mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	Add initial port
This commit is contained in:
		
							parent
							
								
									e7e845b5ed
								
							
						
					
					
						commit
						6f08d83731
					
				| 
						 | 
				
			
			@ -1,19 +1,20 @@
 | 
			
		|||
from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any, cast
 | 
			
		||||
from thinc.api import Config, Model, get_current_ops, set_dropout_rate, Ops
 | 
			
		||||
from thinc.api import Optimizer, Softmax_v2
 | 
			
		||||
from thinc.types import Ragged, Ints2d, Floats2d, Ints1d
 | 
			
		||||
from dataclasses import dataclass
 | 
			
		||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, cast
 | 
			
		||||
 | 
			
		||||
import numpy
 | 
			
		||||
from thinc.api import Config, Model, Ops, Optimizer, Softmax_v2
 | 
			
		||||
from thinc.api import get_current_ops, set_dropout_rate
 | 
			
		||||
from thinc.types import Floats2d, Ints1d, Ints2d, Ragged
 | 
			
		||||
 | 
			
		||||
from ..compat import Protocol, runtime_checkable
 | 
			
		||||
from ..scorer import Scorer
 | 
			
		||||
from ..language import Language
 | 
			
		||||
from .trainable_pipe import TrainablePipe
 | 
			
		||||
from ..tokens import Doc, SpanGroup, Span
 | 
			
		||||
from ..vocab import Vocab
 | 
			
		||||
from ..training import Example, validate_examples
 | 
			
		||||
from ..errors import Errors
 | 
			
		||||
from ..language import Language
 | 
			
		||||
from ..tokens import Doc, Span, SpanGroup
 | 
			
		||||
from ..training import Example, validate_examples
 | 
			
		||||
from ..util import registry
 | 
			
		||||
from ..vocab import Vocab
 | 
			
		||||
from .spancat import spancat_score
 | 
			
		||||
from .trainable_pipe import TrainablePipe
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@registry.layers("spacy.Softmax.v1")
 | 
			
		||||
| 
						 | 
				
			
			@ -68,11 +69,386 @@ class Suggester(Protocol):
 | 
			
		|||
        "suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
 | 
			
		||||
        "scorer": {"@scorers": "spacy.spancat_scorer.v1"},
 | 
			
		||||
    },
 | 
			
		||||
    default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
 | 
			
		||||
)
 | 
			
		||||
def make_spancat(
 | 
			
		||||
    nlp: Language,
 | 
			
		||||
    name: str,
 | 
			
		||||
    suggester: Suggester,
 | 
			
		||||
    model: Model[Tuple[List[Doc], Ragged], Floats2d],
 | 
			
		||||
):
 | 
			
		||||
    pass
 | 
			
		||||
    spans_key: str,
 | 
			
		||||
    scorer: Optional[Callable],
 | 
			
		||||
    negative_weight: Optional[float] = 1.0,
 | 
			
		||||
    allow_overlap: Optional[bool] = True,
 | 
			
		||||
) -> "SpanCategorizerExclusive":
 | 
			
		||||
    """Create a SpanCategorizer component. The span categorizer consists of two
 | 
			
		||||
    parts: a suggester function that proposes candidate spans, and a labeller
 | 
			
		||||
    model that predicts one or more labels for each span.
 | 
			
		||||
 | 
			
		||||
    suggester (Callable[[Iterable[Doc], Optional[Ops]], Ragged]): A function that suggests spans.
 | 
			
		||||
        Spans are returned as a ragged array with two integer columns, for the
 | 
			
		||||
        start and end positions.
 | 
			
		||||
    model (Model[Tuple[List[Doc], Ragged], Floats2d]): A model instance that
 | 
			
		||||
        is given a list of documents and (start, end) indices representing
 | 
			
		||||
        candidate span offsets. The model predicts a probability for each category
 | 
			
		||||
        for each span.
 | 
			
		||||
    spans_key (str): Key of the doc.spans dict to save the spans under. During
 | 
			
		||||
        initialization and training, the component will look for spans on the
 | 
			
		||||
        reference document under the same key.
 | 
			
		||||
    negative_weight (optional[float]): Multiplier for the loss terms.
 | 
			
		||||
        Can be used to down weigh the negative samples if there are too many.
 | 
			
		||||
    allow_overlap (Optional[bool]): If True the data is assumed to
 | 
			
		||||
        contain overlapping spans.
 | 
			
		||||
    """
 | 
			
		||||
    return SpanCategorizerExclusive(
 | 
			
		||||
        nlp.vocab,
 | 
			
		||||
        suggester=suggester,
 | 
			
		||||
        model=model,
 | 
			
		||||
        spans_key=spans_key,
 | 
			
		||||
        negative_weight=negative_weight,
 | 
			
		||||
        name=name,
 | 
			
		||||
        scorer=scorer,
 | 
			
		||||
        allow_overlap=allow_overlap,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class Ranges:
 | 
			
		||||
    """
 | 
			
		||||
    Helper class help avoid storing overlapping span.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        self.ranges = set()
 | 
			
		||||
 | 
			
		||||
    def add(self, i, j):
 | 
			
		||||
        for e in range(i, j):
 | 
			
		||||
            self.ranges.add(e)
 | 
			
		||||
 | 
			
		||||
    def __contains__(self, rang):
 | 
			
		||||
        i, j = rang
 | 
			
		||||
        for e in range(i, j):
 | 
			
		||||
            if e in self.ranges:
 | 
			
		||||
                return True
 | 
			
		||||
        return False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SpanCategorizerExclusive(TrainablePipe):
 | 
			
		||||
    """Pipeline component to label spans of text.
 | 
			
		||||
    DOCS: https://spacy.io/api/spancategorizer
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        vocab: Vocab,
 | 
			
		||||
        model: Model[Tuple[List[Doc], Ragged], Floats2d],
 | 
			
		||||
        suggester: Suggester,
 | 
			
		||||
        name: str = "spancat_exclusive",
 | 
			
		||||
        *,
 | 
			
		||||
        spans_key: str = "spans",
 | 
			
		||||
        negative_weight: Optional[float],
 | 
			
		||||
        scorer: Optional[Callable] = spancat_score,
 | 
			
		||||
        allow_overlap: Optional[bool] = True,
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        """Initialize the span categorizer.
 | 
			
		||||
        vocab (Vocab): The shared vocabulary.
 | 
			
		||||
        model (thinc.api.Model): The Thinc Model powering the pipeline component.
 | 
			
		||||
        name (str): The component instance name, used to add entries to the
 | 
			
		||||
            losses during training.
 | 
			
		||||
        spans_key (str): Key of the Doc.spans dict to save the spans under.
 | 
			
		||||
            During initialization and training, the component will look for
 | 
			
		||||
            spans on the reference document under the same key. Defaults to
 | 
			
		||||
            `"spans"`.
 | 
			
		||||
        negative_weight (optional[float]): Multiplier for the loss terms.
 | 
			
		||||
            Can be used to down weigh the negative samples if there are too many.
 | 
			
		||||
        scorer (Optional[Callable]): The scoring method. Defaults to
 | 
			
		||||
        allow_overlap (Optional[bool]): If True the data is assumed to
 | 
			
		||||
            contains overlapping spans.
 | 
			
		||||
        Scorer.score_spans for the Doc.spans[spans_key] with overlapping
 | 
			
		||||
        spans allowed.
 | 
			
		||||
        DOCS: https://spacy.io/api/spancategorizer#init
 | 
			
		||||
        """
 | 
			
		||||
        self.cfg = {
 | 
			
		||||
            "labels": [],
 | 
			
		||||
            "spans_key": spans_key,
 | 
			
		||||
            "negative_weight": negative_weight,
 | 
			
		||||
            "allow_overlap": allow_overlap,
 | 
			
		||||
        }
 | 
			
		||||
        self.vocab = vocab
 | 
			
		||||
        self.suggester = suggester
 | 
			
		||||
        self.model = model
 | 
			
		||||
        self.name = name
 | 
			
		||||
        self.scorer = scorer
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def key(self) -> str:
 | 
			
		||||
        """Key of the doc.spans dict to save the spans under. During
 | 
			
		||||
        initialization and training, the component will look for spans on the
 | 
			
		||||
        reference document under the same key.
 | 
			
		||||
        """
 | 
			
		||||
        return str(self.cfg["spans_key"])
 | 
			
		||||
 | 
			
		||||
    def add_label(self, label: str) -> int:
 | 
			
		||||
        """Add a new label to the pipe.
 | 
			
		||||
        label (str): The label to add.
 | 
			
		||||
        RETURNS (int): 0 if label is already present, otherwise 1.
 | 
			
		||||
        DOCS: https://spacy.io/api/spancategorizer#add_label
 | 
			
		||||
        """
 | 
			
		||||
        if not isinstance(label, str):
 | 
			
		||||
            raise ValueError(Errors.E187)
 | 
			
		||||
        if label in self.labels:
 | 
			
		||||
            return 0
 | 
			
		||||
        self._allow_extra_label()
 | 
			
		||||
        self.cfg["labels"].append(label)  # type: ignore
 | 
			
		||||
        self.vocab.strings.add(label)
 | 
			
		||||
        return 1
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def labels(self) -> Tuple[str]:
 | 
			
		||||
        """RETURNS (Tuple[str]): The labels currently added to the component.
 | 
			
		||||
        DOCS: https://spacy.io/api/spancategorizer#labels
 | 
			
		||||
        """
 | 
			
		||||
        return tuple(self.cfg["labels"])  # type: ignore
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def label_data(self) -> List[str]:
 | 
			
		||||
        """RETURNS (List[str]): Information about the component's labels.
 | 
			
		||||
        DOCS: https://spacy.io/api/spancategorizer#label_data
 | 
			
		||||
        """
 | 
			
		||||
        return list(self.labels)
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def _negative_label(self):
 | 
			
		||||
        """
 | 
			
		||||
        Index of the negative label.
 | 
			
		||||
        """
 | 
			
		||||
        return len(self.label_data)
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def _n_labels(self):
 | 
			
		||||
        """
 | 
			
		||||
        Number of labels including the negative label.
 | 
			
		||||
        """
 | 
			
		||||
        return len(self.label_data) + 1
 | 
			
		||||
 | 
			
		||||
    def predict(self, docs: Iterable[Doc]):
 | 
			
		||||
        """Apply the pipeline's model to a batch of docs, without modifying them.
 | 
			
		||||
        docs (Iterable[Doc]): The documents to predict.
 | 
			
		||||
        RETURNS: The models prediction for each document.
 | 
			
		||||
        DOCS: https://spacy.io/api/spancategorizer#predict
 | 
			
		||||
        """
 | 
			
		||||
        indices = self.suggester(docs, ops=self.model.ops)
 | 
			
		||||
        scores = self.model.predict((docs, indices))  # type: ignore
 | 
			
		||||
        return indices, scores
 | 
			
		||||
 | 
			
		||||
    def set_candidates(
 | 
			
		||||
        self, docs: Iterable[Doc], *, candidates_key: str = "candidates"
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        """Use the spancat suggester to add a list of span candidates to a
 | 
			
		||||
        list of docs. Intended to be used for debugging purposes.
 | 
			
		||||
        docs (Iterable[Doc]): The documents to modify.
 | 
			
		||||
        candidates_key (str): Key of the Doc.spans dict to save the
 | 
			
		||||
            candidate spans under.
 | 
			
		||||
        DOCS: https://spacy.io/api/spancategorizer#set_candidates
 | 
			
		||||
        """
 | 
			
		||||
        suggester_output = self.suggester(docs, ops=self.model.ops)
 | 
			
		||||
 | 
			
		||||
        for candidates, doc in zip(suggester_output, docs):  # type: ignore
 | 
			
		||||
            doc.spans[candidates_key] = []
 | 
			
		||||
            for index in candidates.dataXd:
 | 
			
		||||
                doc.spans[candidates_key].append(doc[index[0] : index[1]])
 | 
			
		||||
 | 
			
		||||
    def set_annotations(self, docs: Iterable[Doc], indices_scores) -> None:
 | 
			
		||||
        """Modify a batch of Doc objects, using pre-computed scores.
 | 
			
		||||
        docs (Iterable[Doc]): The documents to modify.
 | 
			
		||||
        scores: The scores to set, produced by SpanCategorizer.predict.
 | 
			
		||||
        DOCS: https://spacy.io/api/spancategorizer#set_annotations
 | 
			
		||||
        """
 | 
			
		||||
        allow_overlap = self.cfg["allow_overlap"]
 | 
			
		||||
        labels = self.labels
 | 
			
		||||
        indices, scores = indices_scores
 | 
			
		||||
        offset = 0
 | 
			
		||||
        for i, doc in enumerate(docs):
 | 
			
		||||
            indices_i = indices[i].dataXd
 | 
			
		||||
            doc.spans[self.key] = self._make_span_group(
 | 
			
		||||
                doc,
 | 
			
		||||
                indices_i,
 | 
			
		||||
                scores[offset : offset + indices.lengths[i]],
 | 
			
		||||
                labels,
 | 
			
		||||
                allow_overlap,
 | 
			
		||||
            )  # type: ignore[arg-type]
 | 
			
		||||
            offset += indices.lengths[i]
 | 
			
		||||
 | 
			
		||||
    def update(
 | 
			
		||||
        self,
 | 
			
		||||
        examples: Iterable[Example],
 | 
			
		||||
        *,
 | 
			
		||||
        drop: float = 0.0,
 | 
			
		||||
        sgd: Optional[Optimizer] = None,
 | 
			
		||||
        losses: Optional[Dict[str, float]] = None,
 | 
			
		||||
    ) -> Dict[str, float]:
 | 
			
		||||
        """Learn from a batch of documents and gold-standard information,
 | 
			
		||||
        updating the pipe's model. Delegates to predict and get_loss.
 | 
			
		||||
        examples (Iterable[Example]): A batch of Example objects.
 | 
			
		||||
        drop (float): The dropout rate.
 | 
			
		||||
        sgd (thinc.api.Optimizer): The optimizer.
 | 
			
		||||
        losses (Dict[str, float]): Optional record of the loss during training.
 | 
			
		||||
            Updated using the component name as the key.
 | 
			
		||||
        RETURNS (Dict[str, float]): The updated losses dictionary.
 | 
			
		||||
        DOCS: https://spacy.io/api/spancategorizer#update
 | 
			
		||||
        """
 | 
			
		||||
        if losses is None:
 | 
			
		||||
            losses = {}
 | 
			
		||||
        losses.setdefault(self.name, 0.0)
 | 
			
		||||
        validate_examples(examples, "SpanCategorizer.update")
 | 
			
		||||
        self._validate_categories(examples)
 | 
			
		||||
        if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
 | 
			
		||||
            # Handle cases where there are no tokens in any docs.
 | 
			
		||||
            return losses
 | 
			
		||||
        docs = [eg.predicted for eg in examples]
 | 
			
		||||
        spans = self.suggester(docs, ops=self.model.ops)
 | 
			
		||||
        if spans.lengths.sum() == 0:
 | 
			
		||||
            return losses
 | 
			
		||||
        set_dropout_rate(self.model, drop)
 | 
			
		||||
        scores, backprop_scores = self.model.begin_update((docs, spans))
 | 
			
		||||
        loss, d_scores = self.get_loss(examples, (spans, scores))
 | 
			
		||||
        backprop_scores(d_scores)  # type: ignore
 | 
			
		||||
        if sgd is not None:
 | 
			
		||||
            self.finish_update(sgd)
 | 
			
		||||
        losses[self.name] += loss
 | 
			
		||||
        return losses
 | 
			
		||||
 | 
			
		||||
    def get_loss(
 | 
			
		||||
        self, examples: Iterable[Example], spans_scores: Tuple[Ragged, Floats2d]
 | 
			
		||||
    ) -> Tuple[float, float]:
 | 
			
		||||
        """Find the loss and gradient of loss for the batch of documents and
 | 
			
		||||
        their predicted scores.
 | 
			
		||||
        examples (Iterable[Examples]): The batch of examples.
 | 
			
		||||
        spans_scores: Scores representing the model's predictions.
 | 
			
		||||
        RETURNS (Tuple[float, float]): The loss and the gradient.
 | 
			
		||||
        DOCS: https://spacy.io/api/spancategorizer#get_loss
 | 
			
		||||
        """
 | 
			
		||||
        spans, scores = spans_scores
 | 
			
		||||
        spans = Ragged(
 | 
			
		||||
            self.model.ops.to_numpy(spans.data), self.model.ops.to_numpy(spans.lengths)
 | 
			
		||||
        )
 | 
			
		||||
        label_map = {label: i for i, label in enumerate(self.labels)}
 | 
			
		||||
        target = numpy.zeros(scores.shape, dtype=scores.dtype)
 | 
			
		||||
        # Set negative class as target initially for all samples.
 | 
			
		||||
        negative_spans = numpy.ones((scores.shape[0]))
 | 
			
		||||
        offset = 0
 | 
			
		||||
        for i, eg in enumerate(examples):
 | 
			
		||||
            # Map (start, end) offset of spans to the row in the
 | 
			
		||||
            # d_scores array, so that we can adjust the gradient
 | 
			
		||||
            # for predictions that were in the gold standard.
 | 
			
		||||
            spans_index = {}
 | 
			
		||||
            spans_i = spans[i].dataXd
 | 
			
		||||
            for j in range(spans.lengths[i]):
 | 
			
		||||
                start = int(spans_i[j, 0])  # type: ignore
 | 
			
		||||
                end = int(spans_i[j, 1])  # type: ignore
 | 
			
		||||
                spans_index[(start, end)] = offset + j
 | 
			
		||||
            for gold_span in self._get_aligned_spans(eg):
 | 
			
		||||
                key = (gold_span.start, gold_span.end)
 | 
			
		||||
                if key in spans_index:
 | 
			
		||||
                    row = spans_index[key]
 | 
			
		||||
                    k = label_map[gold_span.label_]
 | 
			
		||||
                    target[row, k] = 1.0
 | 
			
		||||
                    # delete negative label target.
 | 
			
		||||
                    negative_spans[row] = 0.0
 | 
			
		||||
            # The target is a flat array for all docs. Track the position
 | 
			
		||||
            # we're at within the flat array.
 | 
			
		||||
            offset += spans.lengths[i]
 | 
			
		||||
        target = self.model.ops.asarray(target, dtype="f")  # type: ignore
 | 
			
		||||
        negative_samples = numpy.nonzero(negative_spans)[0]
 | 
			
		||||
        target[negative_samples, self._negative_label] = 1.0
 | 
			
		||||
        d_scores = scores - target
 | 
			
		||||
        neg_weight = self.cfg["negative_weight"]
 | 
			
		||||
        if neg_weight != 1.0:
 | 
			
		||||
            d_scores[negative_samples] *= neg_weight
 | 
			
		||||
        loss = float((d_scores**2).sum())
 | 
			
		||||
        return loss, d_scores
 | 
			
		||||
 | 
			
		||||
    def initialize(
 | 
			
		||||
        self,
 | 
			
		||||
        get_examples: Callable[[], Iterable[Example]],
 | 
			
		||||
        *,
 | 
			
		||||
        nlp: Optional[Language] = None,
 | 
			
		||||
        labels: Optional[List[str]] = None,
 | 
			
		||||
    ) -> None:
 | 
			
		||||
        """Initialize the pipe for training, using a representative set
 | 
			
		||||
        of data examples.
 | 
			
		||||
        get_examples (Callable[[], Iterable[Example]]): Function that
 | 
			
		||||
            returns a representative sample of gold-standard Example objects.
 | 
			
		||||
        nlp (Optional[Language]): The current nlp object the component is part of.
 | 
			
		||||
        labels (Optional[List[str]]): The labels to add to the component, typically generated by the
 | 
			
		||||
            `init labels` command. If no labels are provided, the get_examples
 | 
			
		||||
            callback is used to extract the labels from the data.
 | 
			
		||||
        DOCS: https://spacy.io/api/spancategorizer#initialize
 | 
			
		||||
        """
 | 
			
		||||
        subbatch: List[Example] = []
 | 
			
		||||
        if labels is not None:
 | 
			
		||||
            for label in labels:
 | 
			
		||||
                self.add_label(label)
 | 
			
		||||
        for eg in get_examples():
 | 
			
		||||
            if labels is None:
 | 
			
		||||
                for span in eg.reference.spans.get(self.key, []):
 | 
			
		||||
                    self.add_label(span.label_)
 | 
			
		||||
            if len(subbatch) < 10:
 | 
			
		||||
                subbatch.append(eg)
 | 
			
		||||
        self._require_labels()
 | 
			
		||||
        if subbatch:
 | 
			
		||||
            docs = [eg.x for eg in subbatch]
 | 
			
		||||
            spans = build_ngram_suggester(sizes=[1])(docs)
 | 
			
		||||
            # + 1 for the "no-label" category
 | 
			
		||||
            Y = self.model.ops.alloc2f(spans.dataXd.shape[0], self._n_labels)
 | 
			
		||||
            self.model.initialize(X=(docs, spans), Y=Y)
 | 
			
		||||
        # FIXME I think this branch is broken
 | 
			
		||||
        else:
 | 
			
		||||
            raise ValueError("Cannot initialize without examples.")
 | 
			
		||||
 | 
			
		||||
    def _validate_categories(self, examples: Iterable[Example]):
 | 
			
		||||
        # TODO
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
    def _get_aligned_spans(self, eg: Example):
 | 
			
		||||
        return eg.get_aligned_spans_y2x(
 | 
			
		||||
            eg.reference.spans.get(self.key, []), allow_overlap=True
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def _make_span_group(
 | 
			
		||||
        self,
 | 
			
		||||
        doc: Doc,
 | 
			
		||||
        indices: Ints2d,
 | 
			
		||||
        scores: Floats2d,
 | 
			
		||||
        labels: List[str],
 | 
			
		||||
        allow_overlap: bool = True,
 | 
			
		||||
    ) -> SpanGroup:
 | 
			
		||||
        scores = self.model.ops.to_numpy(scores)
 | 
			
		||||
        indices = self.model.ops.to_numpy(indices)
 | 
			
		||||
        predicted = scores.argmax(axis=1)
 | 
			
		||||
        # Remove samples where the negative label is the argmax
 | 
			
		||||
        positive = numpy.where(predicted != self._negative_label)
 | 
			
		||||
        predicted = predicted[positive[0]]
 | 
			
		||||
        indices = indices[positive[0]]
 | 
			
		||||
        # Sort spans according to argmax probability
 | 
			
		||||
        if not allow_overlap:
 | 
			
		||||
            argmax_probs = numpy.take_along_axis(
 | 
			
		||||
                scores[positive[0]], numpy.expand_dims(predicted, 1), axis=1
 | 
			
		||||
            )
 | 
			
		||||
            argmax_probs = argmax_probs.squeeze()
 | 
			
		||||
            sort_idx = (argmax_probs * -1).argsort()
 | 
			
		||||
            predicted = predicted[sort_idx]
 | 
			
		||||
            indices = indices[sort_idx]
 | 
			
		||||
        seen = Ranges()
 | 
			
		||||
        spans = SpanGroup(doc, name=self.key)
 | 
			
		||||
        for i in range(len(predicted)):
 | 
			
		||||
            label = predicted[i]
 | 
			
		||||
            start = indices[i, 0]
 | 
			
		||||
            end = indices[i, 1]
 | 
			
		||||
            if not allow_overlap:
 | 
			
		||||
                if (start, end) in seen:
 | 
			
		||||
                    continue
 | 
			
		||||
                else:
 | 
			
		||||
                    seen.add(start, end)
 | 
			
		||||
            spans.append(Span(doc, start, end, label=labels[label]))
 | 
			
		||||
        return spans
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user