mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-25 11:23:40 +03:00
Add initial port
This commit is contained in:
parent
e7e845b5ed
commit
6f08d83731
|
@ -1,19 +1,20 @@
|
||||||
from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any, cast
|
from dataclasses import dataclass
|
||||||
from thinc.api import Config, Model, get_current_ops, set_dropout_rate, Ops
|
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, cast
|
||||||
from thinc.api import Optimizer, Softmax_v2
|
|
||||||
from thinc.types import Ragged, Ints2d, Floats2d, Ints1d
|
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
|
from thinc.api import Config, Model, Ops, Optimizer, Softmax_v2
|
||||||
|
from thinc.api import get_current_ops, set_dropout_rate
|
||||||
|
from thinc.types import Floats2d, Ints1d, Ints2d, Ragged
|
||||||
|
|
||||||
from ..compat import Protocol, runtime_checkable
|
from ..compat import Protocol, runtime_checkable
|
||||||
from ..scorer import Scorer
|
|
||||||
from ..language import Language
|
|
||||||
from .trainable_pipe import TrainablePipe
|
|
||||||
from ..tokens import Doc, SpanGroup, Span
|
|
||||||
from ..vocab import Vocab
|
|
||||||
from ..training import Example, validate_examples
|
|
||||||
from ..errors import Errors
|
from ..errors import Errors
|
||||||
|
from ..language import Language
|
||||||
|
from ..tokens import Doc, Span, SpanGroup
|
||||||
|
from ..training import Example, validate_examples
|
||||||
from ..util import registry
|
from ..util import registry
|
||||||
|
from ..vocab import Vocab
|
||||||
|
from .spancat import spancat_score
|
||||||
|
from .trainable_pipe import TrainablePipe
|
||||||
|
|
||||||
|
|
||||||
@registry.layers("spacy.Softmax.v1")
|
@registry.layers("spacy.Softmax.v1")
|
||||||
|
@ -68,11 +69,386 @@ class Suggester(Protocol):
|
||||||
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
|
||||||
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
|
||||||
},
|
},
|
||||||
|
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
|
||||||
)
|
)
|
||||||
def make_spancat(
|
def make_spancat(
|
||||||
nlp: Language,
|
nlp: Language,
|
||||||
name: str,
|
name: str,
|
||||||
suggester: Suggester,
|
suggester: Suggester,
|
||||||
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
||||||
):
|
spans_key: str,
|
||||||
|
scorer: Optional[Callable],
|
||||||
|
negative_weight: Optional[float] = 1.0,
|
||||||
|
allow_overlap: Optional[bool] = True,
|
||||||
|
) -> "SpanCategorizerExclusive":
|
||||||
|
"""Create a SpanCategorizer component. The span categorizer consists of two
|
||||||
|
parts: a suggester function that proposes candidate spans, and a labeller
|
||||||
|
model that predicts one or more labels for each span.
|
||||||
|
|
||||||
|
suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
|
||||||
|
Spans are returned as a ragged array with two integer columns, for the
|
||||||
|
start and end positions.
|
||||||
|
model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
|
||||||
|
is given a list of documents and (start, end) indices representing
|
||||||
|
candidate span offsets. The model predicts a probability for each category
|
||||||
|
for each span.
|
||||||
|
spans_key (str): Key of the doc.spans dict to save the spans under. During
|
||||||
|
initialization and training, the component will look for spans on the
|
||||||
|
reference document under the same key.
|
||||||
|
negative_weight (optional[float]): Multiplier for the loss terms.
|
||||||
|
Can be used to down weigh the negative samples if there are too many.
|
||||||
|
allow_overlap (Optional[bool]): If True the data is assumed to
|
||||||
|
contain overlapping spans.
|
||||||
|
"""
|
||||||
|
return SpanCategorizerExclusive(
|
||||||
|
nlp.vocab,
|
||||||
|
suggester=suggester,
|
||||||
|
model=model,
|
||||||
|
spans_key=spans_key,
|
||||||
|
negative_weight=negative_weight,
|
||||||
|
name=name,
|
||||||
|
scorer=scorer,
|
||||||
|
allow_overlap=allow_overlap,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Ranges:
|
||||||
|
"""
|
||||||
|
Helper class help avoid storing overlapping span.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.ranges = set()
|
||||||
|
|
||||||
|
def add(self, i, j):
|
||||||
|
for e in range(i, j):
|
||||||
|
self.ranges.add(e)
|
||||||
|
|
||||||
|
def __contains__(self, rang):
|
||||||
|
i, j = rang
|
||||||
|
for e in range(i, j):
|
||||||
|
if e in self.ranges:
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
class SpanCategorizerExclusive(TrainablePipe):
|
||||||
|
"""Pipeline component to label spans of text.
|
||||||
|
DOCS: https://spacy.io/api/spancategorizer
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab: Vocab,
|
||||||
|
model: Model[Tuple[List[Doc], Ragged], Floats2d],
|
||||||
|
suggester: Suggester,
|
||||||
|
name: str = "spancat_exclusive",
|
||||||
|
*,
|
||||||
|
spans_key: str = "spans",
|
||||||
|
negative_weight: Optional[float],
|
||||||
|
scorer: Optional[Callable] = spancat_score,
|
||||||
|
allow_overlap: Optional[bool] = True,
|
||||||
|
) -> None:
|
||||||
|
"""Initialize the span categorizer.
|
||||||
|
vocab (Vocab): The shared vocabulary.
|
||||||
|
model (thinc.api.Model): The Thinc Model powering the pipeline component.
|
||||||
|
name (str): The component instance name, used to add entries to the
|
||||||
|
losses during training.
|
||||||
|
spans_key (str): Key of the Doc.spans dict to save the spans under.
|
||||||
|
During initialization and training, the component will look for
|
||||||
|
spans on the reference document under the same key. Defaults to
|
||||||
|
`"spans"`.
|
||||||
|
negative_weight (optional[float]): Multiplier for the loss terms.
|
||||||
|
Can be used to down weigh the negative samples if there are too many.
|
||||||
|
scorer (Optional[Callable]): The scoring method. Defaults to
|
||||||
|
allow_overlap (Optional[bool]): If True the data is assumed to
|
||||||
|
contains overlapping spans.
|
||||||
|
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
|
||||||
|
spans allowed.
|
||||||
|
DOCS: https://spacy.io/api/spancategorizer#init
|
||||||
|
"""
|
||||||
|
self.cfg = {
|
||||||
|
"labels": [],
|
||||||
|
"spans_key": spans_key,
|
||||||
|
"negative_weight": negative_weight,
|
||||||
|
"allow_overlap": allow_overlap,
|
||||||
|
}
|
||||||
|
self.vocab = vocab
|
||||||
|
self.suggester = suggester
|
||||||
|
self.model = model
|
||||||
|
self.name = name
|
||||||
|
self.scorer = scorer
|
||||||
|
|
||||||
|
@property
|
||||||
|
def key(self) -> str:
|
||||||
|
"""Key of the doc.spans dict to save the spans under. During
|
||||||
|
initialization and training, the component will look for spans on the
|
||||||
|
reference document under the same key.
|
||||||
|
"""
|
||||||
|
return str(self.cfg["spans_key"])
|
||||||
|
|
||||||
|
def add_label(self, label: str) -> int:
|
||||||
|
"""Add a new label to the pipe.
|
||||||
|
label (str): The label to add.
|
||||||
|
RETURNS (int): 0 if label is already present, otherwise 1.
|
||||||
|
DOCS: https://spacy.io/api/spancategorizer#add_label
|
||||||
|
"""
|
||||||
|
if not isinstance(label, str):
|
||||||
|
raise ValueError(Errors.E187)
|
||||||
|
if label in self.labels:
|
||||||
|
return 0
|
||||||
|
self._allow_extra_label()
|
||||||
|
self.cfg["labels"].append(label) # type: ignore
|
||||||
|
self.vocab.strings.add(label)
|
||||||
|
return 1
|
||||||
|
|
||||||
|
@property
|
||||||
|
def labels(self) -> Tuple[str]:
|
||||||
|
"""RETURNS (Tuple[str]): The labels currently added to the component.
|
||||||
|
DOCS: https://spacy.io/api/spancategorizer#labels
|
||||||
|
"""
|
||||||
|
return tuple(self.cfg["labels"]) # type: ignore
|
||||||
|
|
||||||
|
@property
|
||||||
|
def label_data(self) -> List[str]:
|
||||||
|
"""RETURNS (List[str]): Information about the component's labels.
|
||||||
|
DOCS: https://spacy.io/api/spancategorizer#label_data
|
||||||
|
"""
|
||||||
|
return list(self.labels)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _negative_label(self):
|
||||||
|
"""
|
||||||
|
Index of the negative label.
|
||||||
|
"""
|
||||||
|
return len(self.label_data)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _n_labels(self):
|
||||||
|
"""
|
||||||
|
Number of labels including the negative label.
|
||||||
|
"""
|
||||||
|
return len(self.label_data) + 1
|
||||||
|
|
||||||
|
def predict(self, docs: Iterable[Doc]):
|
||||||
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
||||||
|
docs (Iterable[Doc]): The documents to predict.
|
||||||
|
RETURNS: The models prediction for each document.
|
||||||
|
DOCS: https://spacy.io/api/spancategorizer#predict
|
||||||
|
"""
|
||||||
|
indices = self.suggester(docs, ops=self.model.ops)
|
||||||
|
scores = self.model.predict((docs, indices)) # type: ignore
|
||||||
|
return indices, scores
|
||||||
|
|
||||||
|
def set_candidates(
|
||||||
|
self, docs: Iterable[Doc], *, candidates_key: str = "candidates"
|
||||||
|
) -> None:
|
||||||
|
"""Use the spancat suggester to add a list of span candidates to a
|
||||||
|
list of docs. Intended to be used for debugging purposes.
|
||||||
|
docs (Iterable[Doc]): The documents to modify.
|
||||||
|
candidates_key (str): Key of the Doc.spans dict to save the
|
||||||
|
candidate spans under.
|
||||||
|
DOCS: https://spacy.io/api/spancategorizer#set_candidates
|
||||||
|
"""
|
||||||
|
suggester_output = self.suggester(docs, ops=self.model.ops)
|
||||||
|
|
||||||
|
for candidates, doc in zip(suggester_output, docs): # type: ignore
|
||||||
|
doc.spans[candidates_key] = []
|
||||||
|
for index in candidates.dataXd:
|
||||||
|
doc.spans[candidates_key].append(doc[index[0] : index[1]])
|
||||||
|
|
||||||
|
def set_annotations(self, docs: Iterable[Doc], indices_scores) -> None:
|
||||||
|
"""Modify a batch of Doc objects, using pre-computed scores.
|
||||||
|
docs (Iterable[Doc]): The documents to modify.
|
||||||
|
scores: The scores to set, produced by SpanCategorizer.predict.
|
||||||
|
DOCS: https://spacy.io/api/spancategorizer#set_annotations
|
||||||
|
"""
|
||||||
|
allow_overlap = self.cfg["allow_overlap"]
|
||||||
|
labels = self.labels
|
||||||
|
indices, scores = indices_scores
|
||||||
|
offset = 0
|
||||||
|
for i, doc in enumerate(docs):
|
||||||
|
indices_i = indices[i].dataXd
|
||||||
|
doc.spans[self.key] = self._make_span_group(
|
||||||
|
doc,
|
||||||
|
indices_i,
|
||||||
|
scores[offset : offset + indices.lengths[i]],
|
||||||
|
labels,
|
||||||
|
allow_overlap,
|
||||||
|
) # type: ignore[arg-type]
|
||||||
|
offset += indices.lengths[i]
|
||||||
|
|
||||||
|
def update(
|
||||||
|
self,
|
||||||
|
examples: Iterable[Example],
|
||||||
|
*,
|
||||||
|
drop: float = 0.0,
|
||||||
|
sgd: Optional[Optimizer] = None,
|
||||||
|
losses: Optional[Dict[str, float]] = None,
|
||||||
|
) -> Dict[str, float]:
|
||||||
|
"""Learn from a batch of documents and gold-standard information,
|
||||||
|
updating the pipe's model. Delegates to predict and get_loss.
|
||||||
|
examples (Iterable[Example]): A batch of Example objects.
|
||||||
|
drop (float): The dropout rate.
|
||||||
|
sgd (thinc.api.Optimizer): The optimizer.
|
||||||
|
losses (Dict[str, float]): Optional record of the loss during training.
|
||||||
|
Updated using the component name as the key.
|
||||||
|
RETURNS (Dict[str, float]): The updated losses dictionary.
|
||||||
|
DOCS: https://spacy.io/api/spancategorizer#update
|
||||||
|
"""
|
||||||
|
if losses is None:
|
||||||
|
losses = {}
|
||||||
|
losses.setdefault(self.name, 0.0)
|
||||||
|
validate_examples(examples, "SpanCategorizer.update")
|
||||||
|
self._validate_categories(examples)
|
||||||
|
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
||||||
|
# Handle cases where there are no tokens in any docs.
|
||||||
|
return losses
|
||||||
|
docs = [eg.predicted for eg in examples]
|
||||||
|
spans = self.suggester(docs, ops=self.model.ops)
|
||||||
|
if spans.lengths.sum() == 0:
|
||||||
|
return losses
|
||||||
|
set_dropout_rate(self.model, drop)
|
||||||
|
scores, backprop_scores = self.model.begin_update((docs, spans))
|
||||||
|
loss, d_scores = self.get_loss(examples, (spans, scores))
|
||||||
|
backprop_scores(d_scores) # type: ignore
|
||||||
|
if sgd is not None:
|
||||||
|
self.finish_update(sgd)
|
||||||
|
losses[self.name] += loss
|
||||||
|
return losses
|
||||||
|
|
||||||
|
def get_loss(
|
||||||
|
self, examples: Iterable[Example], spans_scores: Tuple[Ragged, Floats2d]
|
||||||
|
) -> Tuple[float, float]:
|
||||||
|
"""Find the loss and gradient of loss for the batch of documents and
|
||||||
|
their predicted scores.
|
||||||
|
examples (Iterable[Examples]): The batch of examples.
|
||||||
|
spans_scores: Scores representing the model's predictions.
|
||||||
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||||
|
DOCS: https://spacy.io/api/spancategorizer#get_loss
|
||||||
|
"""
|
||||||
|
spans, scores = spans_scores
|
||||||
|
spans = Ragged(
|
||||||
|
self.model.ops.to_numpy(spans.data), self.model.ops.to_numpy(spans.lengths)
|
||||||
|
)
|
||||||
|
label_map = {label: i for i, label in enumerate(self.labels)}
|
||||||
|
target = numpy.zeros(scores.shape, dtype=scores.dtype)
|
||||||
|
# Set negative class as target initially for all samples.
|
||||||
|
negative_spans = numpy.ones((scores.shape[0]))
|
||||||
|
offset = 0
|
||||||
|
for i, eg in enumerate(examples):
|
||||||
|
# Map (start, end) offset of spans to the row in the
|
||||||
|
# d_scores array, so that we can adjust the gradient
|
||||||
|
# for predictions that were in the gold standard.
|
||||||
|
spans_index = {}
|
||||||
|
spans_i = spans[i].dataXd
|
||||||
|
for j in range(spans.lengths[i]):
|
||||||
|
start = int(spans_i[j, 0]) # type: ignore
|
||||||
|
end = int(spans_i[j, 1]) # type: ignore
|
||||||
|
spans_index[(start, end)] = offset + j
|
||||||
|
for gold_span in self._get_aligned_spans(eg):
|
||||||
|
key = (gold_span.start, gold_span.end)
|
||||||
|
if key in spans_index:
|
||||||
|
row = spans_index[key]
|
||||||
|
k = label_map[gold_span.label_]
|
||||||
|
target[row, k] = 1.0
|
||||||
|
# delete negative label target.
|
||||||
|
negative_spans[row] = 0.0
|
||||||
|
# The target is a flat array for all docs. Track the position
|
||||||
|
# we're at within the flat array.
|
||||||
|
offset += spans.lengths[i]
|
||||||
|
target = self.model.ops.asarray(target, dtype="f") # type: ignore
|
||||||
|
negative_samples = numpy.nonzero(negative_spans)[0]
|
||||||
|
target[negative_samples, self._negative_label] = 1.0
|
||||||
|
d_scores = scores - target
|
||||||
|
neg_weight = self.cfg["negative_weight"]
|
||||||
|
if neg_weight != 1.0:
|
||||||
|
d_scores[negative_samples] *= neg_weight
|
||||||
|
loss = float((d_scores**2).sum())
|
||||||
|
return loss, d_scores
|
||||||
|
|
||||||
|
def initialize(
|
||||||
|
self,
|
||||||
|
get_examples: Callable[[], Iterable[Example]],
|
||||||
|
*,
|
||||||
|
nlp: Optional[Language] = None,
|
||||||
|
labels: Optional[List[str]] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Initialize the pipe for training, using a representative set
|
||||||
|
of data examples.
|
||||||
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
||||||
|
returns a representative sample of gold-standard Example objects.
|
||||||
|
nlp (Optional[Language]): The current nlp object the component is part of.
|
||||||
|
labels (Optional[List[str]]): The labels to add to the component, typically generated by the
|
||||||
|
`init labels` command. If no labels are provided, the get_examples
|
||||||
|
callback is used to extract the labels from the data.
|
||||||
|
DOCS: https://spacy.io/api/spancategorizer#initialize
|
||||||
|
"""
|
||||||
|
subbatch: List[Example] = []
|
||||||
|
if labels is not None:
|
||||||
|
for label in labels:
|
||||||
|
self.add_label(label)
|
||||||
|
for eg in get_examples():
|
||||||
|
if labels is None:
|
||||||
|
for span in eg.reference.spans.get(self.key, []):
|
||||||
|
self.add_label(span.label_)
|
||||||
|
if len(subbatch) < 10:
|
||||||
|
subbatch.append(eg)
|
||||||
|
self._require_labels()
|
||||||
|
if subbatch:
|
||||||
|
docs = [eg.x for eg in subbatch]
|
||||||
|
spans = build_ngram_suggester(sizes=[1])(docs)
|
||||||
|
# + 1 for the "no-label" category
|
||||||
|
Y = self.model.ops.alloc2f(spans.dataXd.shape[0], self._n_labels)
|
||||||
|
self.model.initialize(X=(docs, spans), Y=Y)
|
||||||
|
# FIXME I think this branch is broken
|
||||||
|
else:
|
||||||
|
raise ValueError("Cannot initialize without examples.")
|
||||||
|
|
||||||
|
def _validate_categories(self, examples: Iterable[Example]):
|
||||||
|
# TODO
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
def _get_aligned_spans(self, eg: Example):
|
||||||
|
return eg.get_aligned_spans_y2x(
|
||||||
|
eg.reference.spans.get(self.key, []), allow_overlap=True
|
||||||
|
)
|
||||||
|
|
||||||
|
def _make_span_group(
|
||||||
|
self,
|
||||||
|
doc: Doc,
|
||||||
|
indices: Ints2d,
|
||||||
|
scores: Floats2d,
|
||||||
|
labels: List[str],
|
||||||
|
allow_overlap: bool = True,
|
||||||
|
) -> SpanGroup:
|
||||||
|
scores = self.model.ops.to_numpy(scores)
|
||||||
|
indices = self.model.ops.to_numpy(indices)
|
||||||
|
predicted = scores.argmax(axis=1)
|
||||||
|
# Remove samples where the negative label is the argmax
|
||||||
|
positive = numpy.where(predicted != self._negative_label)
|
||||||
|
predicted = predicted[positive[0]]
|
||||||
|
indices = indices[positive[0]]
|
||||||
|
# Sort spans according to argmax probability
|
||||||
|
if not allow_overlap:
|
||||||
|
argmax_probs = numpy.take_along_axis(
|
||||||
|
scores[positive[0]], numpy.expand_dims(predicted, 1), axis=1
|
||||||
|
)
|
||||||
|
argmax_probs = argmax_probs.squeeze()
|
||||||
|
sort_idx = (argmax_probs * -1).argsort()
|
||||||
|
predicted = predicted[sort_idx]
|
||||||
|
indices = indices[sort_idx]
|
||||||
|
seen = Ranges()
|
||||||
|
spans = SpanGroup(doc, name=self.key)
|
||||||
|
for i in range(len(predicted)):
|
||||||
|
label = predicted[i]
|
||||||
|
start = indices[i, 0]
|
||||||
|
end = indices[i, 1]
|
||||||
|
if not allow_overlap:
|
||||||
|
if (start, end) in seen:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
seen.add(start, end)
|
||||||
|
spans.append(Span(doc, start, end, label=labels[label]))
|
||||||
|
return spans
|
||||||
|
|
Loading…
Reference in New Issue
Block a user