mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-18 12:12:20 +03:00
gearing up SpanPredictor for gold-heads
This commit is contained in:
parent
150e7c46d7
commit
706b2e6f25
|
@ -53,7 +53,6 @@ def build_wl_coref_model(
|
|||
convert_inputs=convert_coref_scorer_inputs,
|
||||
convert_outputs=convert_coref_scorer_outputs
|
||||
)
|
||||
|
||||
coref_model = tok2vec >> coref_scorer
|
||||
# XXX just ignore this until the coref scorer is integrated
|
||||
span_predictor = PyTorchWrapper(
|
||||
|
@ -62,7 +61,6 @@ def build_wl_coref_model(
|
|||
hidden_size,
|
||||
sp_embedding_size,
|
||||
),
|
||||
|
||||
convert_inputs=convert_span_predictor_inputs
|
||||
)
|
||||
# TODO combine models so output is uniform (just one forward pass)
|
||||
|
@ -84,14 +82,15 @@ def build_span_predictor(
|
|||
dim = 768
|
||||
|
||||
with Model.define_operators({">>": chain, "&": tuplify}):
|
||||
# TODO fix device - should be automatic
|
||||
device = "cuda:0"
|
||||
span_predictor = PyTorchWrapper(
|
||||
SpanPredictor(dim, dist_emb_size, device),
|
||||
SpanPredictor(dim, dist_emb_size),
|
||||
convert_inputs=convert_span_predictor_inputs
|
||||
)
|
||||
# TODO use proper parameter for prefix
|
||||
head_info = build_get_head_metadata("coref_head_clusters")
|
||||
head_info = build_get_head_metadata(
|
||||
"span_coref_head_clusters",
|
||||
"coref_head_clusters"
|
||||
)
|
||||
model = (tok2vec & head_info) >> span_predictor
|
||||
|
||||
return model
|
||||
|
@ -148,7 +147,7 @@ def convert_span_predictor_inputs(
|
|||
|
||||
argskwargs = ArgsKwargs(args=(sent_ids, word_features, head_ids), kwargs={})
|
||||
# TODO actually support backprop
|
||||
return argskwargs, lambda dX: []
|
||||
return argskwargs, lambda dX: [[]]
|
||||
|
||||
# TODO This probably belongs in the component, not the model.
|
||||
def predict_span_clusters(span_predictor: Model,
|
||||
|
@ -217,18 +216,27 @@ def _clusterize(
|
|||
clusters.append(sorted(cluster))
|
||||
return sorted(clusters)
|
||||
|
||||
def build_get_head_metadata(prefix):
|
||||
|
||||
def build_get_head_metadata(update_prefix, predict_prefix):
|
||||
# TODO this name is awful, fix it
|
||||
model = Model("HeadDataProvider", attrs={"prefix": prefix}, forward=head_data_forward)
|
||||
model = Model("HeadDataProvider",
|
||||
attrs={
|
||||
"update_prefix": update_prefix,
|
||||
"predict_prefix": predict_prefix
|
||||
},
|
||||
forward=head_data_forward)
|
||||
return model
|
||||
|
||||
|
||||
def head_data_forward(model, docs, is_train):
|
||||
"""A layer to generate the extra data needed for the span predictor.
|
||||
"""
|
||||
sent_ids = []
|
||||
head_ids = []
|
||||
prefix = model.attrs["prefix"]
|
||||
|
||||
if is_train:
|
||||
prefix = model.attrs["update_prefix"]
|
||||
else:
|
||||
prefix = model.attrs["predict_prefix"]
|
||||
for doc in docs:
|
||||
sids = model.ops.asarray2i(get_sentence_ids(doc))
|
||||
sent_ids.append(sids)
|
||||
|
@ -557,11 +565,9 @@ class SpanPredictor(torch.nn.Module):
|
|||
words[cols],
|
||||
self.emb(emb_ids[rows, cols]),
|
||||
), dim=1)
|
||||
input(len(heads_ids))
|
||||
lengths = same_sent.sum(dim=1)
|
||||
padding_mask = torch.arange(0, lengths.max().item(), device=words.device).unsqueeze(0)
|
||||
padding_mask = (padding_mask < lengths.unsqueeze(1)) # [n_heads, max_sent_len]
|
||||
input(padding_mask.shape)
|
||||
# [n_heads, max_sent_len, input_size * 2 + distance_emb_size]
|
||||
# This is necessary to allow the convolution layer to look at several
|
||||
# word scores
|
||||
|
|
|
@ -417,6 +417,7 @@ DEFAULT_SPAN_PREDICTOR_MODEL = Config().from_str(default_span_predictor_config)[
|
|||
default_config={
|
||||
"model": DEFAULT_SPAN_PREDICTOR_MODEL,
|
||||
"input_prefix": "coref_head_clusters",
|
||||
"target_prefix": "span_head_target_clusters",
|
||||
"output_prefix": "coref_clusters",
|
||||
},
|
||||
default_score_weights={"span_predictor_f": 1.0, "span_predictor_p": None, "span_predictor_r": None},
|
||||
|
@ -426,6 +427,7 @@ def make_span_predictor(
|
|||
name: str,
|
||||
model,
|
||||
input_prefix: str = "coref_head_clusters",
|
||||
target_prefix: str = "span_head_target_clusters",
|
||||
output_prefix: str = "coref_clusters",
|
||||
) -> "SpanPredictor":
|
||||
"""Create a SpanPredictor component."""
|
||||
|
@ -444,12 +446,14 @@ class SpanPredictor(TrainablePipe):
|
|||
name: str = "span_predictor",
|
||||
*,
|
||||
input_prefix: str = "coref_head_clusters",
|
||||
target_prefix: str = "span_coref_head_clusters",
|
||||
output_prefix: str = "coref_clusters",
|
||||
) -> None:
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
self.name = name
|
||||
self.input_prefix = input_prefix
|
||||
self.target_prefix = target_prefix
|
||||
self.output_prefix = output_prefix
|
||||
|
||||
self.cfg = {}
|
||||
|
@ -511,13 +515,18 @@ class SpanPredictor(TrainablePipe):
|
|||
set_dropout_rate(self.model, drop)
|
||||
|
||||
total_loss = 0
|
||||
|
||||
for eg in examples:
|
||||
span_scores, backprop = self.model.begin_update([eg.predicted])
|
||||
docs = [eg.predicted for eg in examples]
|
||||
for doc, eg in zip(docs, examples):
|
||||
# replicates the EntityLinker's behaviour and
|
||||
# copies annotations over https://bit.ly/3iweDcW
|
||||
for key, sg in eg.reference.spans.items():
|
||||
if key.startswith(self.target_prefix):
|
||||
doc.spans[key] = [doc[span.start:span.end] for span in sg]
|
||||
span_scores, backprop = self.model.begin_update([doc])
|
||||
loss, d_scores = self.get_loss([eg], span_scores)
|
||||
total_loss += loss
|
||||
# TODO check shape here
|
||||
backprop((d_scores, mention_idx))
|
||||
backprop(d_scores)
|
||||
|
||||
if sgd is not None:
|
||||
self.finish_update(sgd)
|
||||
|
@ -564,7 +573,7 @@ class SpanPredictor(TrainablePipe):
|
|||
for eg in examples:
|
||||
|
||||
# get gold data
|
||||
gold = doc2clusters(eg.reference, self.output_prefix)
|
||||
gold = doc2clusters(eg.predicted, self.target_prefix)
|
||||
# flatten the gold data
|
||||
starts = []
|
||||
ends = []
|
||||
|
@ -605,6 +614,7 @@ class SpanPredictor(TrainablePipe):
|
|||
doc = ex.predicted
|
||||
assert len(doc) > 2, "Coreference requires at least two tokens"
|
||||
doc.spans[f"{self.input_prefix}_0"] = [doc[0:1], doc[1:2]]
|
||||
doc.spans[f"{self.target_prefix}_0"] = [doc[0:1], doc[1:2]]
|
||||
X.append(ex.predicted)
|
||||
Y.append(ex.reference)
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user