||
prior_prob = self.kb.get_prior_prob(kb_id, mention)
|
||||
|
||||
gold_ent = ents_by_offset["{}_{}".format(start, end)]
|
||||
if gold_ent is None:
|
||||
raise RuntimeError(Errors.E147.format(method="update", msg="gold entity not found"))
|
||||
|
||||
type_vector = [0 for i in range(len(type_to_int))]
|
||||
if len(type_to_int) > 0:
|
||||
type_vector[type_to_int[gold_ent.label_]] = 1
|
||||
|
||||
# store data
|
||||
entity_encodings.append(entity_encoding)
|
||||
# Currently only training on the positive instances
|
||||
if value:
|
||||
context_docs.append(doc)
|
||||
type_vectors.append(type_vector)
|
||||
|
||||
if self.cfg.get("prior_weight", 1) > 0:
|
||||
priors.append([prior_prob])
|
||||
else:
|
||||
priors.append([0])
|
||||
|
||||
if len(entity_encodings) > 0:
|
||||
if not (len(priors) == len(entity_encodings) == len(context_docs) == len(type_vectors)):
|
||||
raise RuntimeError(Errors.E147.format(method="update", msg="vector lengths not equal"))
|
||||
|
||||
entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32")
|
||||
|
||||
context_encodings, bp_context = self.model.tok2vec.begin_update(context_docs, drop=drop)
|
||||
mention_encodings = [list(context_encodings[i]) + list(entity_encodings[i]) + priors[i] + type_vectors[i]
|
||||
for i in range(len(entity_encodings))]
|
||||
pred, bp_mention = self.model.begin_update(self.model.ops.asarray(mention_encodings, dtype="float32"), drop=drop)
|
||||
|
||||
loss, d_scores = self.get_loss(scores=pred, golds=golds, docs=docs)
|
||||
mention_gradient = bp_mention(d_scores, sgd=sgd)
|
||||
|
||||
context_gradients = [list(x[0:self.cfg.get("context_width")]) for x in mention_gradient]
|
||||
bp_context(self.model.ops.asarray(context_gradients, dtype="float32"), sgd=self.sgd_context)
|
||||
context_encodings, bp_context = self.model.begin_update(context_docs, drop=drop)
|
||||
loss, d_scores = self.get_similarity_loss(scores=context_encodings, golds=golds, docs=None)
|
||||
bp_context(d_scores, sgd=sgd)
|
||||
|
||||
if losses is not None:
|
||||
losses[self.name] += loss
|
||||
return loss
|
||||
return 0
|
||||
|
||||
def get_similarity_loss(self, docs, golds, scores):
|
||||
entity_encodings = []
|
||||
for gold in golds:
|
||||
for entity, kb_dict in gold.links.items():
|
||||
for kb_id, value in kb_dict.items():
|
||||
# this loss function assumes we're only using positive examples
|
||||
if value:
|
||||
entity_encoding = self.kb.get_vector(kb_id)
|
||||
entity_encodings.append(entity_encoding)
|
||||
|
||||
entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32")
|
||||
|
||||
if scores.shape != entity_encodings.shape:
|
||||
raise RuntimeError(Errors.E147.format(method="get_loss", msg="gold entities do not match up"))
|
||||
|
||||
loss, gradients = get_cossim_loss(yh=scores, y=entity_encodings)
|
||||
loss = loss / len(entity_encodings)
|
||||
return loss, gradients
|
||||
|
||||
def get_loss(self, docs, golds, scores):
|
||||
cats = []
|
||||
|
@ -1271,20 +1252,17 @@ class EntityLinker(Pipe):
|
|||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
|
||||
context_encodings = self.model.tok2vec(docs)
|
||||
context_encodings = self.model(docs)
|
||||
xp = get_array_module(context_encodings)
|
||||
|
||||
type_to_int = self.cfg.get("type_to_int", dict())
|
||||
|
||||
for i, doc in enumerate(docs):
|
||||
if len(doc) > 0:
|
||||
# currently, the context is the same for each entity in a sentence (should be refined)
|
||||
context_encoding = context_encodings[i]
|
||||
context_enc_t = context_encoding.T
|
||||
norm_1 = xp.linalg.norm(context_enc_t)
|
||||
for ent in doc.ents:
|
||||
entity_count += 1
|
||||
type_vector = [0 for i in range(len(type_to_int))]
|
||||
if len(type_to_int) > 0:
|
||||
type_vector[type_to_int[ent.label_]] = 1
|
||||
|
||||
candidates = self.kb.get_candidates(ent.text)
|
||||
if not candidates:
|
||||
|
@ -1293,20 +1271,23 @@ class EntityLinker(Pipe):
|
|||
else:
|
||||
random.shuffle(candidates)
|
||||
|
||||
# this will set the prior probabilities to 0 (just like in training) if their weight is 0
|
||||
prior_probs = xp.asarray([[c.prior_prob] for c in candidates])
|
||||
prior_probs *= self.cfg.get("prior_weight", 1)
|
||||
# this will set all prior probabilities to 0 if they should be excluded from the model
|
||||
prior_probs = xp.asarray([c.prior_prob for c in candidates])
|
||||
if not self.cfg.get("incl_prior", True):
|
||||
prior_probs = xp.asarray([[0.0] for c in candidates])
|
||||
scores = prior_probs
|
||||
|
||||
if self.cfg.get("context_weight", 1) > 0:
|
||||
# add in similarity from the context
|
||||
if self.cfg.get("incl_context", True):
|
||||
entity_encodings = xp.asarray([c.entity_vector for c in candidates])
|
||||
norm_2 = xp.linalg.norm(entity_encodings, axis=1)
|
||||
|
||||
if len(entity_encodings) != len(prior_probs):
|
||||
raise RuntimeError(Errors.E147.format(method="predict", msg="vectors not of equal length"))
|
||||
|
||||
mention_encodings = [list(context_encoding) + list(entity_encodings[i])
|
||||
+ list(prior_probs[i]) + type_vector
|
||||
for i in range(len(entity_encodings))]
|
||||
scores = self.model(self.model.ops.asarray(mention_encodings, dtype="float32"))
|
||||
# cosine similarity
|
||||
sims = xp.dot(entity_encodings, context_enc_t) / (norm_1 * norm_2)
|
||||
scores = prior_probs + sims - (prior_probs*sims)
|
||||
|
||||
# TODO: thresholding
|
||||
best_index = scores.argmax()
|
||||
|
|
|
@ -23,9 +23,9 @@ def test_kb_valid_entities(nlp):
|
|||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[8, 4, 3])
|
||||
mykb.add_entity(entity="Q2", freq=0.5, entity_vector=[2, 1, 0])
|
||||
mykb.add_entity(entity="Q3", freq=0.5, entity_vector=[-1, -6, 5])
|
||||
mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
|
||||
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
|
||||
mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
|
||||
|
||||
# adding aliases
|
||||
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
|
||||
|
@ -52,9 +52,9 @@ def test_kb_invalid_entities(nlp):
|
|||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[1])
|
||||
mykb.add_entity(entity="Q2", freq=0.2, entity_vector=[2])
|
||||
mykb.add_entity(entity="Q3", freq=0.5, entity_vector=[3])
|
||||
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
||||
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
||||
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
|
||||
|
||||
# adding aliases - should fail because one of the given IDs is not valid
|
||||
with pytest.raises(ValueError):
|
||||
|
@ -68,9 +68,9 @@ def test_kb_invalid_probabilities(nlp):
|
|||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[1])
|
||||
mykb.add_entity(entity="Q2", freq=0.2, entity_vector=[2])
|
||||
mykb.add_entity(entity="Q3", freq=0.5, entity_vector=[3])
|
||||
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
||||
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
||||
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
|
||||
|
||||
# adding aliases - should fail because the sum of the probabilities exceeds 1
|
||||
with pytest.raises(ValueError):
|
||||
|
@ -82,9 +82,9 @@ def test_kb_invalid_combination(nlp):
|
|||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[1])
|
||||
mykb.add_entity(entity="Q2", freq=0.2, entity_vector=[2])
|
||||
mykb.add_entity(entity="Q3", freq=0.5, entity_vector=[3])
|
||||
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
||||
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
||||
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
|
||||
|
||||
# adding aliases - should fail because the entities and probabilities vectors are not of equal length
|
||||
with pytest.raises(ValueError):
|
||||
|
@ -98,11 +98,11 @@ def test_kb_invalid_entity_vector(nlp):
|
|||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[1, 2, 3])
|
||||
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
|
||||
|
||||
# this should fail because the kb's expected entity vector length is 3
|
||||
with pytest.raises(ValueError):
|
||||
mykb.add_entity(entity="Q2", freq=0.2, entity_vector=[2])
|
||||
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
||||
|
||||
|
||||
def test_candidate_generation(nlp):
|
||||
|
@ -110,9 +110,9 @@ def test_candidate_generation(nlp):
|
|||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity="Q1", freq=0.7, entity_vector=[1])
|
||||
mykb.add_entity(entity="Q2", freq=0.2, entity_vector=[2])
|
||||
mykb.add_entity(entity="Q3", freq=0.5, entity_vector=[3])
|
||||
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
|
||||
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
|
||||
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
|
||||
|
||||
# adding aliases
|
||||
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
|
||||
|
@ -126,7 +126,7 @@ def test_candidate_generation(nlp):
|
|||
# test the content of the candidates
|
||||
assert mykb.get_candidates("adam")[0].entity_ == "Q2"
|
||||
assert mykb.get_candidates("adam")[0].alias_ == "adam"
|
||||
assert_almost_equal(mykb.get_candidates("adam")[0].entity_freq, 0.2)
|
||||
assert_almost_equal(mykb.get_candidates("adam")[0].entity_freq, 12)
|
||||
assert_almost_equal(mykb.get_candidates("adam")[0].prior_prob, 0.9)
|
||||
|
||||
|
||||
|
@ -135,8 +135,8 @@ def test_preserving_links_asdoc(nlp):
|
|||
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
||||
|
||||
# adding entities
|
||||
mykb.add_entity(entity="Q1", freq=0.9, entity_vector=[1])
|
||||
mykb.add_entity(entity="Q2", freq=0.8, entity_vector=[1])
|
||||
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
||||
mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
|
||||
|
||||
# adding aliases
|
||||
mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
|
||||
|
@ -154,11 +154,11 @@ def test_preserving_links_asdoc(nlp):
|
|||
ruler.add_patterns(patterns)
|
||||
nlp.add_pipe(ruler)
|
||||
|
||||
el_pipe = nlp.create_pipe(name="entity_linker", config={"context_width": 64})
|
||||
el_pipe = nlp.create_pipe(name="entity_linker")
|
||||
el_pipe.set_kb(mykb)
|
||||
el_pipe.begin_training()
|
||||
el_pipe.context_weight = 0
|
||||
el_pipe.prior_weight = 1
|
||||
el_pipe.incl_context = False
|
||||
el_pipe.incl_prior = True
|
||||
nlp.add_pipe(el_pipe, last=True)
|
||||
|
||||
# test whether the entity links are preserved by the `as_doc()` function
|
||||
|
|
14
spacy/tests/regression/test_issue4104.py
Normal file
14
spacy/tests/regression/test_issue4104.py
Normal file
|
@ -0,0 +1,14 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
def test_issue4104(en_vocab):
|
||||
"""Test that English lookup lemmatization of spun & dry are correct
|
||||
expected mapping = {'dry': 'dry', 'spun': 'spin', 'spun-dry': 'spin-dry'}
|
||||
"""
|
||||
text = 'dry spun spun-dry'
|
||||
doc = get_doc(en_vocab, [t for t in text.split(" ")])
|
||||
# using a simple list to preserve order
|
||||
expected = ['dry', 'spin', 'spin-dry']
|
||||
assert [token.lemma_ for token in doc] == expected
|
|
@ -30,10 +30,10 @@ def test_serialize_kb_disk(en_vocab):
|
|||
def _get_dummy_kb(vocab):
|
||||
kb = KnowledgeBase(vocab=vocab, entity_vector_length=3)
|
||||
|
||||
kb.add_entity(entity='Q53', freq=0.33, entity_vector=[0, 5, 3])
|
||||
kb.add_entity(entity='Q17', freq=0.2, entity_vector=[7, 1, 0])
|
||||
kb.add_entity(entity='Q007', freq=0.7, entity_vector=[0, 0, 7])
|
||||
kb.add_entity(entity='Q44', freq=0.4, entity_vector=[4, 4, 4])
|
||||
kb.add_entity(entity='Q53', freq=33, entity_vector=[0, 5, 3])
|
||||
kb.add_entity(entity='Q17', freq=2, entity_vector=[7, 1, 0])
|
||||
kb.add_entity(entity='Q007', freq=7, entity_vector=[0, 0, 7])
|
||||
kb.add_entity(entity='Q44', freq=342, entity_vector=[4, 4, 4])
|
||||
|
||||
kb.add_alias(alias='double07', entities=['Q17', 'Q007'], probabilities=[0.1, 0.9])
|
||||
kb.add_alias(alias='guy', entities=['Q53', 'Q007', 'Q17', 'Q44'], probabilities=[0.3, 0.3, 0.2, 0.1])
|
||||
|
@ -62,13 +62,13 @@ def _check_kb(kb):
|
|||
assert len(candidates) == 2
|
||||
|
||||
assert candidates[0].entity_ == 'Q007'
|
||||
assert 0.6999 < candidates[0].entity_freq < 0.701
|
||||
assert 6.999 < candidates[0].entity_freq < 7.01
|
||||
assert candidates[0].entity_vector == [0, 0, 7]
|
||||
assert candidates[0].alias_ == 'double07'
|
||||
assert 0.899 < candidates[0].prior_prob < 0.901
|
||||
|
||||
assert candidates[1].entity_ == 'Q17'
|
||||
assert 0.199 < candidates[1].entity_freq < 0.201
|
||||
assert 1.99 < candidates[1].entity_freq < 2.01
|
||||
assert candidates[1].entity_vector == [7, 1, 0]
|
||||
assert candidates[1].alias_ == 'double07'
|
||||
assert 0.099 < candidates[1].prior_prob < 0.101
|
||||
|
|
|
@ -4,7 +4,7 @@ from __future__ import unicode_literals
|
|||
from spacy.gold import biluo_tags_from_offsets, offsets_from_biluo_tags
|
||||
from spacy.gold import spans_from_biluo_tags, GoldParse
|
||||
from spacy.tokens import Doc
|
||||
|
||||
import pytest
|
||||
|
||||
def test_gold_biluo_U(en_vocab):
|
||||
words = ["I", "flew", "to", "London", "."]
|
||||
|
@ -32,6 +32,14 @@ def test_gold_biluo_BIL(en_vocab):
|
|||
tags = biluo_tags_from_offsets(doc, entities)
|
||||
assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
|
||||
|
||||
def test_gold_biluo_overlap(en_vocab):
|
||||
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
|
||||
spaces = [True, True, True, True, True, False, True]
|
||||
doc = Doc(en_vocab, words=words, spaces=spaces)
|
||||
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
|
||||
(len("I flew to "), len("I flew to San Francisco"), "LOC")]
|
||||
with pytest.raises(ValueError):
|
||||
tags = biluo_tags_from_offsets(doc, entities)
|
||||
|
||||
def test_gold_biluo_misalign(en_vocab):
|
||||
words = ["I", "flew", "to", "San", "Francisco", "Valley."]
|
||||
|
|
|
@ -546,6 +546,7 @@ cdef class Doc:
|
|||
cdef int i
|
||||
for i in range(self.length):
|
||||
self.c[i].ent_type = 0
|
||||
self.c[i].ent_kb_id = 0
|
||||
self.c[i].ent_iob = 0 # Means missing.
|
||||
cdef attr_t ent_type
|
||||
cdef int start, end
|
||||
|
|
|
@ -1600,6 +1600,36 @@
|
|||
"github": "explosion",
|
||||
"website": "https://explosion.ai"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "negspacy",
|
||||
"title": "negspaCy",
|
||||
"slogan": "spaCy pipeline object for negating concepts in text based on the NegEx algorithm.",
|
||||
"github": "jenojp/negspacy",
|
||||
"url": "https://github.com/jenojp/negspacy",
|
||||
"description": "negspacy is a spaCy pipeline component that evaluates whether Named Entities are negated in text. It adds an extension to 'Span' objects.",
|
||||
"pip": "negspacy",
|
||||
"category": ["pipeline", "scientific"],
|
||||
"tags": ["negation", "text-processing"],
|
||||
"thumb":"https://github.com/jenojp/negspacy/blob/master/docs/thumb.png?raw=true",
|
||||
"image":"https://github.com/jenojp/negspacy/blob/master/docs/icon.png?raw=true",
|
||||
"code_example": [
|
||||
"import spacy",
|
||||
"from negspacy.negation import Negex",
|
||||
"",
|
||||
"nlp = spacy.load(\"en_core_web_sm\")",
|
||||
"negex = Negex(nlp, ent_types=[\"PERSON','ORG\"])",
|
||||
"nlp.add_pipe(negex, last=True)",
|
||||
"",
|
||||
"doc = nlp(\"She does not like Steve Jobs but likes Apple products.\")",
|
||||
"for e in doc.ents:",
|
||||
" print(e.text, e._.negex)"
|
||||
],
|
||||
"author": "Jeno Pizarro",
|
||||
"author_links": {
|
||||
"github": "jenojp",
|
||||
"twitter": "jenojp"
|
||||
}
|
||||
}
|
||||
],
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user