Merge branch 'copy_master' into copy_v4

This commit is contained in:
svlandeg 2023-01-03 13:34:05 +01:00
commit 6852adc8b7
10 changed files with 131 additions and 19 deletions

View File

@ -1,5 +1,5 @@
# Our libraries # Our libraries
spacy-legacy>=3.0.10,<3.1.0 spacy-legacy>=3.0.11,<3.1.0
spacy-loggers>=1.0.0,<2.0.0 spacy-loggers>=1.0.0,<2.0.0
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0

View File

@ -22,6 +22,7 @@ classifiers =
Programming Language :: Python :: 3.8 Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9 Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10 Programming Language :: Python :: 3.10
Programming Language :: Python :: 3.11
Topic :: Scientific/Engineering Topic :: Scientific/Engineering
project_urls = project_urls =
Release notes = https://github.com/explosion/spaCy/releases Release notes = https://github.com/explosion/spaCy/releases
@ -33,7 +34,7 @@ include_package_data = true
python_requires = >=3.6 python_requires = >=3.6
install_requires = install_requires =
# Our libraries # Our libraries
spacy-legacy>=3.0.10,<3.1.0 spacy-legacy>=3.0.11,<3.1.0
spacy-loggers>=1.0.0,<2.0.0 spacy-loggers>=1.0.0,<2.0.0
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0

View File

@ -53,9 +53,7 @@ def _stream_jsonl(path: Path, field: str) -> Iterable[str]:
""" """
for entry in srsly.read_jsonl(path): for entry in srsly.read_jsonl(path):
if field not in entry: if field not in entry:
msg.fail( msg.fail(f"{path} does not contain the required '{field}' field.", exits=1)
f"{path} does not contain the required '{field}' field.", exits=1
)
else: else:
yield entry[field] yield entry[field]
@ -118,8 +116,10 @@ def apply(
paths = walk_directory(data_path) paths = walk_directory(data_path)
if len(paths) == 0: if len(paths) == 0:
docbin.to_disk(output_file) docbin.to_disk(output_file)
msg.warn("Did not find data to process," msg.warn(
f" {data_path} seems to be an empty directory.") "Did not find data to process,"
f" {data_path} seems to be an empty directory."
)
return return
nlp = load_model(model) nlp = load_model(model)
msg.good(f"Loaded model {model}") msg.good(f"Loaded model {model}")

View File

@ -944,6 +944,7 @@ class Errors(metaclass=ErrorsWithCodes):
E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default " E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default "
"knowledge base, use `InMemoryLookupKB`.") "knowledge base, use `InMemoryLookupKB`.")
E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.") E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.")
E1048 = ("Got '{unexpected}' as console progress bar type, but expected one of the following: {expected}")
# v4 error strings # v4 error strings
E4000 = ("Expected a Doc as input, but got: '{type}'") E4000 = ("Expected a Doc as input, but got: '{type}'")

View File

@ -179,7 +179,7 @@ def prioritize_existing_ents_filter(
@registry.misc("spacy.prioritize_existing_ents_filter.v1") @registry.misc("spacy.prioritize_existing_ents_filter.v1")
def make_preverse_existing_ents_filter(): def make_preserve_existing_ents_filter():
return prioritize_existing_ents_filter return prioritize_existing_ents_filter

View File

@ -77,7 +77,7 @@ subword_features = true
default_config={ default_config={
"threshold": 0.0, "threshold": 0.0,
"model": DEFAULT_SINGLE_TEXTCAT_MODEL, "model": DEFAULT_SINGLE_TEXTCAT_MODEL,
"scorer": {"@scorers": "spacy.textcat_scorer.v1"}, "scorer": {"@scorers": "spacy.textcat_scorer.v2"},
"save_activations": False, "save_activations": False,
}, },
default_score_weights={ default_score_weights={
@ -130,7 +130,7 @@ def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
) )
@registry.scorers("spacy.textcat_scorer.v1") @registry.scorers("spacy.textcat_scorer.v2")
def make_textcat_scorer(): def make_textcat_scorer():
return textcat_score return textcat_score

View File

@ -934,3 +934,22 @@ def test_save_activations_multi():
doc = nlp("This is a test.") doc = nlp("This is a test.")
assert list(doc.activations["textcat_multilabel"].keys()) == ["probabilities"] assert list(doc.activations["textcat_multilabel"].keys()) == ["probabilities"]
assert doc.activations["textcat_multilabel"]["probabilities"].shape == (nO,) assert doc.activations["textcat_multilabel"]["probabilities"].shape == (nO,)
@pytest.mark.parametrize(
"component_name,scorer", [("textcat", "spacy.textcat_scorer.v1")]
)
def test_textcat_legacy_scorers(component_name, scorer):
"""Check that legacy scorers are registered and produce the expected score
keys."""
nlp = English()
nlp.add_pipe(component_name, config={"scorer": {"@scorers": scorer}})
train_examples = []
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
nlp.initialize(get_examples=lambda: train_examples)
# score the model (it's not actually trained but that doesn't matter)
scores = nlp.evaluate(train_examples)
assert 0 <= scores["cats_score"] <= 1

View File

@ -26,6 +26,8 @@ def setup_table(
return final_cols, final_widths, ["r" for _ in final_widths] return final_cols, final_widths, ["r" for _ in final_widths]
# We cannot rename this method as it's directly imported
# and used by external packages such as spacy-loggers.
@registry.loggers("spacy.ConsoleLogger.v2") @registry.loggers("spacy.ConsoleLogger.v2")
def console_logger( def console_logger(
progress_bar: bool = False, progress_bar: bool = False,
@ -33,7 +35,27 @@ def console_logger(
output_file: Optional[Union[str, Path]] = None, output_file: Optional[Union[str, Path]] = None,
): ):
"""The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file. """The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file.
progress_bar (bool): Whether the logger should print the progress bar. progress_bar (bool): Whether the logger should print a progress bar tracking the steps till the next evaluation pass.
console_output (bool): Whether the logger should print the logs on the console.
output_file (Optional[Union[str, Path]]): The file to save the training logs to.
"""
return console_logger_v3(
progress_bar=None if progress_bar is False else "eval",
console_output=console_output,
output_file=output_file,
)
@registry.loggers("spacy.ConsoleLogger.v3")
def console_logger_v3(
progress_bar: Optional[str] = None,
console_output: bool = True,
output_file: Optional[Union[str, Path]] = None,
):
"""The ConsoleLogger.v3 prints out training logs in the console and/or saves them to a jsonl file.
progress_bar (Optional[str]): Type of progress bar to show in the console. Allowed values:
train - Tracks the number of steps from the beginning of training until the full training run is complete (training.max_steps is reached).
eval - Tracks the number of steps between the previous and next evaluation (training.eval_frequency is reached).
console_output (bool): Whether the logger should print the logs on the console. console_output (bool): Whether the logger should print the logs on the console.
output_file (Optional[Union[str, Path]]): The file to save the training logs to. output_file (Optional[Union[str, Path]]): The file to save the training logs to.
""" """
@ -70,6 +92,7 @@ def console_logger(
for name, proc in nlp.pipeline for name, proc in nlp.pipeline
if hasattr(proc, "is_trainable") and proc.is_trainable if hasattr(proc, "is_trainable") and proc.is_trainable
] ]
max_steps = nlp.config["training"]["max_steps"]
eval_frequency = nlp.config["training"]["eval_frequency"] eval_frequency = nlp.config["training"]["eval_frequency"]
score_weights = nlp.config["training"]["score_weights"] score_weights = nlp.config["training"]["score_weights"]
score_cols = [col for col, value in score_weights.items() if value is not None] score_cols = [col for col, value in score_weights.items() if value is not None]
@ -84,6 +107,13 @@ def console_logger(
write(msg.row(table_header, widths=table_widths, spacing=spacing)) write(msg.row(table_header, widths=table_widths, spacing=spacing))
write(msg.row(["-" * width for width in table_widths], spacing=spacing)) write(msg.row(["-" * width for width in table_widths], spacing=spacing))
progress = None progress = None
expected_progress_types = ("train", "eval")
if progress_bar is not None and progress_bar not in expected_progress_types:
raise ValueError(
Errors.E1048.format(
unexpected=progress_bar, expected=expected_progress_types
)
)
def log_step(info: Optional[Dict[str, Any]]) -> None: def log_step(info: Optional[Dict[str, Any]]) -> None:
nonlocal progress nonlocal progress
@ -141,11 +171,23 @@ def console_logger(
) )
) )
if progress_bar: if progress_bar:
if progress_bar == "train":
total = max_steps
desc = f"Last Eval Epoch: {info['epoch']}"
initial = info["step"]
else:
total = eval_frequency
desc = f"Epoch {info['epoch']+1}"
initial = 0
# Set disable=None, so that it disables on non-TTY # Set disable=None, so that it disables on non-TTY
progress = tqdm.tqdm( progress = tqdm.tqdm(
total=eval_frequency, disable=None, leave=False, file=stderr total=total,
disable=None,
leave=False,
file=stderr,
initial=initial,
) )
progress.set_description(f"Epoch {info['epoch']+1}") progress.set_description(desc)
def finalize() -> None: def finalize() -> None:
if output_stream: if output_stream:

View File

@ -513,7 +513,7 @@ a [Weights & Biases](https://www.wandb.com/) dashboard.
Instead of using one of the built-in loggers, you can Instead of using one of the built-in loggers, you can
[implement your own](/usage/training#custom-logging). [implement your own](/usage/training#custom-logging).
#### spacy.ConsoleLogger.v2 {#ConsoleLogger tag="registered function"} #### spacy.ConsoleLogger.v2 {tag="registered function"}
> #### Example config > #### Example config
> >
@ -565,10 +565,32 @@ start decreasing across epochs.
</Accordion> </Accordion>
| Name | Description | | Name | Description |
| ---------------- | --------------------------------------------------------------------- | | ---------------- | ---------------------------------------------------------------------------------------------------------------------------- |
| `progress_bar` | Whether the logger should print the progress bar ~~bool~~ | | `progress_bar` | Whether the logger should print a progress bar tracking the steps till the next evaluation pass (default: `False`). ~~bool~~ |
| `console_output` | Whether the logger should print the logs on the console. ~~bool~~ | | `console_output` | Whether the logger should print the logs in the console (default: `True`). ~~bool~~ |
| `output_file` | The file to save the training logs to. ~~Optional[Union[str, Path]]~~ | | `output_file` | The file to save the training logs to (default: `None`). ~~Optional[Union[str, Path]]~~ |
#### spacy.ConsoleLogger.v3 {#ConsoleLogger tag="registered function"}
> #### Example config
>
> ```ini
> [training.logger]
> @loggers = "spacy.ConsoleLogger.v3"
> progress_bar = "all_steps"
> console_output = true
> output_file = "training_log.jsonl"
> ```
Writes the results of a training step to the console in a tabular format and
optionally saves them to a `jsonl` file.
| Name | Description |
| ---------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `progress_bar` | Type of progress bar to show in the console: `"train"`, `"eval"` or `None`. |
| | The bar tracks the number of steps until `training.max_steps` and `training.eval_frequency` are reached respectively (default: `None`). ~~Optional[str]~~ |
| `console_output` | Whether the logger should print the logs in the console (default: `True`). ~~bool~~ |
| `output_file` | The file to save the training logs to (default: `None`). ~~Optional[Union[str, Path]]~~ |
## Readers {#readers} ## Readers {#readers}

View File

@ -4066,6 +4066,33 @@
"author_links": { "author_links": {
"github": "yasufumy" "github": "yasufumy"
} }
},
{
"id": "spacy-pythainlp",
"title": "spaCy-PyThaiNLP",
"slogan": "PyThaiNLP for spaCy",
"description": "This package wraps the PyThaiNLP library to add support for Thai to spaCy.",
"github": "PyThaiNLP/spaCy-PyThaiNLP",
"code_example": [
"import spacy",
"import spacy_pythainlp.core",
"",
"nlp = spacy.blank('th')",
"nlp.add_pipe('pythainlp')",
"doc = nlp('ผมเป็นคนไทย แต่มะลิอยากไปโรงเรียนส่วนผมจะไปไหน ผมอยากไปเที่ยว')",
"",
"print(list(doc.sents))",
"# output: [ผมเป็นคนไทย แต่มะลิอยากไปโรงเรียนส่วนผมจะไปไหน , ผมอยากไปเที่ยว]"
],
"code_language": "python",
"author": "Wannaphong Phatthiyaphaibun",
"author_links": {
"twitter": "@wannaphong_p",
"github": "wannaphong",
"website": "https://iam.wannaphong.com/"
},
"category": ["pipeline", "research"],
"tags": ["Thai"]
} }
], ],