mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 09:57:26 +03:00 
			
		
		
		
	Fix train command line args
This commit is contained in:
		
							parent
							
								
									a7ee63c0ac
								
							
						
					
					
						commit
						6e8dce2c05
					
				| 
						 | 
					@ -53,17 +53,18 @@ def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
 | 
				
			||||||
    if no_entities and 'entities' in pipeline: pipeline.remove('entities')
 | 
					    if no_entities and 'entities' in pipeline: pipeline.remove('entities')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    nlp = lang_class(pipeline=pipeline)
 | 
					    nlp = lang_class(pipeline=pipeline)
 | 
				
			||||||
    corpus = GoldCorpus(train_path, dev_path)
 | 
					    corpus = GoldCorpus(train_path, dev_path, limit=n_sents)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    dropout = util.env_opt('dropout', 0.0)
 | 
					    dropout = util.env_opt('dropout', 0.0)
 | 
				
			||||||
    dropout_decay = util.env_opt('dropout_decay', 0.0)
 | 
					    dropout_decay = util.env_opt('dropout_decay', 0.0)
 | 
				
			||||||
 | 
					    orig_dropout = dropout
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    optimizer = nlp.begin_training(lambda: corpus.train_tuples, use_gpu=use_gpu)
 | 
					    optimizer = nlp.begin_training(lambda: corpus.train_tuples, use_gpu=use_gpu)
 | 
				
			||||||
    n_train_docs = corpus.count_train()
 | 
					    n_train_docs = corpus.count_train()
 | 
				
			||||||
    batch_size = float(util.env_opt('min_batch_size', 4))
 | 
					    batch_size = float(util.env_opt('min_batch_size', 4))
 | 
				
			||||||
    max_batch_size = util.env_opt('max_batch_size', 64)
 | 
					    max_batch_size = util.env_opt('max_batch_size', 64)
 | 
				
			||||||
    batch_accel = util.env_opt('batch_accel', 1.001)
 | 
					    batch_accel = util.env_opt('batch_accel', 1.001)
 | 
				
			||||||
    print("Itn.\tDep. Loss\tUAS\tNER F.\tTag %\tToken %")
 | 
					    print("Itn.\tDep. Loss\tUAS\tNER P.\tNER R.\tNER F.\tTag %\tToken %")
 | 
				
			||||||
    for i in range(n_iter):
 | 
					    for i in range(n_iter):
 | 
				
			||||||
        with tqdm.tqdm(total=n_train_docs) as pbar:
 | 
					        with tqdm.tqdm(total=n_train_docs) as pbar:
 | 
				
			||||||
            train_docs = corpus.train_docs(nlp, shuffle=i, projectivize=True)
 | 
					            train_docs = corpus.train_docs(nlp, shuffle=i, projectivize=True)
 | 
				
			||||||
| 
						 | 
					@ -77,8 +78,8 @@ def train(_, lang, output_dir, train_data, dev_data, n_iter=20, n_sents=0,
 | 
				
			||||||
                pbar.update(len(docs))
 | 
					                pbar.update(len(docs))
 | 
				
			||||||
                idx += len(docs)
 | 
					                idx += len(docs)
 | 
				
			||||||
                batch_size *= batch_accel
 | 
					                batch_size *= batch_accel
 | 
				
			||||||
                batch_size = min(int(batch_size), max_batch_size)
 | 
					                batch_size = min(batch_size, max_batch_size)
 | 
				
			||||||
                dropout = linear_decay(dropout, dropout_decay, i*n_train_docs+idx)
 | 
					                dropout = linear_decay(orig_dropout, dropout_decay, i*n_train_docs+idx)
 | 
				
			||||||
        with nlp.use_params(optimizer.averages):
 | 
					        with nlp.use_params(optimizer.averages):
 | 
				
			||||||
            scorer = nlp.evaluate(corpus.dev_docs(nlp))
 | 
					            scorer = nlp.evaluate(corpus.dev_docs(nlp))
 | 
				
			||||||
        print_progress(i, {}, scorer.scores)
 | 
					        print_progress(i, {}, scorer.scores)
 | 
				
			||||||
| 
						 | 
					@ -97,38 +98,24 @@ def _render_parses(i, to_render):
 | 
				
			||||||
        file_.write(html)
 | 
					        file_.write(html)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def evaluate(Language, gold_tuples, path):
 | 
					 | 
				
			||||||
    with (path / 'model.bin').open('rb') as file_:
 | 
					 | 
				
			||||||
        nlp = dill.load(file_)
 | 
					 | 
				
			||||||
    # TODO:
 | 
					 | 
				
			||||||
    # 1. This code is duplicate with spacy.train.Trainer.evaluate
 | 
					 | 
				
			||||||
    # 2. There's currently a semantic difference between pipe and
 | 
					 | 
				
			||||||
    #    not pipe! It matters whether we batch the inputs. Must fix!
 | 
					 | 
				
			||||||
    all_docs = []
 | 
					 | 
				
			||||||
    all_golds = []
 | 
					 | 
				
			||||||
    for raw_text, paragraph_tuples in dev_sents:
 | 
					 | 
				
			||||||
        if gold_preproc:
 | 
					 | 
				
			||||||
            raw_text = None
 | 
					 | 
				
			||||||
        else:
 | 
					 | 
				
			||||||
            paragraph_tuples = merge_sents(paragraph_tuples)
 | 
					 | 
				
			||||||
        docs = self.make_docs(raw_text, paragraph_tuples)
 | 
					 | 
				
			||||||
        golds = self.make_golds(docs, paragraph_tuples)
 | 
					 | 
				
			||||||
        all_docs.extend(docs)
 | 
					 | 
				
			||||||
        all_golds.extend(golds)
 | 
					 | 
				
			||||||
    scorer = Scorer()
 | 
					 | 
				
			||||||
    for doc, gold in zip(self.nlp.pipe(all_docs), all_golds):
 | 
					 | 
				
			||||||
        scorer.score(doc, gold)
 | 
					 | 
				
			||||||
    return scorer
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
def print_progress(itn, losses, dev_scores):
 | 
					def print_progress(itn, losses, dev_scores):
 | 
				
			||||||
    # TODO: Fix!
 | 
					    # TODO: Fix!
 | 
				
			||||||
    scores = {}
 | 
					    scores = {}
 | 
				
			||||||
    for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc', 'ents_f']:
 | 
					    for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
 | 
				
			||||||
 | 
					                'ents_p', 'ents_r', 'ents_f']:
 | 
				
			||||||
        scores[col] = 0.0
 | 
					        scores[col] = 0.0
 | 
				
			||||||
    scores.update(losses)
 | 
					    scores.update(losses)
 | 
				
			||||||
    scores.update(dev_scores)
 | 
					    scores.update(dev_scores)
 | 
				
			||||||
    tpl = '{:d}\t{dep_loss:.3f}\t{tag_loss:.3f}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}'
 | 
					    tpl = '\t'.join((
 | 
				
			||||||
 | 
					        '{:d}',
 | 
				
			||||||
 | 
					        '{dep_loss:.3f}',
 | 
				
			||||||
 | 
					        '{tag_loss:.3f}',
 | 
				
			||||||
 | 
					        '{uas:.3f}',
 | 
				
			||||||
 | 
					        '{ents_p:.3f}',
 | 
				
			||||||
 | 
					        '{ents_r:.3f}',
 | 
				
			||||||
 | 
					        '{ents_f:.3f}',
 | 
				
			||||||
 | 
					        '{tags_acc:.3f}',
 | 
				
			||||||
 | 
					        '{token_acc:.3f}'))
 | 
				
			||||||
    print(tpl.format(itn, **scores))
 | 
					    print(tpl.format(itn, **scores))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user