mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	Fix use of dropout in sentiment analysis LSTM example
This commit is contained in:
		
							parent
							
								
									1ed40682a3
								
							
						
					
					
						commit
						7793e2ad82
					
				|  | @ -111,10 +111,9 @@ def compile_lstm(embeddings, shape, settings): | |||
|             mask_zero=True | ||||
|         ) | ||||
|     ) | ||||
|     model.add(TimeDistributed(Dense(shape['nr_hidden'] * 2, bias=False))) | ||||
|     model.add(Dropout(settings['dropout'])) | ||||
|     model.add(Bidirectional(LSTM(shape['nr_hidden']))) | ||||
|     model.add(Dropout(settings['dropout'])) | ||||
|     model.add(TimeDistributed(Dense(shape['nr_hidden'], bias=False))) | ||||
|     model.add(Bidirectional(LSTM(shape['nr_hidden'], dropout_U=settings['dropout'], | ||||
|                                  dropout_W=settings['dropout']))) | ||||
|     model.add(Dense(shape['nr_class'], activation='sigmoid')) | ||||
|     model.compile(optimizer=Adam(lr=settings['lr']), loss='binary_crossentropy', | ||||
| 		  metrics=['accuracy']) | ||||
|  | @ -195,7 +194,7 @@ def main(model_dir, train_dir, dev_dir, | |||
|         dev_labels = numpy.asarray(dev_labels, dtype='int32') | ||||
|         lstm = train(train_texts, train_labels, dev_texts, dev_labels, | ||||
|                      {'nr_hidden': nr_hidden, 'max_length': max_length, 'nr_class': 1}, | ||||
|                      {'dropout': 0.5, 'lr': learn_rate}, | ||||
|                      {'dropout': dropout, 'lr': learn_rate}, | ||||
|                      {}, | ||||
|                      nb_epoch=nb_epoch, batch_size=batch_size) | ||||
|         weights = lstm.get_weights() | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user