mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
Support negative examples in partial NER annotations (#8106)
* Support a cfg field in transition system * Make NER 'has gold' check use right alignment for span * Pass 'negative_samples_key' property into NER transition system * Add field for negative samples to NER transition system * Check neg_key in NER has_gold * Support negative examples in NER oracle * Test for negative examples in NER * Fix name of config variable in NER * Remove vestiges of old-style partial annotation * Remove obsolete tests * Add comment noting lack of support for negative samples in parser * Additions to "neg examples" PR (#8201) * add custom error and test for deprecated format * add test for unlearning an entity * add break also for Begin's cost * add negative_samples_key property on Parser * rename * extend docs & fix some older docs issues * add subclass constructors, clean up tests, fix docs * add flaky test with ValueError if gold parse was not found * remove ValueError if n_gold == 0 * fix docstring * Hack in environment variables to try out training * Remove hack * Remove NER hack, and support 'negative O' samples * Fix O oracle * Fix transition parser * Remove 'not O' from oracle * Fix NER oracle * check for spans in both gold.ents and gold.spans and raise if so, to prevent memory access violation * use set instead of list in consistency check Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
This commit is contained in:
parent
02bac8f269
commit
6f5e308d17
|
@ -521,6 +521,13 @@ class Errors:
|
|||
E202 = ("Unsupported alignment mode '{mode}'. Supported modes: {modes}.")
|
||||
|
||||
# New errors added in v3.x
|
||||
E868 = ("Found a conflicting gold annotation in a reference document, "
|
||||
"with the following char-based span occurring both in the gold ents "
|
||||
"as well as in the negative spans: {span}.")
|
||||
E869 = ("The notation '{label}' is not supported anymore. To annotate "
|
||||
"negative NER samples, use `doc.spans[key]` instead, and "
|
||||
"specify the key as 'incorrect_spans_key' when constructing "
|
||||
"the NER component.")
|
||||
E870 = ("Could not serialize the DocBin because it is too large. Consider "
|
||||
"splitting up your documents into several doc bins and serializing "
|
||||
"each separately. spacy.Corpus.v1 will search recursively for all "
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
import os
|
||||
import random
|
||||
from libc.stdint cimport int32_t
|
||||
from cymem.cymem cimport Pool
|
||||
|
||||
|
@ -6,10 +8,11 @@ from thinc.extra.search cimport Beam
|
|||
|
||||
from ...tokens.doc cimport Doc
|
||||
from ...tokens.span import Span
|
||||
from ...tokens.span cimport Span
|
||||
from ...typedefs cimport weight_t, attr_t
|
||||
from ...lexeme cimport Lexeme
|
||||
from ...attrs cimport IS_SPACE
|
||||
from ...structs cimport TokenC
|
||||
from ...structs cimport TokenC, SpanC
|
||||
from ...training.example cimport Example
|
||||
from .stateclass cimport StateClass
|
||||
from ._state cimport StateC
|
||||
|
@ -25,7 +28,6 @@ cdef enum:
|
|||
LAST
|
||||
UNIT
|
||||
OUT
|
||||
ISNT
|
||||
N_MOVES
|
||||
|
||||
|
||||
|
@ -36,39 +38,62 @@ MOVE_NAMES[IN] = 'I'
|
|||
MOVE_NAMES[LAST] = 'L'
|
||||
MOVE_NAMES[UNIT] = 'U'
|
||||
MOVE_NAMES[OUT] = 'O'
|
||||
MOVE_NAMES[ISNT] = 'x'
|
||||
|
||||
|
||||
cdef struct GoldNERStateC:
|
||||
Transition* ner
|
||||
SpanC* negs
|
||||
int32_t length
|
||||
int32_t nr_neg
|
||||
|
||||
|
||||
cdef class BiluoGold:
|
||||
cdef Pool mem
|
||||
cdef GoldNERStateC c
|
||||
|
||||
def __init__(self, BiluoPushDown moves, StateClass stcls, Example example):
|
||||
def __init__(self, BiluoPushDown moves, StateClass stcls, Example example, neg_key):
|
||||
self.mem = Pool()
|
||||
self.c = create_gold_state(self.mem, moves, stcls.c, example)
|
||||
self.c = create_gold_state(self.mem, moves, stcls.c, example, neg_key)
|
||||
|
||||
def update(self, StateClass stcls):
|
||||
update_gold_state(&self.c, stcls.c)
|
||||
|
||||
|
||||
|
||||
cdef GoldNERStateC create_gold_state(
|
||||
Pool mem,
|
||||
BiluoPushDown moves,
|
||||
const StateC* stcls,
|
||||
Example example
|
||||
Example example,
|
||||
neg_key
|
||||
) except *:
|
||||
cdef GoldNERStateC gs
|
||||
cdef Span neg
|
||||
if neg_key is not None:
|
||||
negs = example.get_aligned_spans_y2x(
|
||||
example.y.spans.get(neg_key, []),
|
||||
allow_overlap=True
|
||||
)
|
||||
else:
|
||||
negs = []
|
||||
assert example.x.length > 0
|
||||
gs.ner = <Transition*>mem.alloc(example.x.length, sizeof(Transition))
|
||||
ner_tags = example.get_aligned_ner()
|
||||
gs.negs = <SpanC*>mem.alloc(len(negs), sizeof(SpanC))
|
||||
gs.nr_neg = len(negs)
|
||||
ner_ents, ner_tags = example.get_aligned_ents_and_ner()
|
||||
for i, ner_tag in enumerate(ner_tags):
|
||||
gs.ner[i] = moves.lookup_transition(ner_tag)
|
||||
|
||||
# Prevent conflicting spans in the data. For NER, spans are equal if they have the same offsets and label.
|
||||
neg_span_triples = {(neg_ent.start_char, neg_ent.end_char, neg_ent.label) for neg_ent in negs}
|
||||
for pos_span in ner_ents:
|
||||
if (pos_span.start_char, pos_span.end_char, pos_span.label) in neg_span_triples:
|
||||
raise ValueError(Errors.E868.format(span=(pos_span.start_char, pos_span.end_char, pos_span.label_)))
|
||||
|
||||
# In order to handle negative samples, we need to maintain the full
|
||||
# (start, end, label) triple. If we break it down to the 'isnt B-LOC'
|
||||
# thing, we'll get blocked if there's an incorrect prefix.
|
||||
for i, neg in enumerate(negs):
|
||||
gs.negs[i] = neg.c
|
||||
return gs
|
||||
|
||||
|
||||
|
@ -156,21 +181,16 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
cdef attr_t label
|
||||
if name == '-' or name == '' or name is None:
|
||||
return Transition(clas=0, move=MISSING, label=0, score=0)
|
||||
elif name == '!O':
|
||||
return Transition(clas=0, move=ISNT, label=0, score=0)
|
||||
elif '-' in name:
|
||||
move_str, label_str = name.split('-', 1)
|
||||
# Hacky way to denote 'not this entity'
|
||||
# Deprecated, hacky way to denote 'not this entity'
|
||||
if label_str.startswith('!'):
|
||||
label_str = label_str[1:]
|
||||
move_str = 'x'
|
||||
raise ValueError(Errors.E869.format(label=name))
|
||||
label = self.strings.add(label_str)
|
||||
else:
|
||||
move_str = name
|
||||
label = 0
|
||||
move = MOVE_NAMES.index(move_str)
|
||||
if move == ISNT:
|
||||
return Transition(clas=0, move=ISNT, label=label, score=0)
|
||||
for i in range(self.n_moves):
|
||||
if self.c[i].move == move and self.c[i].label == label:
|
||||
return self.c[i]
|
||||
|
@ -220,7 +240,7 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
label_id = label_name
|
||||
if action == OUT and label_id != 0:
|
||||
return None
|
||||
if action == MISSING or action == ISNT:
|
||||
if action == MISSING:
|
||||
return None
|
||||
# Check we're not creating a move we already have, so that this is
|
||||
# idempotent
|
||||
|
@ -270,9 +290,23 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
return parses
|
||||
|
||||
def init_gold(self, StateClass state, Example example):
|
||||
return BiluoGold(self, state, example)
|
||||
return BiluoGold(self, state, example, self.neg_key)
|
||||
|
||||
def has_gold(self, Example eg, start=0, end=None):
|
||||
# We get x and y referring to X, we want to check relative to Y,
|
||||
# the reference
|
||||
y_spans = eg.get_aligned_spans_x2y([eg.x[start:end]])
|
||||
if not y_spans:
|
||||
y_spans = [eg.y[:]]
|
||||
y_span = y_spans[0]
|
||||
start = y_span.start
|
||||
end = y_span.end
|
||||
neg_key = self.neg_key
|
||||
if neg_key is not None:
|
||||
# If we have any negative samples, count that as having annotation.
|
||||
for span in eg.y.spans.get(neg_key, []):
|
||||
if span.start >= start and span.end <= end:
|
||||
return True
|
||||
for word in eg.y[start:end]:
|
||||
if word.ent_iob != 0:
|
||||
return True
|
||||
|
@ -306,8 +340,6 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
n_gold += costs[i] <= 0
|
||||
else:
|
||||
costs[i] = 9000
|
||||
if n_gold < 1:
|
||||
raise ValueError
|
||||
|
||||
|
||||
cdef class Missing:
|
||||
|
@ -373,23 +405,33 @@ cdef class Begin:
|
|||
@staticmethod
|
||||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
|
||||
gold = <GoldNERStateC*>_gold
|
||||
cdef int g_act = gold.ner[s.B(0)].move
|
||||
cdef attr_t g_tag = gold.ner[s.B(0)].label
|
||||
b0 = s.B(0)
|
||||
cdef int cost = 0
|
||||
cdef int g_act = gold.ner[b0].move
|
||||
cdef attr_t g_tag = gold.ner[b0].label
|
||||
|
||||
if g_act == MISSING:
|
||||
return 0
|
||||
pass
|
||||
elif g_act == BEGIN:
|
||||
# B, Gold B --> Label match
|
||||
return label != g_tag
|
||||
# Support partial supervision in the form of "not this label"
|
||||
elif g_act == ISNT:
|
||||
return label == g_tag
|
||||
cost += label != g_tag
|
||||
else:
|
||||
# B, Gold I --> False (P)
|
||||
# B, Gold L --> False (P)
|
||||
# B, Gold O --> False (P)
|
||||
# B, Gold U --> False (P)
|
||||
return 1
|
||||
cost += 1
|
||||
if s.buffer_length() < 3:
|
||||
# Handle negatives. In general we can't really do much to block
|
||||
# B, because we don't know whether the whole entity is going to
|
||||
# be correct or not. However, we can at least tell whether we're
|
||||
# going to be opening an entity where there's only one possible
|
||||
# L.
|
||||
for span in gold.negs[:gold.nr_neg]:
|
||||
if span.label == label and span.start == b0:
|
||||
cost += 1
|
||||
break
|
||||
return cost
|
||||
|
||||
|
||||
cdef class In:
|
||||
|
@ -462,9 +504,6 @@ cdef class In:
|
|||
elif g_act == UNIT:
|
||||
# I, Gold U --> True iff next tag == O
|
||||
return next_act != OUT
|
||||
# Support partial supervision in the form of "not this label"
|
||||
elif g_act == ISNT:
|
||||
return 0
|
||||
else:
|
||||
return 1
|
||||
|
||||
|
@ -504,32 +543,41 @@ cdef class Last:
|
|||
cdef weight_t cost(const StateC* s, const void* _gold, attr_t label) nogil:
|
||||
gold = <GoldNERStateC*>_gold
|
||||
move = LAST
|
||||
b0 = s.B(0)
|
||||
ent_start = s.E(0)
|
||||
|
||||
cdef int g_act = gold.ner[s.B(0)].move
|
||||
cdef attr_t g_tag = gold.ner[s.B(0)].label
|
||||
cdef int g_act = gold.ner[b0].move
|
||||
cdef attr_t g_tag = gold.ner[b0].label
|
||||
|
||||
cdef int cost = 0
|
||||
|
||||
if g_act == MISSING:
|
||||
return 0
|
||||
pass
|
||||
elif g_act == BEGIN:
|
||||
# L, Gold B --> True
|
||||
return 0
|
||||
pass
|
||||
elif g_act == IN:
|
||||
# L, Gold I --> True iff this entity sunk
|
||||
return not _entity_is_sunk(s, gold.ner)
|
||||
cost += not _entity_is_sunk(s, gold.ner)
|
||||
elif g_act == LAST:
|
||||
# L, Gold L --> True
|
||||
return 0
|
||||
pass
|
||||
elif g_act == OUT:
|
||||
# L, Gold O --> True
|
||||
return 0
|
||||
pass
|
||||
elif g_act == UNIT:
|
||||
# L, Gold U --> True
|
||||
return 0
|
||||
# Support partial supervision in the form of "not this label"
|
||||
elif g_act == ISNT:
|
||||
return 0
|
||||
pass
|
||||
else:
|
||||
return 1
|
||||
cost += 1
|
||||
# If we have negative-example entities, integrate them into the objective,
|
||||
# by marking actions that close an entity that we know is incorrect
|
||||
# as costly.
|
||||
for span in gold.negs[:gold.nr_neg]:
|
||||
if span.label == label and (span.end-1) == b0 and span.start == ent_start:
|
||||
cost += 1
|
||||
break
|
||||
return cost
|
||||
|
||||
|
||||
cdef class Unit:
|
||||
|
@ -573,21 +621,29 @@ cdef class Unit:
|
|||
gold = <GoldNERStateC*>_gold
|
||||
cdef int g_act = gold.ner[s.B(0)].move
|
||||
cdef attr_t g_tag = gold.ner[s.B(0)].label
|
||||
cdef int cost = 0
|
||||
|
||||
if g_act == MISSING:
|
||||
return 0
|
||||
pass
|
||||
elif g_act == UNIT:
|
||||
# U, Gold U --> True iff tag match
|
||||
return label != g_tag
|
||||
# Support partial supervision in the form of "not this label"
|
||||
elif g_act == ISNT:
|
||||
return label == g_tag
|
||||
cost += label != g_tag
|
||||
else:
|
||||
# U, Gold B --> False
|
||||
# U, Gold I --> False
|
||||
# U, Gold L --> False
|
||||
# U, Gold O --> False
|
||||
return 1
|
||||
cost += 1
|
||||
# If we have negative-example entities, integrate them into the objective.
|
||||
# This is fairly straight-forward for U- entities, as we have a single
|
||||
# action
|
||||
cdef int b0 = s.B(0)
|
||||
for span in gold.negs[:gold.nr_neg]:
|
||||
if span.label == label and span.start == b0 and span.end == (b0+1):
|
||||
cost += 1
|
||||
break
|
||||
return cost
|
||||
|
||||
|
||||
|
||||
cdef class Out:
|
||||
|
@ -613,25 +669,24 @@ cdef class Out:
|
|||
gold = <GoldNERStateC*>_gold
|
||||
cdef int g_act = gold.ner[s.B(0)].move
|
||||
cdef attr_t g_tag = gold.ner[s.B(0)].label
|
||||
|
||||
if g_act == ISNT and g_tag == 0:
|
||||
return 1
|
||||
elif g_act == MISSING or g_act == ISNT:
|
||||
return 0
|
||||
cdef weight_t cost = 0
|
||||
if g_act == MISSING:
|
||||
pass
|
||||
elif g_act == BEGIN:
|
||||
# O, Gold B --> False
|
||||
return 1
|
||||
cost += 1
|
||||
elif g_act == IN:
|
||||
# O, Gold I --> True
|
||||
return 0
|
||||
pass
|
||||
elif g_act == LAST:
|
||||
# O, Gold L --> True
|
||||
return 0
|
||||
pass
|
||||
elif g_act == OUT:
|
||||
# O, Gold O --> True
|
||||
return 0
|
||||
pass
|
||||
elif g_act == UNIT:
|
||||
# O, Gold U --> False
|
||||
return 1
|
||||
cost += 1
|
||||
else:
|
||||
return 1
|
||||
cost += 1
|
||||
return cost
|
||||
|
|
|
@ -41,6 +41,7 @@ cdef class TransitionSystem:
|
|||
cdef public attr_t root_label
|
||||
cdef public freqs
|
||||
cdef public object labels
|
||||
cdef public object cfg
|
||||
cdef init_state_t init_beam_state
|
||||
cdef del_state_t del_beam_state
|
||||
|
||||
|
|
|
@ -33,7 +33,14 @@ cdef int _del_state(Pool mem, void* state, void* x) except -1:
|
|||
|
||||
|
||||
cdef class TransitionSystem:
|
||||
def __init__(self, StringStore string_table, labels_by_action=None, min_freq=None):
|
||||
def __init__(
|
||||
self,
|
||||
StringStore string_table,
|
||||
labels_by_action=None,
|
||||
min_freq=None,
|
||||
incorrect_spans_key=None
|
||||
):
|
||||
self.cfg = {"neg_key": incorrect_spans_key}
|
||||
self.mem = Pool()
|
||||
self.strings = string_table
|
||||
self.n_moves = 0
|
||||
|
@ -49,8 +56,13 @@ cdef class TransitionSystem:
|
|||
self.del_beam_state = _del_state
|
||||
|
||||
def __reduce__(self):
|
||||
# TODO: This loses the 'cfg'
|
||||
return (self.__class__, (self.strings, self.labels), None, None)
|
||||
|
||||
@property
|
||||
def neg_key(self):
|
||||
return self.cfg.get("neg_key")
|
||||
|
||||
def init_batch(self, docs):
|
||||
cdef StateClass state
|
||||
states = []
|
||||
|
@ -220,16 +232,21 @@ cdef class TransitionSystem:
|
|||
transitions = []
|
||||
serializers = {
|
||||
'moves': lambda: srsly.json_dumps(self.labels),
|
||||
'strings': lambda: self.strings.to_bytes()
|
||||
'strings': lambda: self.strings.to_bytes(),
|
||||
'cfg': lambda: self.cfg
|
||||
}
|
||||
return util.to_bytes(serializers, exclude)
|
||||
|
||||
def from_bytes(self, bytes_data, exclude=tuple()):
|
||||
# We're adding a new field, 'cfg', here and we don't want to break
|
||||
# previous models that don't have it.
|
||||
msg = srsly.msgpack_loads(bytes_data)
|
||||
labels = {}
|
||||
deserializers = {
|
||||
'moves': lambda b: labels.update(srsly.json_loads(b)),
|
||||
'strings': lambda b: self.strings.from_bytes(b)
|
||||
}
|
||||
msg = util.from_bytes(bytes_data, deserializers, exclude)
|
||||
if 'moves' not in exclude:
|
||||
labels.update(srsly.json_loads(msg['moves']))
|
||||
if 'strings' not in exclude:
|
||||
self.strings.from_bytes(msg['strings'])
|
||||
if 'cfg' not in exclude and 'cfg' in msg:
|
||||
self.cfg.update(msg['cfg'])
|
||||
self.initialize_actions(labels)
|
||||
return self
|
||||
|
|
|
@ -3,6 +3,7 @@ from collections import defaultdict
|
|||
from typing import Optional, Iterable
|
||||
from thinc.api import Model, Config
|
||||
|
||||
from ._parser_internals.transition_system import TransitionSystem
|
||||
from .transition_parser cimport Parser
|
||||
from ._parser_internals.arc_eager cimport ArcEager
|
||||
|
||||
|
@ -59,7 +60,7 @@ def make_parser(
|
|||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[list],
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
learn_tokens: bool,
|
||||
min_action_freq: int
|
||||
|
@ -85,13 +86,13 @@ def make_parser(
|
|||
model (Model): The model for the transition-based parser. The model needs
|
||||
to have a specific substructure of named components --- see the
|
||||
spacy.ml.tb_framework.TransitionModel for details.
|
||||
moves (List[str]): A list of transition names. Inferred from the data if not
|
||||
provided.
|
||||
update_with_oracle_cut_size (int):
|
||||
During training, cut long sequences into shorter segments by creating
|
||||
intermediate states based on the gold-standard history. The model is
|
||||
not very sensitive to this parameter, so you usually won't need to change
|
||||
it. 100 is a good default.
|
||||
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
|
||||
updated and evaluated. If 'moves' is None, a new instance is
|
||||
created with `self.TransitionSystem()`. Defaults to `None`.
|
||||
update_with_oracle_cut_size (int): During training, cut long sequences into
|
||||
shorter segments by creating intermediate states based on the gold-standard
|
||||
history. The model is not very sensitive to this parameter, so you usually
|
||||
won't need to change it. 100 is a good default.
|
||||
learn_tokens (bool): Whether to learn to merge subtokens that are split
|
||||
relative to the gold standard. Experimental.
|
||||
min_action_freq (int): The minimum frequency of labelled actions to retain.
|
||||
|
@ -112,6 +113,9 @@ def make_parser(
|
|||
beam_width=1,
|
||||
beam_density=0.0,
|
||||
beam_update_prob=0.0,
|
||||
# At some point in the future we can try to implement support for
|
||||
# partial annotations, perhaps only in the beam objective.
|
||||
incorrect_spans_key=None
|
||||
)
|
||||
|
||||
@Language.factory(
|
||||
|
@ -140,7 +144,7 @@ def make_beam_parser(
|
|||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[list],
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
learn_tokens: bool,
|
||||
min_action_freq: int,
|
||||
|
@ -165,8 +169,13 @@ def make_beam_parser(
|
|||
model (Model): The model for the transition-based parser. The model needs
|
||||
to have a specific substructure of named components --- see the
|
||||
spacy.ml.tb_framework.TransitionModel for details.
|
||||
moves (List[str]): A list of transition names. Inferred from the data if not
|
||||
provided.
|
||||
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
|
||||
updated and evaluated. If 'moves' is None, a new instance is
|
||||
created with `self.TransitionSystem()`. Defaults to `None`.
|
||||
update_with_oracle_cut_size (int): During training, cut long sequences into
|
||||
shorter segments by creating intermediate states based on the gold-standard
|
||||
history. The model is not very sensitive to this parameter, so you usually
|
||||
won't need to change it. 100 is a good default.
|
||||
beam_width (int): The number of candidate analyses to maintain.
|
||||
beam_density (float): The minimum ratio between the scores of the first and
|
||||
last candidates in the beam. This allows the parser to avoid exploring
|
||||
|
@ -195,7 +204,10 @@ def make_beam_parser(
|
|||
beam_update_prob=beam_update_prob,
|
||||
multitasks=[],
|
||||
learn_tokens=learn_tokens,
|
||||
min_action_freq=min_action_freq
|
||||
min_action_freq=min_action_freq,
|
||||
# At some point in the future we can try to implement support for
|
||||
# partial annotations, perhaps only in the beam objective.
|
||||
incorrect_spans_key=None
|
||||
)
|
||||
|
||||
|
||||
|
@ -206,6 +218,39 @@ cdef class DependencyParser(Parser):
|
|||
"""
|
||||
TransitionSystem = ArcEager
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab,
|
||||
model,
|
||||
name="parser",
|
||||
moves=None,
|
||||
*,
|
||||
update_with_oracle_cut_size=100,
|
||||
min_action_freq=30,
|
||||
learn_tokens=False,
|
||||
beam_width=1,
|
||||
beam_density=0.0,
|
||||
beam_update_prob=0.0,
|
||||
multitasks=tuple(),
|
||||
incorrect_spans_key=None,
|
||||
):
|
||||
"""Create a DependencyParser.
|
||||
"""
|
||||
super().__init__(
|
||||
vocab,
|
||||
model,
|
||||
name,
|
||||
moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
min_action_freq=min_action_freq,
|
||||
learn_tokens=learn_tokens,
|
||||
beam_width=beam_width,
|
||||
beam_density=beam_density,
|
||||
beam_update_prob=beam_update_prob,
|
||||
multitasks=multitasks,
|
||||
incorrect_spans_key=incorrect_spans_key,
|
||||
)
|
||||
|
||||
@property
|
||||
def postprocesses(self):
|
||||
output = [nonproj.deprojectivize]
|
||||
|
|
|
@ -3,6 +3,7 @@ from collections import defaultdict
|
|||
from typing import Optional, Iterable
|
||||
from thinc.api import Model, Config
|
||||
|
||||
from ._parser_internals.transition_system import TransitionSystem
|
||||
from .transition_parser cimport Parser
|
||||
from ._parser_internals.ner cimport BiluoPushDown
|
||||
|
||||
|
@ -40,6 +41,7 @@ DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"]
|
|||
"moves": None,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"model": DEFAULT_NER_MODEL,
|
||||
"incorrect_spans_key": None
|
||||
},
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
|
||||
|
||||
|
@ -48,8 +50,9 @@ def make_ner(
|
|||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[list],
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
incorrect_spans_key: Optional[str]=None
|
||||
):
|
||||
"""Create a transition-based EntityRecognizer component. The entity recognizer
|
||||
identifies non-overlapping labelled spans of tokens.
|
||||
|
@ -67,13 +70,16 @@ def make_ner(
|
|||
model (Model): The model for the transition-based parser. The model needs
|
||||
to have a specific substructure of named components --- see the
|
||||
spacy.ml.tb_framework.TransitionModel for details.
|
||||
moves (list[str]): A list of transition names. Inferred from the data if not
|
||||
provided.
|
||||
update_with_oracle_cut_size (int):
|
||||
During training, cut long sequences into shorter segments by creating
|
||||
intermediate states based on the gold-standard history. The model is
|
||||
not very sensitive to this parameter, so you usually won't need to change
|
||||
it. 100 is a good default.
|
||||
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
|
||||
updated and evaluated. If 'moves' is None, a new instance is
|
||||
created with `self.TransitionSystem()`. Defaults to `None`.
|
||||
update_with_oracle_cut_size (int): During training, cut long sequences into
|
||||
shorter segments by creating intermediate states based on the gold-standard
|
||||
history. The model is not very sensitive to this parameter, so you usually
|
||||
won't need to change it. 100 is a good default.
|
||||
incorrect_spans_key (Optional[str]): Identifies spans that are known
|
||||
to be incorrect entity annotations. The incorrect entity annotations
|
||||
can be stored in the span group, under this key.
|
||||
"""
|
||||
return EntityRecognizer(
|
||||
nlp.vocab,
|
||||
|
@ -81,9 +87,8 @@ def make_ner(
|
|||
name,
|
||||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
incorrect_spans_key=incorrect_spans_key,
|
||||
multitasks=[],
|
||||
min_action_freq=1,
|
||||
learn_tokens=False,
|
||||
beam_width=1,
|
||||
beam_density=0.0,
|
||||
beam_update_prob=0.0,
|
||||
|
@ -98,7 +103,8 @@ def make_ner(
|
|||
"model": DEFAULT_NER_MODEL,
|
||||
"beam_density": 0.01,
|
||||
"beam_update_prob": 0.5,
|
||||
"beam_width": 32
|
||||
"beam_width": 32,
|
||||
"incorrect_spans_key": None
|
||||
},
|
||||
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
|
||||
)
|
||||
|
@ -106,11 +112,12 @@ def make_beam_ner(
|
|||
nlp: Language,
|
||||
name: str,
|
||||
model: Model,
|
||||
moves: Optional[list],
|
||||
moves: Optional[TransitionSystem],
|
||||
update_with_oracle_cut_size: int,
|
||||
beam_width: int,
|
||||
beam_density: float,
|
||||
beam_update_prob: float,
|
||||
incorrect_spans_key: Optional[str]=None
|
||||
):
|
||||
"""Create a transition-based EntityRecognizer component that uses beam-search.
|
||||
The entity recognizer identifies non-overlapping labelled spans of tokens.
|
||||
|
@ -128,13 +135,13 @@ def make_beam_ner(
|
|||
model (Model): The model for the transition-based parser. The model needs
|
||||
to have a specific substructure of named components --- see the
|
||||
spacy.ml.tb_framework.TransitionModel for details.
|
||||
moves (list[str]): A list of transition names. Inferred from the data if not
|
||||
provided.
|
||||
update_with_oracle_cut_size (int):
|
||||
During training, cut long sequences into shorter segments by creating
|
||||
intermediate states based on the gold-standard history. The model is
|
||||
not very sensitive to this parameter, so you usually won't need to change
|
||||
it. 100 is a good default.
|
||||
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
|
||||
updated and evaluated. If 'moves' is None, a new instance is
|
||||
created with `self.TransitionSystem()`. Defaults to `None`.
|
||||
update_with_oracle_cut_size (int): During training, cut long sequences into
|
||||
shorter segments by creating intermediate states based on the gold-standard
|
||||
history. The model is not very sensitive to this parameter, so you usually
|
||||
won't need to change it. 100 is a good default.
|
||||
beam_width (int): The number of candidate analyses to maintain.
|
||||
beam_density (float): The minimum ratio between the scores of the first and
|
||||
last candidates in the beam. This allows the parser to avoid exploring
|
||||
|
@ -144,6 +151,8 @@ def make_beam_ner(
|
|||
beam_update_prob (float): The chance of making a beam update, instead of a
|
||||
greedy update. Greedy updates are an approximation for the beam updates,
|
||||
and are faster to compute.
|
||||
incorrect_spans_key (Optional[str]): Optional key into span groups of
|
||||
entities known to be non-entities.
|
||||
"""
|
||||
return EntityRecognizer(
|
||||
nlp.vocab,
|
||||
|
@ -152,11 +161,10 @@ def make_beam_ner(
|
|||
moves=moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
multitasks=[],
|
||||
min_action_freq=1,
|
||||
learn_tokens=False,
|
||||
beam_width=beam_width,
|
||||
beam_density=beam_density,
|
||||
beam_update_prob=beam_update_prob,
|
||||
incorrect_spans_key=incorrect_spans_key
|
||||
)
|
||||
|
||||
|
||||
|
@ -167,6 +175,37 @@ cdef class EntityRecognizer(Parser):
|
|||
"""
|
||||
TransitionSystem = BiluoPushDown
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab,
|
||||
model,
|
||||
name="ner",
|
||||
moves=None,
|
||||
*,
|
||||
update_with_oracle_cut_size=100,
|
||||
beam_width=1,
|
||||
beam_density=0.0,
|
||||
beam_update_prob=0.0,
|
||||
multitasks=tuple(),
|
||||
incorrect_spans_key=None,
|
||||
):
|
||||
"""Create an EntityRecognizer.
|
||||
"""
|
||||
super().__init__(
|
||||
vocab,
|
||||
model,
|
||||
name,
|
||||
moves,
|
||||
update_with_oracle_cut_size=update_with_oracle_cut_size,
|
||||
min_action_freq=1, # not relevant for NER
|
||||
learn_tokens=False, # not relevant for NER
|
||||
beam_width=beam_width,
|
||||
beam_density=beam_density,
|
||||
beam_update_prob=beam_update_prob,
|
||||
multitasks=multitasks,
|
||||
incorrect_spans_key=incorrect_spans_key,
|
||||
)
|
||||
|
||||
def add_multitask_objective(self, mt_component):
|
||||
"""Register another component as a multi-task objective. Experimental."""
|
||||
self._multitasks.append(mt_component)
|
||||
|
|
|
@ -29,6 +29,7 @@ from ..training import validate_examples, validate_get_examples
|
|||
from ..errors import Errors, Warnings
|
||||
from .. import util
|
||||
|
||||
|
||||
cdef class Parser(TrainablePipe):
|
||||
"""
|
||||
Base class of the DependencyParser and EntityRecognizer.
|
||||
|
@ -48,15 +49,43 @@ cdef class Parser(TrainablePipe):
|
|||
beam_density=0.0,
|
||||
beam_update_prob=0.0,
|
||||
multitasks=tuple(),
|
||||
incorrect_spans_key=None
|
||||
):
|
||||
"""Create a Parser.
|
||||
|
||||
vocab (Vocab): The vocabulary object. Must be shared with documents
|
||||
to be processed. The value is set to the `.vocab` attribute.
|
||||
**cfg: Configuration parameters. Set to the `.cfg` attribute.
|
||||
If it doesn't include a value for 'moves', a new instance is
|
||||
created with `self.TransitionSystem()`. This defines how the
|
||||
parse-state is created, updated and evaluated.
|
||||
model (Model): The model for the transition-based parser. The model needs
|
||||
to have a specific substructure of named components --- see the
|
||||
spacy.ml.tb_framework.TransitionModel for details.
|
||||
name (str): The name of the pipeline component
|
||||
moves (Optional[TransitionSystem]): This defines how the parse-state is created,
|
||||
updated and evaluated. If 'moves' is None, a new instance is
|
||||
created with `self.TransitionSystem()`. Defaults to `None`.
|
||||
update_with_oracle_cut_size (int): During training, cut long sequences into
|
||||
shorter segments by creating intermediate states based on the gold-standard
|
||||
history. The model is not very sensitive to this parameter, so you usually
|
||||
won't need to change it. 100 is a good default.
|
||||
min_action_freq (int): The minimum frequency of labelled actions to retain.
|
||||
Rarer labelled actions have their label backed-off to "dep". While this
|
||||
primarily affects the label accuracy, it can also affect the attachment
|
||||
structure, as the labels are used to represent the pseudo-projectivity
|
||||
transformation.
|
||||
learn_tokens (bool): Whether to learn to merge subtokens that are split
|
||||
relative to the gold standard. Experimental.
|
||||
beam_width (int): The number of candidate analyses to maintain.
|
||||
beam_density (float): The minimum ratio between the scores of the first and
|
||||
last candidates in the beam. This allows the parser to avoid exploring
|
||||
candidates that are too far behind. This is mostly intended to improve
|
||||
efficiency, but it can also improve accuracy as deeper search is not
|
||||
always better.
|
||||
beam_update_prob (float): The chance of making a beam update, instead of a
|
||||
greedy update. Greedy updates are an approximation for the beam updates,
|
||||
and are faster to compute.
|
||||
multitasks: additional multi-tasking components. Experimental.
|
||||
incorrect_spans_key (Optional[str]): Identifies spans that are known
|
||||
to be incorrect entity annotations. The incorrect entity annotations
|
||||
can be stored in the span group, under this key.
|
||||
"""
|
||||
self.vocab = vocab
|
||||
self.name = name
|
||||
|
@ -68,11 +97,16 @@ cdef class Parser(TrainablePipe):
|
|||
"learn_tokens": learn_tokens,
|
||||
"beam_width": beam_width,
|
||||
"beam_density": beam_density,
|
||||
"beam_update_prob": beam_update_prob
|
||||
"beam_update_prob": beam_update_prob,
|
||||
"incorrect_spans_key": incorrect_spans_key
|
||||
}
|
||||
if moves is None:
|
||||
# defined by EntityRecognizer as a BiluoPushDown
|
||||
moves = self.TransitionSystem(self.vocab.strings)
|
||||
# EntityRecognizer -> BiluoPushDown
|
||||
# DependencyParser -> ArcEager
|
||||
moves = self.TransitionSystem(
|
||||
self.vocab.strings,
|
||||
incorrect_spans_key=incorrect_spans_key
|
||||
)
|
||||
self.moves = moves
|
||||
self.model = model
|
||||
if self.moves.n_moves != 0:
|
||||
|
@ -118,6 +152,10 @@ cdef class Parser(TrainablePipe):
|
|||
# Available for subclasses, e.g. to deprojectivize
|
||||
return []
|
||||
|
||||
@property
|
||||
def incorrect_spans_key(self):
|
||||
return self.cfg["incorrect_spans_key"]
|
||||
|
||||
def add_label(self, label):
|
||||
resized = False
|
||||
for action in self.moves.action_types:
|
||||
|
@ -326,7 +364,6 @@ cdef class Parser(TrainablePipe):
|
|||
)
|
||||
for multitask in self._multitasks:
|
||||
multitask.update(examples, drop=drop, sgd=sgd)
|
||||
|
||||
n_examples = len([eg for eg in examples if self.moves.has_gold(eg)])
|
||||
if n_examples == 0:
|
||||
return losses
|
||||
|
@ -554,7 +591,7 @@ cdef class Parser(TrainablePipe):
|
|||
self._resize()
|
||||
self.model.from_bytes(bytes_data)
|
||||
except AttributeError:
|
||||
raise ValueError(Errors.E149) from None
|
||||
raise ValueError(Errors.E149)
|
||||
return self
|
||||
|
||||
def to_bytes(self, exclude=tuple()):
|
||||
|
|
|
@ -18,14 +18,9 @@ def _ner_example(ner):
|
|||
def test_doc_add_entities_set_ents_iob(en_vocab):
|
||||
text = ["This", "is", "a", "lion"]
|
||||
doc = Doc(en_vocab, words=text)
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
cfg = {"model": DEFAULT_NER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
ner = EntityRecognizer(en_vocab, model, **config)
|
||||
ner = EntityRecognizer(en_vocab, model)
|
||||
ner.initialize(lambda: [_ner_example(ner)])
|
||||
ner(doc)
|
||||
|
||||
|
@ -40,14 +35,9 @@ def test_ents_reset(en_vocab):
|
|||
"""Ensure that resetting doc.ents does not change anything"""
|
||||
text = ["This", "is", "a", "lion"]
|
||||
doc = Doc(en_vocab, words=text)
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
cfg = {"model": DEFAULT_NER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
ner = EntityRecognizer(en_vocab, model, **config)
|
||||
ner = EntityRecognizer(en_vocab, model)
|
||||
ner.initialize(lambda: [_ner_example(ner)])
|
||||
ner(doc)
|
||||
orig_iobs = [t.ent_iob_ for t in doc]
|
||||
|
|
|
@ -18,14 +18,9 @@ def vocab():
|
|||
|
||||
@pytest.fixture
|
||||
def parser(vocab):
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
cfg = {"model": DEFAULT_PARSER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
parser = DependencyParser(vocab, model, **config)
|
||||
parser = DependencyParser(vocab, model)
|
||||
return parser
|
||||
|
||||
|
||||
|
@ -77,19 +72,14 @@ def test_add_label(parser):
|
|||
|
||||
|
||||
def test_add_label_deserializes_correctly():
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
cfg = {"model": DEFAULT_NER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
ner1 = EntityRecognizer(Vocab(), model, **config)
|
||||
ner1 = EntityRecognizer(Vocab(), model)
|
||||
ner1.add_label("C")
|
||||
ner1.add_label("B")
|
||||
ner1.add_label("A")
|
||||
ner1.initialize(lambda: [_ner_example(ner1)])
|
||||
ner2 = EntityRecognizer(Vocab(), model, **config)
|
||||
ner2 = EntityRecognizer(Vocab(), model)
|
||||
|
||||
# the second model needs to be resized before we can call from_bytes
|
||||
ner2.model.attrs["resize_output"](ner2.model, ner1.moves.n_moves)
|
||||
|
@ -113,12 +103,7 @@ def test_add_label_get_label(pipe_cls, n_moves, model_config):
|
|||
"""
|
||||
labels = ["A", "B", "C"]
|
||||
model = registry.resolve({"model": model_config}, validate=True)["model"]
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
pipe = pipe_cls(Vocab(), model, **config)
|
||||
pipe = pipe_cls(Vocab(), model)
|
||||
for label in labels:
|
||||
pipe.add_label(label)
|
||||
assert len(pipe.move_names) == len(labels) * n_moves
|
||||
|
|
|
@ -130,14 +130,9 @@ def test_get_oracle_actions():
|
|||
deps.append(dep)
|
||||
ents.append(ent)
|
||||
doc = Doc(Vocab(), words=[t[1] for t in annot_tuples])
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 0,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
cfg = {"model": DEFAULT_PARSER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
parser = DependencyParser(doc.vocab, model, **config)
|
||||
parser = DependencyParser(doc.vocab, model)
|
||||
parser.moves.add_action(0, "")
|
||||
parser.moves.add_action(1, "")
|
||||
parser.moves.add_action(1, "")
|
||||
|
|
|
@ -9,11 +9,12 @@ from spacy.lookups import Lookups
|
|||
from spacy.pipeline._parser_internals.ner import BiluoPushDown
|
||||
from spacy.training import Example
|
||||
from spacy.tokens import Doc, Span
|
||||
from spacy.vocab import Vocab
|
||||
from spacy.vocab import Vocab, registry
|
||||
import logging
|
||||
|
||||
from ..util import make_tempdir
|
||||
|
||||
from ...pipeline import EntityRecognizer
|
||||
from ...pipeline.ner import DEFAULT_NER_MODEL
|
||||
|
||||
TRAIN_DATA = [
|
||||
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
|
||||
|
@ -21,6 +22,11 @@ TRAIN_DATA = [
|
|||
]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def neg_key():
|
||||
return "non_entities"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def vocab():
|
||||
return Vocab()
|
||||
|
@ -59,39 +65,70 @@ def test_get_oracle_moves(tsys, doc, entity_annots):
|
|||
assert names == ["U-PERSON", "O", "O", "B-GPE", "L-GPE", "O"]
|
||||
|
||||
|
||||
@pytest.mark.filterwarnings("ignore::UserWarning")
|
||||
def test_get_oracle_moves_negative_entities(tsys, doc, entity_annots):
|
||||
entity_annots = [(s, e, "!" + label) for s, e, label in entity_annots]
|
||||
def test_negative_samples_two_word_input(tsys, vocab, neg_key):
|
||||
"""Test that we don't get stuck in a two word input when we have a negative
|
||||
span. This could happen if we don't have the right check on the B action.
|
||||
"""
|
||||
tsys.cfg["neg_key"] = neg_key
|
||||
doc = Doc(vocab, words=["A", "B"])
|
||||
entity_annots = [None, None]
|
||||
example = Example.from_dict(doc, {"entities": entity_annots})
|
||||
ex_dict = example.to_dict()
|
||||
|
||||
for i, tag in enumerate(ex_dict["doc_annotation"]["entities"]):
|
||||
if tag == "L-!GPE":
|
||||
ex_dict["doc_annotation"]["entities"][i] = "-"
|
||||
example = Example.from_dict(doc, ex_dict)
|
||||
|
||||
# These mean that the oracle sequence shouldn't have O for the first
|
||||
# word, and it shouldn't analyse it as B-PERSON, L-PERSON
|
||||
example.y.spans[neg_key] = [
|
||||
Span(example.y, 0, 1, label="O"),
|
||||
Span(example.y, 0, 2, label="PERSON"),
|
||||
]
|
||||
act_classes = tsys.get_oracle_sequence(example)
|
||||
names = [tsys.get_class_name(act) for act in act_classes]
|
||||
assert names
|
||||
assert names[0] != "O"
|
||||
assert names[0] != "B-PERSON"
|
||||
assert names[1] != "L-PERSON"
|
||||
|
||||
|
||||
def test_get_oracle_moves_negative_entities2(tsys, vocab):
|
||||
doc = Doc(vocab, words=["A", "B", "C", "D"])
|
||||
entity_annots = ["B-!PERSON", "L-!PERSON", "B-!PERSON", "L-!PERSON"]
|
||||
def test_negative_samples_three_word_input(tsys, vocab, neg_key):
|
||||
"""Test that we exclude a 2-word entity correctly using a negative example."""
|
||||
tsys.cfg["neg_key"] = neg_key
|
||||
doc = Doc(vocab, words=["A", "B", "C"])
|
||||
entity_annots = [None, None, None]
|
||||
example = Example.from_dict(doc, {"entities": entity_annots})
|
||||
# These mean that the oracle sequence shouldn't have O for the first
|
||||
# word, and it shouldn't analyse it as B-PERSON, L-PERSON
|
||||
example.y.spans[neg_key] = [
|
||||
Span(example.y, 0, 1, label="O"),
|
||||
Span(example.y, 0, 2, label="PERSON"),
|
||||
]
|
||||
act_classes = tsys.get_oracle_sequence(example)
|
||||
names = [tsys.get_class_name(act) for act in act_classes]
|
||||
assert names
|
||||
assert names[0] != "O"
|
||||
assert names[1] != "B-PERSON"
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Maybe outdated? Unsure")
|
||||
def test_get_oracle_moves_negative_O(tsys, vocab):
|
||||
doc = Doc(vocab, words=["A", "B", "C", "D"])
|
||||
entity_annots = ["O", "!O", "O", "!O"]
|
||||
def test_negative_samples_U_entity(tsys, vocab, neg_key):
|
||||
"""Test that we exclude a 2-word entity correctly using a negative example."""
|
||||
tsys.cfg["neg_key"] = neg_key
|
||||
doc = Doc(vocab, words=["A"])
|
||||
entity_annots = [None]
|
||||
example = Example.from_dict(doc, {"entities": entity_annots})
|
||||
# These mean that the oracle sequence shouldn't have O for the first
|
||||
# word, and it shouldn't analyse it as B-PERSON, L-PERSON
|
||||
example.y.spans[neg_key] = [
|
||||
Span(example.y, 0, 1, label="O"),
|
||||
Span(example.y, 0, 1, label="PERSON"),
|
||||
]
|
||||
act_classes = tsys.get_oracle_sequence(example)
|
||||
names = [tsys.get_class_name(act) for act in act_classes]
|
||||
assert names
|
||||
assert names[0] != "O"
|
||||
assert names[0] != "U-PERSON"
|
||||
|
||||
|
||||
def test_negative_sample_key_is_in_config(vocab, entity_types):
|
||||
actions = BiluoPushDown.get_actions(entity_types=entity_types)
|
||||
tsys = BiluoPushDown(vocab.strings, actions, incorrect_spans_key="non_entities")
|
||||
assert tsys.cfg["neg_key"] == "non_entities"
|
||||
|
||||
|
||||
# We can't easily represent this on a Doc object. Not sure what the best solution
|
||||
|
@ -213,6 +250,27 @@ def test_train_empty():
|
|||
nlp.update(batch, losses=losses)
|
||||
|
||||
|
||||
def test_train_negative_deprecated():
|
||||
"""Test that the deprecated negative entity format raises a custom error."""
|
||||
train_data = [
|
||||
("Who is Shaka Khan?", {"entities": [(7, 17, "!PERSON")]}),
|
||||
]
|
||||
|
||||
nlp = English()
|
||||
train_examples = []
|
||||
for t in train_data:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
|
||||
ner = nlp.add_pipe("ner", last=True)
|
||||
ner.add_label("PERSON")
|
||||
nlp.initialize()
|
||||
for itn in range(2):
|
||||
losses = {}
|
||||
batches = util.minibatch(train_examples, size=8)
|
||||
for batch in batches:
|
||||
with pytest.raises(ValueError):
|
||||
nlp.update(batch, losses=losses)
|
||||
|
||||
|
||||
def test_overwrite_token():
|
||||
nlp = English()
|
||||
nlp.add_pipe("ner")
|
||||
|
@ -265,6 +323,16 @@ def test_ruler_before_ner():
|
|||
assert [token.ent_type_ for token in doc] == expected_types
|
||||
|
||||
|
||||
def test_ner_constructor(en_vocab):
|
||||
config = {
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
cfg = {"model": DEFAULT_NER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
ner_1 = EntityRecognizer(en_vocab, model, **config)
|
||||
ner_2 = EntityRecognizer(en_vocab, model)
|
||||
|
||||
|
||||
def test_ner_before_ruler():
|
||||
""" Test that an entity_ruler works after an NER: the second can overwrite O annotations """
|
||||
nlp = English()
|
||||
|
@ -414,7 +482,7 @@ def test_beam_ner_scores():
|
|||
assert 0 - eps <= score <= 1 + eps
|
||||
|
||||
|
||||
def test_beam_overfitting_IO():
|
||||
def test_beam_overfitting_IO(neg_key):
|
||||
# Simple test to try and quickly overfit the Beam NER component
|
||||
nlp = English()
|
||||
beam_width = 16
|
||||
|
@ -422,6 +490,7 @@ def test_beam_overfitting_IO():
|
|||
config = {
|
||||
"beam_width": beam_width,
|
||||
"beam_density": beam_density,
|
||||
"incorrect_spans_key": neg_key,
|
||||
}
|
||||
ner = nlp.add_pipe("beam_ner", config=config)
|
||||
train_examples = []
|
||||
|
@ -438,12 +507,13 @@ def test_beam_overfitting_IO():
|
|||
assert losses["beam_ner"] < 0.0001
|
||||
|
||||
# test the scores from the beam
|
||||
test_text = "I like London."
|
||||
test_text = "I like London"
|
||||
docs = [nlp.make_doc(test_text)]
|
||||
beams = ner.predict(docs)
|
||||
entity_scores = ner.scored_ents(beams)[0]
|
||||
assert entity_scores[(2, 3, "LOC")] == 1.0
|
||||
assert entity_scores[(2, 3, "PERSON")] == 0.0
|
||||
assert len(nlp(test_text).ents) == 1
|
||||
|
||||
# Also test the results are still the same after IO
|
||||
with make_tempdir() as tmp_dir:
|
||||
|
@ -456,6 +526,104 @@ def test_beam_overfitting_IO():
|
|||
assert entity_scores2[(2, 3, "LOC")] == 1.0
|
||||
assert entity_scores2[(2, 3, "PERSON")] == 0.0
|
||||
|
||||
# Try to unlearn the entity by using negative annotations
|
||||
neg_doc = nlp.make_doc(test_text)
|
||||
neg_ex = Example(neg_doc, neg_doc)
|
||||
neg_ex.reference.spans[neg_key] = [Span(neg_doc, 2, 3, "LOC")]
|
||||
neg_train_examples = [neg_ex]
|
||||
|
||||
for i in range(20):
|
||||
losses = {}
|
||||
nlp.update(neg_train_examples, sgd=optimizer, losses=losses)
|
||||
|
||||
# test the "untrained" model
|
||||
assert len(nlp(test_text).ents) == 0
|
||||
|
||||
|
||||
def test_neg_annotation(neg_key):
|
||||
"""Check that the NER update works with a negative annotation that is a different label of the correct one,
|
||||
or partly overlapping, etc"""
|
||||
nlp = English()
|
||||
beam_width = 16
|
||||
beam_density = 0.0001
|
||||
config = {
|
||||
"beam_width": beam_width,
|
||||
"beam_density": beam_density,
|
||||
"incorrect_spans_key": neg_key,
|
||||
}
|
||||
ner = nlp.add_pipe("beam_ner", config=config)
|
||||
train_text = "Who is Shaka Khan?"
|
||||
neg_doc = nlp.make_doc(train_text)
|
||||
ner.add_label("PERSON")
|
||||
ner.add_label("ORG")
|
||||
example = Example.from_dict(neg_doc, {"entities": [(7, 17, "PERSON")]})
|
||||
example.reference.spans[neg_key] = [Span(neg_doc, 2, 4, "ORG"), Span(neg_doc, 2, 3, "PERSON"), Span(neg_doc, 1, 4, "PERSON")]
|
||||
|
||||
optimizer = nlp.initialize()
|
||||
for i in range(2):
|
||||
losses = {}
|
||||
nlp.update([example], sgd=optimizer, losses=losses)
|
||||
|
||||
|
||||
def test_neg_annotation_conflict(neg_key):
|
||||
# Check that NER raises for a negative annotation that is THE SAME as a correct one
|
||||
nlp = English()
|
||||
beam_width = 16
|
||||
beam_density = 0.0001
|
||||
config = {
|
||||
"beam_width": beam_width,
|
||||
"beam_density": beam_density,
|
||||
"incorrect_spans_key": neg_key,
|
||||
}
|
||||
ner = nlp.add_pipe("beam_ner", config=config)
|
||||
train_text = "Who is Shaka Khan?"
|
||||
neg_doc = nlp.make_doc(train_text)
|
||||
ner.add_label("PERSON")
|
||||
ner.add_label("LOC")
|
||||
example = Example.from_dict(neg_doc, {"entities": [(7, 17, "PERSON")]})
|
||||
example.reference.spans[neg_key] = [Span(neg_doc, 2, 4, "PERSON")]
|
||||
assert len(example.reference.ents) == 1
|
||||
assert example.reference.ents[0].text == "Shaka Khan"
|
||||
assert example.reference.ents[0].label_ == "PERSON"
|
||||
assert len(example.reference.spans[neg_key]) == 1
|
||||
assert example.reference.spans[neg_key][0].text == "Shaka Khan"
|
||||
assert example.reference.spans[neg_key][0].label_ == "PERSON"
|
||||
|
||||
optimizer = nlp.initialize()
|
||||
for i in range(2):
|
||||
losses = {}
|
||||
with pytest.raises(ValueError):
|
||||
nlp.update([example], sgd=optimizer, losses=losses)
|
||||
|
||||
|
||||
def test_beam_valid_parse(neg_key):
|
||||
"""Regression test for previously flakey behaviour"""
|
||||
nlp = English()
|
||||
beam_width = 16
|
||||
beam_density = 0.0001
|
||||
config = {
|
||||
"beam_width": beam_width,
|
||||
"beam_density": beam_density,
|
||||
"incorrect_spans_key": neg_key,
|
||||
}
|
||||
nlp.add_pipe("beam_ner", config=config)
|
||||
# fmt: off
|
||||
tokens = ['FEDERAL', 'NATIONAL', 'MORTGAGE', 'ASSOCIATION', '(', 'Fannie', 'Mae', '):', 'Posted', 'yields', 'on', '30', 'year', 'mortgage', 'commitments', 'for', 'delivery', 'within', '30', 'days', '(', 'priced', 'at', 'par', ')', '9.75', '%', ',', 'standard', 'conventional', 'fixed', '-', 'rate', 'mortgages', ';', '8.70', '%', ',', '6/2', 'rate', 'capped', 'one', '-', 'year', 'adjustable', 'rate', 'mortgages', '.', 'Source', ':', 'Telerate', 'Systems', 'Inc.']
|
||||
iob = ['B-ORG', 'I-ORG', 'I-ORG', 'L-ORG', 'O', 'B-ORG', 'L-ORG', 'O', 'O', 'O', 'O', 'B-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'B-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'B-PERCENT', 'L-PERCENT', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-PERCENT', 'L-PERCENT', 'O', 'U-CARDINAL', 'O', 'O', 'B-DATE', 'I-DATE', 'L-DATE', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']
|
||||
# fmt: on
|
||||
|
||||
doc = Doc(nlp.vocab, words=tokens)
|
||||
example = Example.from_dict(doc, {"ner": iob})
|
||||
neg_span = Span(doc, 50, 53, "ORG")
|
||||
example.reference.spans[neg_key] = [neg_span]
|
||||
|
||||
optimizer = nlp.initialize()
|
||||
|
||||
for i in range(5):
|
||||
losses = {}
|
||||
nlp.update([example], sgd=optimizer, losses=losses)
|
||||
assert "beam_ner" in losses
|
||||
|
||||
|
||||
def test_ner_warns_no_lookups(caplog):
|
||||
nlp = English()
|
||||
|
|
|
@ -5,10 +5,11 @@ from spacy.attrs import DEP
|
|||
from spacy.lang.en import English
|
||||
from spacy.training import Example
|
||||
from spacy.tokens import Doc
|
||||
from spacy import util
|
||||
from spacy import util, registry
|
||||
|
||||
from ..util import apply_transition_sequence, make_tempdir
|
||||
|
||||
from ...pipeline import DependencyParser
|
||||
from ...pipeline.dep_parser import DEFAULT_PARSER_MODEL
|
||||
|
||||
TRAIN_DATA = [
|
||||
(
|
||||
|
@ -215,6 +216,18 @@ def test_parser_set_sent_starts(en_vocab):
|
|||
assert token.head in sent
|
||||
|
||||
|
||||
def test_parser_constructor(en_vocab):
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
cfg = {"model": DEFAULT_PARSER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
parser_1 = DependencyParser(en_vocab, model, **config)
|
||||
parser_2 = DependencyParser(en_vocab, model)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("pipe_name", ["parser", "beam_parser"])
|
||||
def test_incomplete_data(pipe_name):
|
||||
# Test that the parser works with incomplete information
|
||||
|
|
|
@ -23,14 +23,9 @@ def _parser_example(parser):
|
|||
@pytest.fixture
|
||||
def parser(vocab):
|
||||
vocab.strings.add("ROOT")
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
cfg = {"model": DEFAULT_PARSER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
parser = DependencyParser(vocab, model, **config)
|
||||
parser = DependencyParser(vocab, model)
|
||||
parser.cfg["token_vector_width"] = 4
|
||||
parser.cfg["hidden_width"] = 32
|
||||
# parser.add_label('right')
|
||||
|
|
|
@ -190,14 +190,9 @@ def test_issue3345():
|
|||
doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
|
||||
doc[4].is_sent_start = True
|
||||
ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}])
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
cfg = {"model": DEFAULT_NER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
ner = EntityRecognizer(doc.vocab, model, **config)
|
||||
ner = EntityRecognizer(doc.vocab, model)
|
||||
# Add the OUT action. I wouldn't have thought this would be necessary...
|
||||
ner.moves.add_action(5, "")
|
||||
ner.add_label("GPE")
|
||||
|
|
|
@ -259,8 +259,6 @@ def test_issue3830_no_subtok():
|
|||
"""Test that the parser doesn't have subtok label if not learn_tokens"""
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 30,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
model = registry.resolve({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"]
|
||||
parser = DependencyParser(Vocab(), model, **config)
|
||||
|
@ -274,8 +272,6 @@ def test_issue3830_with_subtok():
|
|||
"""Test that the parser does have subtok label if learn_tokens=True."""
|
||||
config = {
|
||||
"learn_tokens": True,
|
||||
"min_action_freq": 30,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
model = registry.resolve({"model": DEFAULT_PARSER_MODEL}, validate=True)["model"]
|
||||
parser = DependencyParser(Vocab(), model, **config)
|
||||
|
|
|
@ -61,8 +61,6 @@ def taggers(en_vocab):
|
|||
@pytest.mark.parametrize("Parser", test_parsers)
|
||||
def test_serialize_parser_roundtrip_bytes(en_vocab, Parser):
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 0,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"beam_width": 1,
|
||||
"beam_update_prob": 1.0,
|
||||
|
@ -70,8 +68,8 @@ def test_serialize_parser_roundtrip_bytes(en_vocab, Parser):
|
|||
}
|
||||
cfg = {"model": DEFAULT_PARSER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
parser = Parser(en_vocab, model, **config)
|
||||
new_parser = Parser(en_vocab, model, **config)
|
||||
parser = Parser(en_vocab, model)
|
||||
new_parser = Parser(en_vocab, model)
|
||||
new_parser = new_parser.from_bytes(parser.to_bytes(exclude=["vocab"]))
|
||||
bytes_2 = new_parser.to_bytes(exclude=["vocab"])
|
||||
bytes_3 = parser.to_bytes(exclude=["vocab"])
|
||||
|
@ -84,43 +82,27 @@ def test_serialize_parser_strings(Parser):
|
|||
vocab1 = Vocab()
|
||||
label = "FunnyLabel"
|
||||
assert label not in vocab1.strings
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 0,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"beam_width": 1,
|
||||
"beam_update_prob": 1.0,
|
||||
"beam_density": 0.0,
|
||||
}
|
||||
cfg = {"model": DEFAULT_PARSER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
parser1 = Parser(vocab1, model, **config)
|
||||
parser1 = Parser(vocab1, model)
|
||||
parser1.add_label(label)
|
||||
assert label in parser1.vocab.strings
|
||||
vocab2 = Vocab()
|
||||
assert label not in vocab2.strings
|
||||
parser2 = Parser(vocab2, model, **config)
|
||||
parser2 = Parser(vocab2, model)
|
||||
parser2 = parser2.from_bytes(parser1.to_bytes(exclude=["vocab"]))
|
||||
assert label in parser2.vocab.strings
|
||||
|
||||
|
||||
@pytest.mark.parametrize("Parser", test_parsers)
|
||||
def test_serialize_parser_roundtrip_disk(en_vocab, Parser):
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 0,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
"beam_width": 1,
|
||||
"beam_update_prob": 1.0,
|
||||
"beam_density": 0.0,
|
||||
}
|
||||
cfg = {"model": DEFAULT_PARSER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
parser = Parser(en_vocab, model, **config)
|
||||
parser = Parser(en_vocab, model)
|
||||
with make_tempdir() as d:
|
||||
file_path = d / "parser"
|
||||
parser.to_disk(file_path)
|
||||
parser_d = Parser(en_vocab, model, **config)
|
||||
parser_d = Parser(en_vocab, model)
|
||||
parser_d = parser_d.from_disk(file_path)
|
||||
parser_bytes = parser.to_bytes(exclude=["model", "vocab"])
|
||||
parser_d_bytes = parser_d.to_bytes(exclude=["model", "vocab"])
|
||||
|
@ -198,17 +180,12 @@ def test_serialize_textcat_empty(en_vocab):
|
|||
def test_serialize_pipe_exclude(en_vocab, Parser):
|
||||
cfg = {"model": DEFAULT_PARSER_MODEL}
|
||||
model = registry.resolve(cfg, validate=True)["model"]
|
||||
config = {
|
||||
"learn_tokens": False,
|
||||
"min_action_freq": 0,
|
||||
"update_with_oracle_cut_size": 100,
|
||||
}
|
||||
|
||||
def get_new_parser():
|
||||
new_parser = Parser(en_vocab, model, **config)
|
||||
new_parser = Parser(en_vocab, model)
|
||||
return new_parser
|
||||
|
||||
parser = Parser(en_vocab, model, **config)
|
||||
parser = Parser(en_vocab, model)
|
||||
parser.cfg["foo"] = "bar"
|
||||
new_parser = get_new_parser().from_bytes(parser.to_bytes(exclude=["vocab"]))
|
||||
assert "foo" in new_parser.cfg
|
||||
|
|
|
@ -235,9 +235,9 @@ cdef class Example:
|
|||
seen.update(indices)
|
||||
return output
|
||||
|
||||
def get_aligned_ner(self):
|
||||
def get_aligned_ents_and_ner(self):
|
||||
if not self.y.has_annotation("ENT_IOB"):
|
||||
return [None] * len(self.x) # should this be 'missing' instead of 'None' ?
|
||||
return [], [None] * len(self.x)
|
||||
x_ents = self.get_aligned_spans_y2x(self.y.ents, allow_overlap=False)
|
||||
# Default to 'None' for missing values
|
||||
x_tags = offsets_to_biluo_tags(
|
||||
|
@ -253,6 +253,10 @@ cdef class Example:
|
|||
x_tags[i] = "O"
|
||||
elif self.x[i].is_space:
|
||||
x_tags[i] = "O"
|
||||
return x_ents, x_tags
|
||||
|
||||
def get_aligned_ner(self):
|
||||
x_ents, x_tags = self.get_aligned_ents_and_ner()
|
||||
return x_tags
|
||||
|
||||
def to_dict(self):
|
||||
|
|
|
@ -50,7 +50,7 @@ architectures and their arguments and hyperparameters.
|
|||
|
||||
| Setting | Description |
|
||||
| ----------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `moves` | A list of transition names. Inferred from the data if not provided. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| `moves` | A list of transition names. Inferred from the data if not provided. Defaults to `None`. ~~Optional[TransitionSystem]~~ |
|
||||
| `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. Defaults to `100`. ~~int~~ |
|
||||
| `learn_tokens` | Whether to learn to merge subtokens that are split relative to the gold standard. Experimental. Defaults to `False`. ~~bool~~ |
|
||||
| `min_action_freq` | The minimum frequency of labelled actions to retain. Rarer labelled actions have their label backed-off to "dep". While this primarily affects the label accuracy, it can also affect the attachment structure, as the labels are used to represent the pseudo-projectivity transformation. Defaults to `30`. ~~int~~ |
|
||||
|
@ -88,8 +88,8 @@ shortcut for this and instantiate the component using its string name and
|
|||
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||||
| `moves` | A list of transition names. Inferred from the data if not provided. ~~Optional[List[str]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. `100` is a good default. ~~int~~ |
|
||||
| `learn_tokens` | Whether to learn to merge subtokens that are split relative to the gold standard. Experimental. ~~bool~~ |
|
||||
| `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. Defaults to `100`. ~~int~~ |
|
||||
| `learn_tokens` | Whether to learn to merge subtokens that are split relative to the gold standard. Experimental. Defaults to `False`. ~~bool~~ |
|
||||
| `min_action_freq` | The minimum frequency of labelled actions to retain. Rarer labelled actions have their label backed-off to "dep". While this primarily affects the label accuracy, it can also affect the attachment structure, as the labels are used to represent the pseudo-projectivity transformation. ~~int~~ |
|
||||
|
||||
## DependencyParser.\_\_call\_\_ {#call tag="method"}
|
||||
|
|
|
@ -37,6 +37,7 @@ architectures and their arguments and hyperparameters.
|
|||
> "moves": None,
|
||||
> "update_with_oracle_cut_size": 100,
|
||||
> "model": DEFAULT_NER_MODEL,
|
||||
> "incorrect_spans_key": "incorrect_spans",
|
||||
> }
|
||||
> nlp.add_pipe("ner", config=config)
|
||||
> ```
|
||||
|
@ -46,6 +47,7 @@ architectures and their arguments and hyperparameters.
|
|||
| `moves` | A list of transition names. Inferred from the data if not provided. Defaults to `None`. ~~Optional[List[str]]~~ |
|
||||
| `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. Defaults to `100`. ~~int~~ |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [TransitionBasedParser](/api/architectures#TransitionBasedParser). ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `incorrect_spans_key` | This key refers to a `SpanGroup` in `doc.spans` that specifies incorrect spans. The NER wiill learn not to predict (exactly) those spans. Defaults to `None`. ~~Optional[str]~~ |
|
||||
|
||||
```python
|
||||
%%GITHUB_SPACY/spacy/pipeline/ner.pyx
|
||||
|
@ -72,14 +74,15 @@ Create a new pipeline instance. In your application, you would normally use a
|
|||
shortcut for this and instantiate the component using its string name and
|
||||
[`nlp.add_pipe`](/api/language#add_pipe).
|
||||
|
||||
| Name | Description |
|
||||
| ----------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||||
| `moves` | A list of transition names. Inferred from the data if not provided. ~~Optional[List[str]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. `100` is a good default. ~~int~~ |
|
||||
| Name | Description |
|
||||
| ----------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||||
| `moves` | A list of transition names. Inferred from the data if set to `None`, which is the default. ~~Optional[List[str]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `update_with_oracle_cut_size` | During training, cut long sequences into shorter segments by creating intermediate states based on the gold-standard history. The model is not very sensitive to this parameter, so you usually won't need to change it. Defaults to `100`. ~~int~~ |
|
||||
| `incorrect_spans_key` | Identifies spans that are known to be incorrect entity annotations. The incorrect entity annotations can be stored in the span group, under this key. Defaults to `None`. ~~Optional[str]~~ |
|
||||
|
||||
## EntityRecognizer.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
|
@ -220,14 +223,14 @@ model. Delegates to [`predict`](/api/entityrecognizer#predict) and
|
|||
> losses = ner.update(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## EntityRecognizer.get_loss {#get_loss tag="method"}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user